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Abstract

Consider N ×N Hermitian or symmetric random matrices H with independent entries, where the distri-
bution of the (i, j) matrix element is given by the probability measure νij with zero expectation and with

variance σ 2
ij

. We assume that the variances satisfy the normalization condition
∑

i σ
2
ij

= 1 for all j and that

there is a positive constant c such that c�Nσ 2
ij

� c−1. We further assume that the probability distributions
νij have a uniform subexponential decay. We prove that the Stieltjes transform of the empirical eigenvalue
distribution of H is given by the Wigner semicircle law uniformly up to the edges of the spectrum with an
error of order (Nη)−1 where η is the imaginary part of the spectral parameter in the Stieltjes transform.
There are three corollaries to this strong local semicircle law: (1) Rigidity of eigenvalues: If γj = γj,N
denotes the classical location of the j -th eigenvalue under the semicircle law ordered in increasing order,
then the j -th eigenvalue λj is close to γj in the sense that for some positive constants C, c

P
(∃j : |λj − γj | � (logN)C log logN [min(j,N − j + 1)

]−1/3
N−2/3)� C exp

[−(logN)c log logN ]
for N large enough. (2) The proof of Dyson’s conjecture (Dyson, 1962 [15]) which states that the time scale
of the Dyson Brownian motion to reach local equilibrium is of order N−1 up to logarithmic corrections.
(3) The edge universality holds in the sense that the probability distributions of the largest (and the smallest)
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eigenvalues of two generalized Wigner ensembles are the same in the large N limit provided that the second
moments of the two ensembles are identical.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Random matrices were introduced by E. Wigner to model the excitation spectrum of large
nuclei. The central idea is based on the observation that the eigenvalue gap distribution for a
large complicated system is universal in the sense that it depends only on the symmetry class of
the physical system but not on other detailed structures. As a special case of this general belief,
the eigenvalue gap distribution of random matrices should be independent of the probability
distributions of the ensembles and thus is given by the classical Gaussian ensembles. Besides the
eigenvalue gap distribution, similar predictions hold also for short distance correlation functions
of the eigenvalues. Since the gap distribution can be expressed in terms of correlation functions,
mathematical analysis is usually performed on correlation functions. From now on, we refer to
universality for the fact that the short distance behavior of the eigenvalue correlation functions of
a random matrix ensemble are the same as those of the Gaussian ensemble of the same symmetry
class (Gaussian unitary, orthogonal or symplectic ensemble, i.e., GUE, GOE, GSE).

The universality question can be roughly divided into the bulk universality in the interior of
the spectrum and the edge universality near the spectral edges. Over the past two decades, spec-
tacular progress on bulk and edge universality was made for invariant ensembles, see, e.g., [8,12,
13,30] and [2,10,11] for a review. For non-invariant ensembles with i.i.d. matrix elements (Stan-
dard Wigner ensembles) edge universality can be proved via the moment method and its various
generalizations, see, e.g., [34,37,36]. In a striking contrast, the only rigorous results for the bulk
universality of non-invariant Wigner ensembles were the work by Johansson [26] and subsequent
improvements [6,27] on Gaussian divisible Hermitian ensembles, i.e., Hermitian ensembles of
the form

Hs =H0 + sV, (1.1)

where H0 is a Wigner matrix, V is an independent standard GUE matrix and s is a fixed positive
constant independent of N . The Hermitian assumption is essential since the key formula used
in [26] and the earlier work [9] is valid only for Hermitian ensembles.

The bulk universality, however, was expected to hold for general classes of Wigner matrices,
see Mehta’s book [28, Conjectures 1.2.1 and 1.2.2 on page 7]. We will refer to these two con-
jectures as the Wigner–Dyson–Gaudin–Mehta conjecture due to their pioneering work. Until a
few years ago this conjecture remained unsolved, mainly due to the fact that all existing methods
on local eigenvalue statistics depended on explicit formulas which were not available for Wigner
matrices. In a series of papers [17–19,16,20,21,23,22], we developed a new approach to under-
stand local eigenvalue statistics. This approach, in particular, led to the first proof [16] of the
Wigner–Dyson–Gaudin–Mehta conjecture for Hermitian Wigner matrices with smooth distribu-
tions for the matrix elements. We now give a brief summary of this approach which motivates
the current paper.
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The first step was to derive a local semicircle law, a precise estimate of the local eigenvalue
density, down to energy scales containing around Nε eigenvalues. In fact, we also obtain precise
bounds on the matrix elements of the Green function. The second step is a general approach for
the universality of Gaussian divisible ensembles by embedding the matrix (1.1) into a stochastic
flow of matrices and use that the eigenvalues evolve according to a distinguished coupled system
of stochastic differential equations, called the Dyson Brownian motion [15]. The central idea is
to estimate the time to local equilibrium for the Dyson Brownian motion with the introduction
of a new stochastic flow, the local relaxation flow, which locally behaves like a Dyson Brownian
motion but has a faster decay to global equilibrium. This approach [20,21] entirely eliminates the
usage of explicit formulas and it provides a unified proof for the universality of Gaussian divisible
ensembles for all symmetry classes. Furthermore, it also gives a conceptual interpretation that
the origin of the universality is due to the local ergodicity of Dyson Brownian motion.

More precisely, we will use a slightly different version of (1.1), namely

Ht = e−t/2H0 + (1 − e−t)1/2
V, (1.2)

to ensure that the variance of Ht remains independent of t . Denote by λj the j -th eigenvalue
of the random matrix Ht , labelled in increasing order, λ1 � λ2 � · · · � λN , and γj the classical
location of the j -th eigenvalue, i.e., γj is defined by

N

γj∫
−∞

�sc(x)dx = j, 1 � j �N, (1.3)

where �sc(x)= 1
2π

√
(4 − x2)+ is the semicircle law. Our main result on the universality for the

Dyson Brownian motion states that, roughly speaking, the short distance correlation functions
for Ht at the time t ∼ N−2a and Ht=∞ are identical in weak sense provided that the following
main condition holds:

Assumption III. There exists an a> 0 such that

sup
t�N−2a

1

N
Et

N∑
j=1

(λj − γj )
2 � CN−1−2a (1.4)

with a constant C uniformly in N . Here Et is the expectation w.r.t. Dyson Brownian motion at
the time t . The condition (1.4) has been derived from a sufficiently strong version of the local
semicircle law.

Once the universality for the Gaussian divisible ensemble is established, the last step is to
approximate all matrix ensembles by Gaussian divisible ones. This step can be done via a re-
verse heat flow argument [16,21] for ensembles with smooth probability distributions or more
generally via the Green function comparison theorem [23] which compares the distributions of
eigenvalues of two ensembles around a fixed energy. The key input for the latter approach was
to prove a-priori estimates on the matrix elements of the Green function. These estimates have
been obtained together with the local semicircle law.
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To summarize, our approach to universality consists of the following three main steps:
Step 1. Local semicircle law. Step 2. Universality for Gaussian divisible ensembles. Step 3. Ap-
proximation by Gaussian divisible ensembles. Both Steps 2 and 3 rely on a strong local semicircle
law from Step 1.

Shortly after the preprint [16] appeared, another method for the universality was posted by
Tao and Vu [40]. This method contains similar three ingredients as in [16]; their key result,
prior to the Green function comparison theorem appeared in [23], states that the probability
distributions of the j -th eigenvalue of two ensembles for a fixed label j in the bulk are identical
as N → ∞ provided that the first four moments of the matrix elements of the two ensembles
are identical. This result also implies the universality of the correlation functions for Hermitian
Wigner ensembles [40] by combining it with the Gaussian divisible results of [26,6] for Step 2.
For symmetric ensembles, it requires the first four moments matching those of GOE. As in our
approach, a key analytic input for [40] is the local semicircle law established in [18]. The bulk
universality in the case of symmetric matrices in the generality as stated in Mehta’s book [28] (in
particular, without the assumption to match four moments) was proved in [20,22]. The key input
is to link universality to local ergodicity of Dyson Brownian motion, reviewed in the previous
paragraphs.

Due to the fundamental role of the local semicircle law, its error estimates were improved
many times since its first proof in [18]. Furthermore, it was extended to sample covariance en-
sembles [21] and generalized Wigner ensembles [23] whose matrix elements are allowed to have
different but comparable variances. The best existing error estimates for local semicircle law
of generalized Wigner ensembles, given in [22], are already almost optimal in the bulk of the
spectrum, but not near the edges. In this paper, we will prove a strong local semicircle law, The-
orem 2.1, which, up to logN factors, gives optimal error estimates everywhere in the spectrum.
There are four important consequences of this result:

1. It implies that Assumption III holds with the right hand side of (1.4) given by
N−2(logN)C log logN for some constant C, i.e., a can be chosen arbitrary close to 1/2. Thus
the Dyson Brownian motion reaches local equilibrium at t ∼ N−1+δ for arbitrary small δ.
Up to the factor Nδ , this is optimal. Since the time to the global equilibrium for the Dyson
Brownian motion is order one, we have thus established Dyson’s conjecture [15] that the
Dyson Brownian motion reaches equilibrium in two well-separated stages with time scales
of order one and N−1. As a historical note, we mention that Dyson had obtained the two time
scales via heuristic physical argument and commented that a rigorous proof of his prediction
is lacking. Furthermore, the notion of local equilibrium was used by Dyson in a very vague
sense, see [20] for a more detailed discussion.

2. It implies certain explicit error estimates for the universality of correlation functions in short
scales.

3. It implies the rigidity of eigenvalues in the sense that

P
{∃j : |λj − γj | � (logN)C log logN [min(j,N − j + 1)

]−1/3
N−2/3}

� C exp
[−(logN)c log logN ] (1.5)

for some positive constants C and c. In other words, the eigenvalue is near its classical
location with an error of at most N−1(logN)C log logN for generalized Wigner matrices in
the bulk and the estimate deteriorates by a factor (N )1/3 near the edge j �N .
j
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4. It implies the edge universality in the sense that the probability distributions of the largest
(and the smallest) eigenvalues of two generalized Wigner ensembles are equal in the large
N limit provided that the second moments of the two ensembles are identical. We recall the
standard assumption that the first moments of the matrix elements are always zero for all
generalized Wigner ensembles. The comparison between our edge universality theorem and
the previous results will be given at the end of Section 2 after the statement of Theorem 2.4.

It is well known that the gaps between extremal eigenvalues and their fluctuations are of
order N−2/3. Thus the edge deterioration factor in (1.5) is the natural interpolation between
N−1 in the bulk and N−2/3 on the edges. The surprising feature of the rigidity estimate is that
even if one eigenvalue is at a slightly wrong location, the probability is already extremely small.
We remark that, without the (logN)C log logN factor, the rigidity estimate (1.5) would be wrong
since, at least for the classical GUE or GOE ensembles, the eigenvalues are known to fluctuate
on a scale

√
logN/N , see [25,29]. For these ensembles, the distribution of λj −γj is Gaussian in

the bulk. However, the rigidity estimate (1.5) in this strong probabilistic form was not available
even for the classical Gaussian ensembles.

2. Main results

Let H = (hij )
N
i,j=1 be an N ×N Hermitian or symmetric matrix where the matrix elements

hij = hji , i � j , are independent random variables given by a probability measure νij with mean
zero and variance σ 2

ij � 0:

Ehij = 0, σ 2
ij := E|hij |2. (2.1)

The distribution νij and its variance σ 2
ij may depend on N , but we omit this fact in the notation.

Denote by B := {σ 2
ij }Ni,j=1 the matrix of variances. The following assumptions on B are made

throughout the paper:

(A) For any j fixed

N∑
i=1

σ 2
ij = 1. (2.2)

Thus B is symmetric and double stochastic and, in particular, it satisfies −1 � B � 1.
(B) We assume that there exist two positive constants, δ− and δ+, independent of N , such that

1 is a simple eigenvalue of B and Spec(B)⊂ [−1 + δ−,1 − δ+] ∪ {1}. (2.3)

(C) There is a constant C0, independent of N , such that

max
ij

{
σ 2
ij

}
� C0

N
. (2.4)

For the orientation of the reader, we mention two special cases that provided the main moti-
vation for our work.
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Example 1 (Generalized Wigner matrix). Define Cinf (N) and Csup(N) by

Cinf (N) := inf
i,j

{
Nσ 2

ij

}
� sup

i,j

{
Nσ 2

ij

}=: Csup(N). (2.5)

The ensemble is called generalized Wigner ensemble provided that

0<C− � Cinf (N)� Csup(N)� C+ <∞, (2.6)

for some C± independent of N . In this case, one can easily prove that 1 is a simple eigenvalue
of B and (2.3) holds with some

δ± � C−, (2.7)

i.e., apart from the trivial eigenvalue, the spectrum of B is separated away ±1 by positive con-
stants that are independent ofN . The special caseCinf = Csup = 1 reduces to the standard Wigner
matrices.

Example 2 (Certain band matrices with bandwidth of order N ). Band matrices are characterized
by the property that σ 2

ij is a function of |i − j | on scale W , which is called the bandwidth. More
precisely, the variances of a band matrix with bandwidth 1 �W �N/2 are given by

σ 2
ij =W−1f

( [i − j ]N
W

)
, (2.8)

where f : R → R+ is a bounded nonnegative symmetric function with
∫
f = 1 and we defined

[i− j ]N ∈ Z by the property that [i− j ]N ≡ i− j mod N and − 1
2N < [i− j ]N � 1

2N . We often
consider the case when W = W(N), i.e. the bandwidth is a function of N . The condition (A)
holds only asymptotically as W(N) → ∞ but it can be remedied by an irrelevant rescaling. If
the bandwidth is comparable with N , then we also have to assume that f (x) is supported in
|x| �N/(2W).

It is easy to see that many band matrices satisfy the spectral assumption (2.3). The lower
spectral bound, −1 + δ− � B with some δ− > 0 depending only on f , holds for any sufficiently
large W , see Appendix A of [21]. The parameter δ+ in the upper spectral bound typically behaves
as of order (W/N)2. Thus, for the condition (B) to hold, we need to assume that the bandwidth is
comparable with N , i.e., it satisfies W � cN with some positive constant c. The same assumption
also guarantees that condition (C) holds.

We remark that the special case W = N/2 and f (x) � c > 0 for |x| � 1 was already cov-
ered by Example 1, but Example 2 allows more general band matrices that may have vanishing
variances. For example, with the choice of f (x)= 1

2 · 1(|x| � 1), the ensemble with variances

σ 2
ij = (N/2)−11

([i − j ]N �N/4
)

(2.9)

is a band matrix with bandwidth W =N/4.
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Define the Green function of H by

Gij (z)=
(

1

H − z

)
ij

, z=E + iη, E ∈ R, η > 0. (2.10)

The Stieltjes transform of the empirical eigenvalue distribution of H is given by

m(z)=mN(z) := 1

N

∑
j

Gjj (z)= 1

N
Tr

1

H − z
. (2.11)

Define msc(z) as the unique solution of

msc(z)+ 1

z+msc(z)
= 0, (2.12)

with positive imaginary part for all z with Im z > 0, i.e.,

msc(z)= −z+ √
z2 − 4

2
, (2.13)

where the square root function is chosen with a branch cut in the segment [−2,2] so that asymp-
totically

√
z2 − 4 ∼ z at infinity. This guarantees that the imaginary part of msc is nonnegative

for η= Im z > 0 and in the η→ 0 limit it is the Wigner semicircle distribution

�sc(E) := lim
η→0+0

1

π
Immsc(E + iη)= 1

2π

√(
4 −E2

)
+. (2.14)

The Wigner semicircle law [45] states that mN(z) → msc(z) for any fixed z, i.e., provided that
η = Im z > 0 is independent of N . Let z = E + iη (η > 0) and denote by κ := ||E| − 2| the
distance of E to the spectral edges ±2. We have proved [22] a local version of this result for
generalized Wigner matrices in the form of the following probability estimate:

P

(∣∣mN(z)−msc(z)
∣∣� Nε

Nηκ

)
� C(ε,K)

NK
(2.15)

that holds for any fixed positive constants ε and K and for any z = E + iη such that |E| � 10,
Nηκ3/2 �Nε . Note that this estimate deteriorates near the spectral edges as κ � 1.

In this paper we prove the following local semicircle law that provides essentially the optimal
estimate uniformly in E = Re z. We will estimate not only the deviation of m(z) from msc(z),
but also the deviation of each diagonal matrix element of the resolvent, Gkk(z), from msc(z).
Moreover, we show that the off-diagonal elements of the resolvent are small.

Let

vk :=Gkk −msc, m := 1

N

N∑
Gkk, [v] := 1

N

N∑
vk =m−msc.
k=1 k=1
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Our goal is to estimate the following quantities

Λd := max
k

|vk| = max
k

|Gkk −msc|, Λo := max
k 
=
 |Gk
|, Λ := |m−msc|, (2.16)

where the subscripts refer to “diagonal” and “off-diagonal” matrix elements. All these quantities
depend on the spectral parameter z and on N but for simplicity we often omit this fact from the
notation.

Theorem 2.1 (Strong local semicircle law). Let H = (hij ) be a Hermitian or symmetric N ×N

random matrix, N � 3, with Ehij = 0, 1 � i, j � N , and assume that the variances σ 2
ij satisfy

Assumptions (A), (B), (C), i.e. (2.2), (2.3) and (2.4). Suppose that the distributions of the matrix
elements have a uniformly subexponential decay in the sense that there exists a constant ϑ > 0,
independent of N , such that for any x � 1 and 1 � i, j �N we have

P
(|hij |> xσij

)
� ϑ−1 exp

(−xϑ). (2.17)

Then there exist positive constants A0 > 1, C, c and φ < 1 depending only on ϑ , on δ± from
Assumption (B) and on C0 from Assumption (C), such that for all L with

A0 log logN � L� log(10N)

10 log logN
(2.18)

the following estimates hold for any sufficiently large N �N0(ϑ, δ±,C0):

(i) The Stieltjes transform of the empirical eigenvalue distribution of H satisfies

P

( ⋃
z∈SL

{
Λ(z)� (logN)4L

Nη

})
� C exp

[−c(logN)φL
]
, (2.19)

where

S := SL = {z=E + iη: |E| � 5, N−1(logN)10L < η� 10
}
. (2.20)

(ii) The individual matrix elements of the Green function satisfy that

P

( ⋃
z∈SL

{
Λd(z)+Λo(z)� (logN)4L

√
Immsc(z)

Nη
+ (logN)4L

Nη

})
� C exp

[−c(logN)φL
]
. (2.21)

(iii) The largest eigenvalue of H is bounded by 2 +N−2/3(logN)9L in the sense that

P

(
max

j=1,...,N
|λj | � 2 +N−2/3(logN)9L

)
� C exp

[−c(logN)φL
]
. (2.22)
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The subexponential decay condition (2.17) can be weakened if we are not aiming at error
estimates faster than any power law of N . This can be easily carried out and we will not pursue
it in this paper. We also note that the upper bound on L originates from the natural requirement
that SL 
= ∅.

Prior to our results in [23] and [22], a central limit theorem for the semicircle law on macro-
scopic scale for band matrices was established by Guionnet [24] and Anderson and Zeitouni [3];
a semicircle law for Gaussian band matrices was proved by Disertori, Pinson and Spencer [14].
For a review on band matrices, see the recent article [39] by Spencer.

The local semicircle estimates imply that the empirical counting function of the eigenvalues
is close to the semicircle counting function and that the locations of the eigenvalues are close to
their classical location in mean square deviation sense. Recall that λ1 � λ2 � · · · � λN are the
ordered eigenvalues of H . We define the normalized empirical counting function by

n(E) := 1

N
#{λj �E}. (2.23)

Let

nsc(E) :=
E∫

−∞
�sc(x)dx (2.24)

be the distribution function of the semicircle law and recall that γj = γj,N denote the classical
location of the j -th point under the semicircle law, see (1.3).

Theorem 2.2 (Rigidity of eigenvalues). Suppose that Assumptions (A), (B), (C) and the condi-
tion (2.17) hold. Then there exist positive constants A0 > 1, C, c and φ < 1 depending only on ϑ ,
on δ± from Assumption (B) and on C0 from Assumption (C) such that for any L with

A0 log logN � L� log(10N)

10 log logN

we have

P
{∃j : |λj − γj | � (logN)L

[
min(j,N − j + 1)

]−1/3
N−2/3}

� C exp
[−c(logN)φL

]
(2.25)

and

P

{
sup

|E|�5

∣∣n(E)− nsc(E)
∣∣� (logN)L

N

}
� C exp

[−c(logN)φL
]

(2.26)

for any sufficiently large N �N0(ϑ, δ±,C0).

For standard Wigner matrices, (2.26) with the factor N−1 replaced by N−2/5 (in a weaker
sense with some modifications in the statement) was established in [5] and a stronger N−1/2

control was proved for En(E) − nsc(E). If we replaced (logN)L factor by Nδ for arbitrary
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δ > 0, (2.26) was proved in [22, Theorem 6.3] with some deterioration near the spectral edges
and with a slightly weaker probability estimate. In Theorem 1.3 of a recent preprint [42], the
following estimate (in our scaling)

(
E
[|λj − γj |2

])1/2 �
[
min(j,N − j + 1)

]−1/3
N−1/6−ε0 (2.27)

with some small positive ε0 was proved under the assumption that the third moment of the ma-
trix element vanishes and all variances of the matrix elements are identical, i.e., for the standard
Wigner matrices with vanishing third moment. In the same paper, it was conjectured that the
factor N−1/6−ε0 on the right hand side of (2.27) should be replaced by N−2/3+ε . Prior to the
work [42], the estimate (2.25) away from the edges with a slightly weaker probability estimate
and with the (logN)L factor replaced by Nδ for arbitrary δ > 0 was proved in [22] (see the
equation before (7.8) in [22]). For Wigner matrices whose matrix element distributions match-
ing the standard Gaussian random variable up to the third moment, it was proved in [40] that
|λj − γj | � N−1+ε holds in the bulk in probability (Theorem 32). More detailed behavior can
be obtained if one assumes further that the fourth moment also matches the standard Gaussian
random variable, see Corollary 21 of [40] for more details. Near the edge, (2.25) with N−2/3

replaced by N−1/2 and the probability estimate on the right side replaced by a Gaussian type
estimate was proved in [1].

We remark that all results in this paper are stated for both the Hermitian or symmetric case,
but the statements hold for quaternion self-dual random matrices as well (see, e.g., Section 3.1
of [21]). The proofs will be presented for the Hermitian case for definiteness but with obvious
modifications they are valid for the other two cases as well.

We will frequently use the notation C and c for generic positive constants and N0 for the
lower threshold for N in this paper. We adopt the convention that, unless stated otherwise, these
constants and also the implicit constants in the O(·) notation may depend on the basic parameters
of our model, namely on ϑ , δ± and C0. The values of these generic constants may change from
line to line.

2.1. Bulk universality

We now use Theorem 2.2 to establish the speed of convergence for local statistics of Dyson
Brownian motion. In fact, we will replace the Brownian motion in the definition of Dyson Brow-
nian motion by an Ornstein–Uhlenbeck process. We thus consider a flow of random matrices Ht

satisfying the following matrix valued stochastic differential equation

dHt = 1√
N

dβt − 1

2
Ht dt, (2.28)

where βt is a Hermitian matrix valued process whose diagonal matrix elements are standard real
Brownian motions and the off-diagonal elements are independent standard complex Brownian
motions; with all Brownian motions being independent. The initial condition H0 is the original
Hermitian Wigner matrix. For any fixed t � 0, the distribution of Ht coincides with that of

e−t/2H0 + (1 − e−t)1/2
V, (2.29)
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where V is an independent GUE matrix whose matrix elements are centered Gaussian random
variables with variance 1/N . For the symmetric case, the matrix elements of βt in (2.28) are real
Brownian motions and V in (2.29) is a GOE matrix. It is well known that the eigenvalues of Ht

follow a process that is also called the Dyson Brownian motion (in our case with a drift but we
will still call it Dyson Brownian motion).

More precisely, let

μ= μN(dx)= e−H(x)

Zβ
dx, H(x)=N

[
β

N∑
i=1

x2
i

4
− β

N

∑
i<j

log |xj − xi |
]
, (2.30)

be the probability measure of the eigenvalues of the general β ensemble, with β � 1 (β = 2 for
GUE, β = 1 for GOE). Here Zβ is the normalization factor so that μ is probability measure. In
this section, we often use the notation xj instead of λj for the eigenvalues to follow the notations
of [21]. Denote the distribution of the eigenvalues at time t by ft (x)μ(dx). Then ft satisfies

∂tft = L ft , (2.31)

where

L =
N∑
i=1

1

2N
∂2
i +

N∑
i=1

(
−β

4
xi + β

2N

∑
j 
=i

1

xi − xj

)
∂i . (2.32)

For any n� 1 we define the n-point correlation functions (marginals) of the probability measure
ft dμ by

p
(n)
t,N (x1, x2, . . . , xn)=

∫
RN−n

ft (x)μ(x)dxn+1 · · ·dxN . (2.33)

With a slight abuse of notations, we will sometimes also use μ to denote the density of the
measure μ with respect to the Lebesgue measure. The correlation functions of the equilibrium
measure are denoted by

p
(n)
μ,N (x1, x2, . . . , xn)=

∫
RN−n

μ(x)dxn+1 · · ·dxN . (2.34)

The main result in [21] concerning Dyson Brownian motion, Theorem 2.1, states that the
local ergodicity of Dyson Brownian motion holds for t � N−2a+δ for any δ > 0 provided that
Assumption III, (1.4), holds. In fact, the estimate on the relaxation to the local equilibrium [21] is
not restricted to Dyson Brownian motion; it applies to all flows satisfying four general assump-
tions, labelled as Assumption I–IV in [21]. Instead of repeating these assumptions in their general
forms, we will give only simple sufficient conditions. Assumption I requires that the probability
density of the global equilibrium measure is given by a Hamiltonian of the form

H = HN(x)= β

[
N∑
U(xj )− 1

N

∑
log |xi − xj |

]
, (2.35)
j=1 i<j
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where β � 1 and the function U : R → R is smooth with U ′′ � δ for some positive δ. This is
clearly satisfied since the equilibrium measures are either GUE or GOE in the setting of this
paper. Assumption II requires a limiting continuous density for the eigenvalue distribution. In
our case, the density is given by the semicircle law. Assumption IV asserts that the local density
of eigenvalues is bounded down to scale η = N−1+σ for any σ > 0. This assumption follows
from the large deviation estimate (2.19) since a bound on Λ(z), z = E + iη, can be easily used
to prove an upper bound on the local density of eigenvalues in a window of size η about E. As
usual, the additional condition in [21] on the entropy Sμ(ft0)� CNm for t0 = N−2a holds due
to the regularization property of the Ornstein–Uhlenbeck process. Thus for a given 0 < ε′ < 1,
choosing a = 1/2 − ε′/2, A= ε′ in the second part of Theorem 2.1 in [21] and using (2.25), we
have the following theorem.

Theorem 2.3 (Strong local ergodicity of Dyson Brownian motion). Let H be a Hermitian or
symmetric N × N random matrix with Ehij = 0 and suppose that Assumptions (A), (B), (C)
and (2.17) hold with parameters δ±,C0 and ϑ . Then for any ε′ > 0, δ > 0, c > 0 positive num-
bers, for any integer n� 1 and for any compactly supported continuous test functionO : R

n → R

there exists a constant C depending on all these parameters and on O such that

sup
t�N−1+δ+ε′

∣∣∣∣∣
E+b∫

E−b

dE′

2b

∫
Rn

dα1 · · ·dαnO(α1, . . . , αn)
1

�(E)n

× (p(n)t,N − p
(n)
μ,N

)(
E′ + α1

N�(E)
, . . . ,E′ + αn

N�(E)

)∣∣∣∣∣
� CN2ε′[

b−1N−1+ε′ + b−1/2N−δ/2] (2.36)

holds for any fixed E ∈ [2 − c,2 + c] and for any b = bN ∈ (0, c/2) that may depend on N .
Here p(n)t,N and p(n)μ,N , (2.33)–(2.34), are the correlation functions of the eigenvalues of the Dyson
Brownian motion flow (2.29) and those of the equilibrium measure, respectively.

Besides a weaker version of Theorem 2.3 was proved in [22], a similar result, with no error
estimate, was obtained in [16] for the Hermitian case by using an explicit formula related to
Johansson’s formula [26]. Theorem 2.3, however, contains explicit estimates and is valid for a
time range much bigger than the previous results. In particular, we mention the following three
special cases:

• If we choose δ = 1−2ε′ and thus t =N−ε′
, then we can choose b∼N−1 and the universality

is valid with essentially no averaging in E.
• If we choose the energy window of size b∼ 1 and the time t =N−ε′

, then the error estimate
is of order ∼N−1/2.

• If we choose b ∼ 1, then the smallest time scale for which we can prove the universality is
t =N−1+ε′

. This scale, up to the arbitrary small exponent ε′, is optimal in accordance with
the time scale to local equilibrium conjectured by Dyson [15].
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For generalized Wigner matrices with a subexponential decay, i.e. assuming (2.6) in addition
to the conditions of Theorem 2.3, the universality result with no explicit error estimate holds for
any time t � 0. More precisely, for any fixed b > 0 we have

lim
N→0

sup
t�0

∣∣∣∣∣
E+b∫

E−b

dE′

2b

∫
Rn

dα1 · · ·dαnO(α1, . . . , αn)
1

�(E)n

× (p(n)t,N − p
(n)
μ,N

)(
E′ + α1

N�(E)
, . . . ,E′ + αn

N�(E)

)∣∣∣∣∣= 0. (2.37)

This result, with slightly stronger conditions on the distributions of the ensemble, was already
proved in [22]. Similarly to [22], the extension of the universality from a small positive time
to zero time requires a different method, the Green function comparison theorem [23] in our
approach. The reasons of universality for zero time and time bigger than 1/N are very different:
Theorem 2.3 shows that the local correlation functions have already reached their equilibrium
under the Dyson Brownian motion flow for any time larger than 1/N . For time smaller than
1/N , in particular the important case t = 0, the universality is valid because we can compare the
local correlation functions at time t = 0 with the ones generated by the flow at time t =N−ε with
specially adjusted initial data (see, e.g., the Matching Lemma 3.4 of [22]). The same argument as
in Section 3 of [22] can be used to prove (2.37) from (2.36). In fact, since our new version of the
strong local ergodicity of Dyson Brownian motion, Theorem 2.3, holds for very short times, the
two ensembles to be compared are already very close to each other. Furthermore, effective error
estimates instead of a limiting statement (2.37) can also be obtained and the parameter b may also
be chosen N -dependent. For the case that b is N -independent, the time to local equilibrium as
remarked above is N−1+ε . Hence the condition (2.6) can be replaced by the following condition:
there are constants c, ε > 0 such that∣∣{(i, j): Nσ 2

ij � c
}∣∣�N2−ε. (2.38)

Since these extensions require only minor modifications of the current method, we will not pursue
these directions in this paper.

2.2. Edge distribution

Recall that λN is the largest eigenvalue of the random matrix. The probability distribution
functions of λN for the classical Gaussian ensembles are identified by Tracy and Widom [43,44]
to be

lim
N→∞P

(
N2/3(λN − 2)� s

)= Fβ(s), (2.39)

where the function Fβ(s) can be computed in terms of Painlevé equations and β = 1,2,4 cor-
responds to the standard classical ensembles. The distribution of λN is believed to be universal
and independent of the Gaussian structure. The strong local semicircle law, Theorem 2.1, com-
bined with a modification of the Green function comparison theorem (Theorem 6.3) implies the
following version of universality of the extreme eigenvalues.
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Theorem 2.4 (Universality of extreme eigenvalues). Suppose that we have two N ×N matrices,
H(v) and H(w), with matrix elements hij given by the random variablesN−1/2vij and N−1/2wij ,
respectively, with vij and wij satisfying the uniform subexponential decay condition (2.17). Let
P

v and P
w denote the probability and E

v and E
w the expectation with respect to these collections

of random variables. Suppose that Assumptions (A), (B), (C) hold for both ensembles. If the first
two moments of vij and wij are the same, i.e.

E
vv̄lij v

u
ij = E

ww̄l
ijw

u
ij , 0 � l + u� 2, (2.40)

then there is an ε > 0 and δ > 0 depending on ϑ in (2.17) such that for any real parameter s
(may depend on N ) we have

P
v(N2/3(λN − 2)� s −N−ε)−N−δ � P

w(N2/3(λN − 2)� s
)

� P
v(N2/3(λN − 2)� s +N−ε)+N−δ (2.41)

for N � N0 sufficiently large, where N0 is independent of s. Analogous result holds for the
smallest eigenvalue λ1.

Theorem 2.4 can be extended to finite correlation functions of extreme eigenvalues. For ex-
ample, we have the following extension to (2.41):

P
v(N2/3(λN − 2)� s1 −N−ε, . . . ,N2/3(λN−k − 2)� sk+1 −N−ε)−N−δ

� P
w(N2/3(λN − 2)� s1, . . . ,N

2/3(λN−k − 2)� sk+1
)

� P
v(N2/3(λN − 2)� s1 +N−ε, . . . ,N2/3(λN−k − 2)� sk+1 +N−ε)+N−δ (2.42)

for all k fixed and N sufficiently large. The proof of (2.42) is similar to that of (2.41) and
we will not provide details except stating the general form of the Green function comparison
theorem (Theorem 6.4) needed in this case. We remark that edge universality is usually formu-
lated in terms of joint distributions of edge eigenvalues in the form (2.42) with fixed parameters
s1, s2, . . . . Our result holds uniformly in these parameters, i.e., they may depend on N . However,
the interesting regime is |sj | � (logN)C log logN , otherwise the rigidity estimate (2.25) gives a
stronger control than (2.42).

The edge universality for Wigner matrices was first proved via the moment method by Sosh-
nikov [37] (see also the earlier work [34]) for Hermitian and orthogonal ensembles with sym-
metric distributions to ensure that all odd moments vanish. By combining the moment method
and Chebyshev polynomials, Sodin proved edge universality of band matrices and some special
class of sparse matrices [36,35].

The removal of the symmetry assumption was not straightforward. The approach of [36,35]
is restricted to ensembles with symmetric distributions. The symmetry assumption was partially
removed in [32,31] and significant progress was made in [41] which assumes only that the first
three moments of two Wigner ensembles are identical. In other words, the symmetry assumption
was replaced by the vanishing third moment condition for Wigner matrices. For a special class of
ensembles, the Gaussian divisible Hermitian ensembles, edge universality was proved [27] under
the sole condition that the fourth moment is finite, which in our scaling means that E|√Nhij |4 is
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a positive constant. Using this result [27], one can remove the vanishing third moment condition
in [41] for Hermitian Wigner ensembles.

In comparison with these results, Theorem 2.4 does not imply the edge universality of band
matrices or sparse matrices [36,35], but it implies in particular that, for the purpose to identify
the distribution of the top eigenvalue for a generalized Wigner matrix with the subexponential
decay condition, it suffices to consider generalized Wigner ensembles with Gaussian distribu-
tion. Since the distributions of the top eigenvalues of the Gaussian Wigner ensembles are given
by Fβ (2.39), Theorem 2.4 implies the edge universality of the standard Wigner matrices un-
der the subexponential decay assumption alone. We remark that one can use Theorem 2.2 as an
input in the approach of [27] to prove that the distributions of the top eigenvalues of the gen-
eralized Hermitian Wigner ensembles with Gaussian distributions are given by F2. Therefore
the Tracy–Widom distribution also holds for any generalized Hermitian Wigner ensemble with
subexponential decay. But for ensembles in different symmetry classes (e.g., symmetric Wigner
ensembles), there is no corresponding result to identify the distribution of the top eigenvalue with
Fβ if the variances are allowed to vary.

Finally, we comment that the subexponential decay assumption in our approach, though can
be weakened, is far from optimal, see [4,7,33,38] for discussions on optimal moment assump-
tions. Our approach based on the local semicircle law, however, gives both the bulk and edge
universality and the symmetry of the distribution of matrix elements plays no role.

3. A-priori bound for the strong local semicircle law

We first prove a weaker form of Theorem 2.1, and in Section 4 we will use this a-priori bound
to obtain the stronger form as claimed in Theorem 2.1.

Theorem 3.1. Let H = (hij ) be a Hermitian N × N random matrix, N � 3, with Ehij = 0,
1 � i, j � N , and assume that the variances σ 2

ij satisfy Assumptions (A), (B), (C) and assume
the uniform subexponential decay (2.17). Then there exist constants 0< φ < 1, C � 1 and c > 0,
depending only on ϑ from (2.17), δ± from Assumption (B) and on C0 from Assumption (C) such
that for any 
 with 4/φ � 
� C logN/ log logN and for any z=E + iη ∈ S
 we have

P

{
max
i

∣∣Gii(z)−msc(z)
∣∣� (logN)


(Nη)1/3

}
� C exp

[−c(logN)φ

]

(3.1)

and

P

{
max
i 
=j
∣∣Gij (z)

∣∣� (logN)


(Nη)1/2

}
� C exp

[−c(logN)φ

]

(3.2)

for any sufficiently large N �N0(θ, δ±,C0).

We remark that the probabilistic estimates in Theorem 3.1 are stated for fix z ∈ S
, but it is
easy to deduce from them probabilistic statements that hold simultaneously for all z, e.g.

P

( ⋃{
max
i

∣∣Gii(z)−msc(z)
∣∣� (logN)


(Nη)1/3

})
� C exp

[−c(logN)φ

]
.

z∈S
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This holds true because in the set S
 the Green function and msc(z) are Lipschitz continuous in
z with a Lipschitz constant bounded by η−2 � N2; for example |∂zGij (z)| � |Im z|−2 � N2.
Consider an N−10-net in the compact set S
, i.e., a set of points {zk} ⊂ S
 such that mink |z −
zk| � N−10 for any z ∈ S
 and such that the cardinality of {zk} is at most CN20. Using that the
estimates (3.1)–(3.2) hold simultaneously for all points zk (since these estimates decay faster
than any polynomial in N by φ
 > 1), we see that similar estimates, with a smaller c, hold
simultaneously for any z ∈ S
.

We will follow the self-consistent perturbation ideas initiated in [23,22]. We first introduce
some notations.

Definition 3.1. Let T = {k1, k2, . . . , kt } ⊂ {1,2, . . . ,N} be an unordered set of |T| = t elements
and let H(T) be the N − t by N − t minor of H after removing the ki -th (1 � i � t) rows
and columns. For T = ∅, we define H(∅) = H . Similarly, we define a(j ;T) to be j -th column
of H with the ki -th (1 � i � t) elements removed. Sometimes, we just use the short notation
aj = a(j ;T). Note that the 
-th entry of aj is aj
 = h
j for 
 /∈ T. For any T ⊂ {1,2, . . . ,N} we
introduce the following notations:

G
(T)
ij := (H(T) − z

)−1
(i, j), i, j /∈ T,

Z
(T)
ij := ai · (H(T) − z

)−1aj =
∑
k,
/∈T

aikG
(T)
k
 aj
 ,

K
(T)
ij := hij − zδij −Z

(T)
ij . (3.3)

These quantities depend on z, but we mostly neglect this dependence in the notation.

The following formulas were proved in Lemma 4.2 of [23].

Lemma 3.2 (Self-consistent perturbation formulas). Let T ⊂ {1,2, . . . ,N}. For simplicity, we use
the notation (iT) for ({i} ∪ T) and (ijT) for ({i, j} ∪ T). Then we have the following identities:

1. For any i /∈ T

G
(T)
ii = (K(iT)

ii

)−1
. (3.4)

2. For i 
= j and i, j /∈ T

G
(T)
ij = −G(T)

jj G
(jT)
ii K

(ijT)
ij = −G(T)

ii G
(iT)
jj K

(ijT)
ij . (3.5)

3. For i 
= j and i, j /∈ T

G
(T)
ii −G

(jT)
ii =G

(T)
ij G

(T)
j i

(
G
(T)
jj

)−1
. (3.6)

4. For any indices i, j and k that are different and i, j, k /∈ T

G
(T)
ij −G

(kT)
ij =G

(T)
ik G

(T)
kj

(
G
(T)
kk

)−1
. (3.7)
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The following large deviation estimates concerning independent random variables were
proved in Appendix B of [23].

Lemma 3.3. Let ai (1 � i � N ) be independent complex random variables with mean zero,
variance σ 2 and having a uniform subexponential decay

P
(|ai | � xσ

)
� ϑ−1 exp

(−xϑ), ∀x � 1, (3.8)

with some ϑ > 0. Let Ai,Bij ∈ C (1 � i, j � N). Then there exists a constant 0 < φ < 1, de-
pending on ϑ , such that for any ζ > 1 we have

P

{∣∣∣∣∣
N∑
i=1

aiAi

∣∣∣∣∣� (logN)ζ σ

(∑
i

|Ai |2
)1/2
}

� exp
[−(logN)φζ

]
, (3.9)

P

{∣∣∣∣∣
N∑
i=1

aiBiiai −
N∑
i=1

σ 2Bii

∣∣∣∣∣� (logN)ζ σ 2

(
N∑
i=1

|Bii |2
)1/2}

� exp
[−(logN)φζ

]
, (3.10)

P

{∣∣∣∣∑
i 
=j

aiBij aj

∣∣∣∣� (logN)ζ σ 2
(∑
i 
=j

|Bij |2
)1/2}

� exp
[−(logN)φζ

]
(3.11)

for any sufficiently large N �N0, where N0 =N0(ϑ) depends on ϑ .

The following lemma (Lemma 4.2 from [22]) collects elementary properties of the Stieltjes
transform of the semicircle law. As a technical note, we use the notation f ∼ g for two
positive functions in some domain D if there is a positive universal constant C such that
C−1 � f (z)/g(z)� C holds for all z ∈D.

Lemma 3.4. We have for all z with Im z > 0 that

∣∣msc(z)
∣∣= ∣∣msc(z)+ z

∣∣−1 � 1. (3.12)

From now on, let z = E + iη with |E| � 5 and 0 < η � 10 and we set κ = ||E| − 2|. Then we
have

∣∣msc(z)
∣∣∼ 1,

∣∣1 −m2
sc(z)
∣∣∼ √

κ + η (3.13)

and the following two bounds:

Immsc(z)∼
{

η√
κ+η if κ � η and |E| � 2,

√
κ + η if κ � η or |E| � 2.

� (3.14)
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3.1. Self-consistent perturbation equations

Following [23,22], we define the following quantities:

Ai := σ 2
iiGii +

∑
j 
=i

σ 2
ij

GijGji

Gii

, (3.15)

Zi :=
∑
k,l 
=i

[
aikG

(i)
kl ail − Eaia

i
kG

(i)
kl ail
]= Z

(i)
ii − Eai Z

(i)
ii , (3.16)

Υi :=Ai +
(
K
(i)
ii − EaiK

(i)
ii

)=Ai + hii −Zi, (3.17)

where Eai indicates the expectation with respect to the matrix elements in the i-th column. Us-
ing (3.4) from Lemma 3.2, we obtain the following system of self-consistent equations for the
deviation from msc of the diagonal matrix elements of the resolvent;

vi =Gii −msc = 1

−z−msc − (
∑

j σ
2
ij vj −Υi)

−msc. (3.18)

For the off-diagonal terms, we will use Eq. (3.5). All the quantities defined so far depend on the
spectral parameter z=E + iη, but we will mostly omit this fact from the notation.

The key quantities Λ, Λd and Λo (2.16) appearing in Theorem 3.1 will be typically small and
we will prove in this section that their size is less than (Nη)−1/3, modulo logarithmic corrections.
We thus define the exceptional (bad) event

B = B(z) := {Λd(z)+Λo(z)� (logN)−2}. (3.19)

We will always work in the complement set Bc , i.e., we will have

Λd(z)+Λo(z)� (logN)−2. (3.20)

We collect some basic properties of the Green function in the following elementary lemma.

Lemma 3.5. Let T be a subset of {1, . . . ,N}. Then there exists a constant C = CT depending on
C0 from (2.4) and on |T|, the cardinality of T, such that the following hold in Bc:∣∣G(T)

kk −msc

∣∣�Λd +CΛ2
o for all k /∈ T, (3.21)

1

C
�
∣∣G(T)

kk

∣∣� C for all k /∈ T, (3.22)

max
k 
=l
∣∣G(T)

kl

∣∣� CΛo, (3.23)

max
i

|Ai | � C

N
+CΛ2

o (3.24)

for any fixed |T| and for any sufficiently large N . We recall that all quantities depend on the
spectral parameter z and the estimates are uniform in z=E+ iη as long as |E| � 5, 0< η� 10.
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Proof. For T = ∅, the estimates (3.21) and (3.23) follow directly from the definitions (2.16). The
bound (3.22) follows from (3.20) and that |msc(z)| ∼ 1, see (3.12). Finally, (3.24) follows from
inserting (3.22), (3.23), (2.2) and (2.4) into (3.15). The general case can be proved by induction
on |T| and using the formulas (3.6) and (3.7) that guarantee that∣∣G(T)

k
 −G
(T′)
k


∣∣� C∗Λ2
o (3.25)

holds for any T
′ = T ∪ {m}, where C∗ depends on the constant CT for the induction hypoth-

esis. In the set Bc and for sufficiently large N , depending on |T|, the estimate (3.25) together
with |msc(z)| ∼ 1 guarantees that the lower bound in (3.22) continues to hold for T

′. The other
estimates for T

′ follow from (3.25) directly. �
3.2. Estimate of the exceptional events

The following lemma is a modification of Lemma 4.5 in [22]. It improves the estimate in
the sense that the control parameter depends only on Λ but not on Λd and Λo (see (2.16) for
definitions). Since Λ, being an average quantity, behaves better, this yields a stronger estimate.

For any 
 > 0 we define the key control parameter Ψ , which is random variable, by

Ψ (z) := (logN)

√
Λ(z)+ Immsc(z)

Nη
. (3.26)

We also define the events

Ωh :=
{

max
1�i,j�N

|hij | � (logN)
/10|σij |
}

∪
{∣∣∣∣∣

N∑
i=1

hii

∣∣∣∣∣� (logN)
/10

}
,

Ωd(z) :=
{

max
i

∣∣Zi(z)∣∣� 1

2
Ψ (z)

}
,

Ωo(z) :=
{

max
i 
=j
∣∣Z(ij)

ij (z)
∣∣� 1

2
Ψ (z)

}
, (3.27)

and we let

Ω(z) :=Ωh ∪ [(Ωd(z)∪Ωo(z)
)∩ B(z)c

]
(3.28)

be the set of exceptional events. These definitions depend on the parameter 
 that we omit from
the notation.

The main reason that Ψ emerges as the key controlling parameter can be seen from the fol-
lowing consideration. In order to estimate the off-diagonal term Gij , we need to bound (3.5)
Kij and thus Zij . By the large deviation estimate, (3.11), we have

∣∣Z(ij)
ij

∣∣� C(logN)
/3
√ ∑
k,l 
=i,j

∣∣σikG(ij)
kl σlj

∣∣2 � C(logN)
/3

√√√√ 1

N2

∑
k,l 
=i,j

∣∣G(ij)
kl

∣∣2 (3.29)

holds with high probability. Here we have used that σ 2 � C0/N from (2.4).
il
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For any normal matrix A, we have∑
j

|Aij |2 = (AA∗)
ii

= (|A|2)
ii

(3.30)

where |A|2 :=AA∗.
Applying this identity to the Green function G= [H − z]−1, we obtain the following “Ward

identity”:

∑
l

|Gkl |2 =
∑
α

|uα(k)|2
|λα − z|2 = ImGkk

η
, (3.31)

where uα and λα are the eigenvectors and eigenvalues of H . The term “Ward identity” comes
from quantum field theory and it represents an identity derived from a conservation law or sym-
metry of a system. In our case, the symmetry is generated by the global phase multiplication eiθ ,
but this connection is not important for our purpose.

Applying (3.31) to estimate the last term in (3.29) and neglecting the superscript (ij), we can
bound Z(ij)

ij by

∣∣Z(ij)
ij (z)

∣∣� C(logN)
/3

√
N−1

∑
k ImGkk

Nη
� C(logN)
/3

√
Λ(z)+ Immsc(z)

Nη

where we have used the definition of Λ in the last inequality. Notice that the control parameter Ψ
appears naturally in this estimate. Furthermore, it is Immsc(z) which appears in the numerator,
not msc(z). This is the fundamental reason that we are able to obtain optimal estimate up to the
edges of the spectrum. Near the edges, Immsc(z) is small while |msc(z)| stays near 1.

Lemma 3.6. There exist a constant 0 < φ < 1, depending on ϑ (2.17), and universal constants
C > 1, c > 0, such that for any 
 with 4/φ � 
� C logN/ log logN and for any z ∈ S
 we have

P
(
Ω(z)

)
� C exp

[−c(logN)φ

]
, (3.32)

and we also have the pointwise statement

(logN)
/2Λo(z)+ max
i

∣∣Υi(z)∣∣� Ψ (z) in Ω(z)c ∩ B(z)c (3.33)

for any sufficiently large N �N0(ϑ).

Proof. There exists 0 < φ < 1, depending on ϑ , such that the following two estimates hold for
any 
� 4/φ:

P
{|hij | � (logN)
/10|σij |

}
� C exp

[−(logN)φ

]
, ∀i, j,

by (2.17), and
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P

{∣∣∣∣∣
N∑
i=1

hii

∣∣∣∣∣� (logN)
/10

}
� C exp

[−(logN)φ

]

by (2.4) and the large deviation principle for the sum of independent random variables
(e.g., (3.9)). Thus

P(Ωh)� C exp
[−c(logN)φ


]
, (3.34)

so we can work on the complement set Ωc
h. Note that

Ωc ∩ Bc =Ωc
h ∩Ωc

d ∩Ωc
o ∩ Bc. (3.35)

Fix z ∈ S
 and we will prove, possibly with a smaller φ, that for 
� 4/φ we have

P
(
Ωc
h ∩Ωd(z)∩ Bc(z)

)
� C exp

[−c(logN)φ

]

(3.36)

and

P
(
Ωc
h ∩Ωo(z)∩ Bc(z)

)
� C exp

[−c(logN)φ

]
, (3.37)

and this will prove (3.32).
To prove the diagonal estimate (3.36), we can choose a sufficiently small φ > 0 (depending

on ϑ ) and apply the large deviation bound (3.10) from Lemma 3.3 to obtain that for any fixed i

|Zi | � (logN)
/3
√∑
k,l 
=i

∣∣σikG(i)
kl σli

∣∣2 (3.38)

holds with a probability larger than 1 − C exp [−c(logN)φ
] for sufficiently large N . From the
Ward identity (3.31) and σ 2

il � C0/N (by (2.4) and (3.21)), we have

∑
k,l 
=i

∣∣σikG(i)
kl σli

∣∣2 � C0

N

∑
k 
=i

ImG
(i)
kk

Nη
. (3.39)

Since we are in the set Bc, we have Λd +Λo � (logN)−2. Thus from (3.6) and (3.22) we have
that

0< ImG
(i)
kk � ImGkk + ∣∣G(i)

kk −Gkk

∣∣� ImGkk +C|Gik|2 � ImGkk +CΛ2
o. (3.40)

The last term of (3.39) is bounded by

C2
0

N2

∑ ImG
(i)
kk

η
� C

Λ+Λ2
o + Immsc

Nη
in Bc. (3.41)
k 
=i
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We have thus proved that for any z ∈ S


∣∣Zi(z)∣∣� C(logN)
/3

√
Λ(z)+Λ2

o(z)+ Immsc(z)

Nη
in Bc(z) (3.42)

holds with a probability larger than 1 −C exp [−c(logN)φ
] for sufficiently large N .
Similarly, for the off-diagonal estimate (3.37), for any fixed i 
= j , we have from (3.11) that

∣∣Z(ij)
ij

∣∣� C(logN)
/3
√ ∑
k,l 
=i,j

∣∣σikG(ij)
kl σlj

∣∣2 (3.43)

holds with a probability larger than 1 − C exp [−c(logN)φ
] for sufficiently large N . Similarly
to the proof of (3.42) for Zi , we have

∣∣Z(ij)
ij (z)

∣∣� C(logN)
/3

√
Λ(z)+Λ2

o(z)+ Immsc(z)

Nη
in Bc(z) (3.44)

holds for any z ∈ S
 with a probability larger than 1 − C exp [−c(logN)φ
] for sufficiently
large N .

Using Lemma 3.5, we have |Gii | � C and |G(i)
jj | � C in the set Bc . From (3.5), we can thus

estimate the off-diagonal term Gij by

|Gij | = |Gii |
∣∣G(i)

jj

∣∣∣∣K(ij)
ij

∣∣� C
(|hij | + ∣∣Z(ij)

ij

∣∣), i 
= j, in Bc. (3.45)

Hence we have that in the event Bc ∩Ωc
h

Λo = max
i 
=j |Gij | � C(logN)
/10

√
N

+C(logN)
/3

√
Λ+Λ2

o + Immsc

Nη
(3.46)

holds with a probability larger than 1 −C exp [−c(logN)φ
] for sufficiently large N .
Recall that Nη � (logN)10
 on the set S
 and since 
 � 4/φ � 4, we have (logN)
/3 �√
Nη, thus the Λo term on the right hand side of (3.46) can be absorbed into the left side for

sufficiently large N . Furthermore, by (3.14), we have Immsc(z) � cη with a universal positive
constant c for any z ∈ S
. Thus the first term on the right hand side of (3.46) can be bounded by

C(logN)
/10

√
N

� (logN)
/3

√
Immsc(z)

Nη

for large enough N , and thus it can be absorbed into the second term. We conclude that

P
{
Λo � C(logN)−2
/3Ψ,Bc ∩Ωc

h

}
� 1 −C exp

[−c(logN)φ

]
. (3.47)

Inserting this bound into (3.42) and (3.44), we have proved (3.36) and (3.37). Finally, the
estimate (3.33) for Υ and Λo is a simple consequence of (3.47), the definition (3.17), the
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bound (3.24), the definition of Ωd and that Ωc ∩ Bc ⊂ Ωc
h. This completes the proof of

Lemma 3.6. �
3.3. Analysis of the self-consistent equation

Now we start using the self-consistent equation (3.18). Since∣∣∣∣∑
j

σ 2
ij vj − Υi

∣∣∣∣�Λd + |Υi |,

the bound (3.12) allows us to expand the denominator in (3.18) as long as Λd + |Υi | � 1
2 . In this

case, using (2.12), we obtain the following equation for vi

vi =m2
sc

(∑
j

σ 2
ij vj −Υi

)
+m3

sc

(∑
j

σ 2
ij vj −Υi

)2

+O

(∑
j

σ 2
ij vj − Υi

)3

. (3.48)

Recall that B denotes the N ×N matrix of covariances, B = (σ 2
ij ). Thus we can rewrite the last

equation as

[(
1 −m2

scB
)
v
]
i
= −m2

scΥi +m3
sc

(
(Bv)i − Υi

)2 +O
(
(Bv)i − Υi

)3
.

We will first use this equation to estimate vi − [v], i.e. the deviation of vi from its average
(Lemma 3.8). In the second step, we will add up (3.48) for all i and obtain an equation for [v]
(Lemma 3.9). Finally, we use a dichotomy argument to estimate Λ= |[v]| in Lemma 3.10.

By normalization assumption
∑

j σ
2
ij = 1, the vector e = (1,1, . . . ,1) is the (unique) eigen-

vector of B with eigenvalue 1. We introduce the notation

q = q(z) := max
{
δ+,
∣∣1 − Rem2

sc(z)
∣∣}, (3.49)

and we recall the following elementary lemma that was proved in [22, Lemma 4.8].

Lemma 3.7. The matrix I −m2
sc(z)B is invertible on the subspace orthogonal to e. Let u be a

vector which is orthogonal to e and let

w = (I −m2
sc(z)B

)
u,

then

‖u‖∞ � C logN

q(z)
‖w‖∞

for some constant C that only depends on δ− in (2.3). �
The following lemma estimates the deviation of vi from its average [v]:
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Lemma 3.8. Suppose that 4 � 
� C logN/ log logN . Fix the spectral parameter z ∈ S
 and we
will omit it from the notations. Suppose that in some set Ξ it holds that

Λd � q

(logN)3/2
, (3.50)

then in the set Ξ ∩Ωc ∩ Bc we have

max
i

∣∣vi − [v]∣∣� C logN

q

(
Λ2 +Ψ + (logN)2

q2
Ψ 2
)

� C logN

q3

(
Λ2 +Ψ

)
(3.51)

for some constant C depending only on δ− and for sufficiently large N .

Proof. For z ∈ S
, q(z) and Immsc(z) are bounded. Combining (3.50) with the definitions of
Ψ (z), S
 and with 
 � 4, we obtain that Λd(z), Λ(z) are bounded by C(logN)−3/2 and Ψ (z)

is bounded by C(logN)−2. Thus the expansion (3.48) holds true in the set Ξ ∩ Ωc ∩ Bc , by
using (3.33). We can estimate the second and third order terms in (3.48) by C(Ψ +Λd)

2 and we
obtain

vi =m2
sc

∑
j

σ 2
ij vj + εi, with εi =O(Ψ )+O

(
Λ2
d

)
in Ξ ∩Ωc ∩ Bc. (3.52)

Taking the average over i, we have

(1 −msc)[v] = 1

N

∑
i

εi =O(Ψ )+O
(
Λ2
d

)
,

and thus it follows from (3.52) that

vi − [v] =m2
sc

∑
j

σ 2
ij

(
vj − [v])+O(Ψ )+O

(
Λ2
d

)
.

Applying Lemma 3.7 for ui = vi − [v], we obtain

max
i

∣∣vi − [v]∣∣� C logN

q

(
Λ2
d +Ψ

)
, (3.53)

hence

Λd �Λ+ C logN

q

(
Λ2
d +Ψ

)
.

With (3.50), this inequality implies

Λd �Λ+ C logN

q

(
Λ2 +Ψ

)
. (3.54)

Using (3.54) to bound Λ2
d in (3.53), we have proved the first inequality of (3.51), the second one

follows from Ψ � C(logN)−2. This completes the proof of Lemma 3.8. �
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In this paper we assumed that the positive constants δ± are independent of N (see (2.3)), thus
q is bounded and the condition (3.50) is automatically satisfied in the set Bc, see (3.20), and
therefore (3.51) can be written as

max
i

∣∣vi − [v]∣∣� C(logN)
(
Λ2 +Ψ

)
in Ωc ∩ Bc, (3.55)

in particular,

Λd �Λ+C(logN)
(
Λ2 +Ψ

)
in Ωc ∩ Bc, (3.56)

with some constant C depending only on δ±.

Lemma 3.9. Suppose that 4 � 
� C logN/ log logN . Fix the spectral parameter z ∈ S
 and we
will omit it from the notations. Then in the set Ωc ∩ Bc we have

(
1 −m2

sc

)[v] =m3
sc[v]2 +m2

sc[Z] +O

(
Λ2

logN

)
+O
(
(logN)Ψ 2), (3.57)

where [Z] :=N−1∑N
i=1Zi . The implicit constants in the error terms depend only on δ± and C0.

Proof. From the choice 
� 4, and from Λ� (logN)−2 in the set Bc , we have

Ψ � (logN)−8. (3.58)

Moreover, for z ∈ S
, we have Immsc(z) � cη with some universal positive constant c (see
Lemma 3.4), we also have

Ψ � (logN)
√
N

. (3.59)

By the definition of Υi (3.17), by the estimates (3.24) and (3.33), we have

Υi =Ai + hii −Zi = hii −Zi +O
(
Λ2
o +N−1)= hii −Zi +O

(
Ψ 2) in Ωc ∩ Bc. (3.60)

The size of the last term of (3.48) is less than O(Ψ 3 +Λ3
d) which is bounded by O(Ψ 2 +Λ3)

using (3.56) and (3.58). Thus we have, from (3.33) and (3.48),

vi =m2
sc

(∑
j

σ 2
ij vj +Zi − hii +O

(
Ψ 2))+m3

sc

(∑
j

σ 2
ij vj +O(Ψ )

)2

+O
(
Ψ 2 +Λ3) in Ωc ∩ Bc. (3.61)

Summing up i and dividing by N , we obtain
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[v] =m2
sc[v] +m2

sc[Z] +O
(
Ψ 2 +Λ3)

+ m3
sc

N

∑
i

(∑
j

σ 2
ij vj +O(Ψ )

)2

in Ωc ∩ Bc. (3.62)

Here we used that in the set Ωc ∩ Bc ⊂ Ωc
h, we have N−1|∑i hii | � (logN)
/10N−1 � Ψ 2

by (3.59). Writing vj = (vj − [v])+ [v], the last term in (3.62) can be estimated using (3.55)

m3
sc

N

∑
i

(∑
j

σ 2
ij vj +O(Ψ )

)2

=m3
sc[v]2 +O

(
(logN)Ψ

(
Λ2 +Ψ

))+O(ΛΨ )+O
(
Ψ 2).

Collecting the various error terms and using (3.58) and that Λ � (logN)−2 in Bc , we obtain
(3.57) from (3.62). This completes the proof of Lemma 3.9. �
3.4. Dichotomy estimate for Λ

Throughout this section we fix the parameter 
 with 4 � 
 � C logN/ log logN . By
Lemma 3.9 we have that in Ωc ∩ Bc

(
1 −m2

sc

)[v] −m3
sc[v]2 =O(Ψ )+O

(
Λ2)/ logN, (3.63)

where we have used the simple bound Ψ � 1/ logN and that in the set Ω(z)c ∩ B(z)c all Zi ,
hence [Z] can be bounded by Ψ (see (3.35) and the definition of Ωd ).

We introduce the following notations:

α :=
∣∣∣∣1 −m2

sc

m3
sc

∣∣∣∣, β := (logN)2


(Nη)1/3
, with η= Im z, (3.64)

where α = α(z) and β = β(z) depend on the spectral parameter z. For any z ∈ S
 we have the
bound β(z) � (logN)−4, by 
 � 4. From Lemma 3.4 it also follows that there is a universal
constant K � 1 such that

1

K

√
κ + η� α(z)�K

√
κ + η (3.65)

for any z ∈ S
.
By definition of Ψ = Ψ (z) (3.26), we have

Ψ = (logN)

√
Λ+ Immsc

Nη

� (logN)

Λ+ Immsc

(Nη)1/3
+ (logN)
(Nη)−2/3 � βΛ+ αβ + β2, (3.66)

where, in the last step, we have used that α(z)∼ √
κ + η, see (3.65), and thus Immsc(z)� Cα(z)

(see Lemma 3.4). We conclude from (3.63) and |msc| ∼ 1 that
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∣∣∣∣1 −m2
sc

m3
sc

[v] − [v]2
∣∣∣∣� C∗(βΛ+ αβ + β2)+O

(
Λ2)/ logN in Ωc ∩ Bc (3.67)

with some constant C∗.
Neglecting the error term and replacing [v] by Λ, we roughly have the equation∣∣αΛ−Λ2

∣∣� C∗(βΛ+ αβ + β2). (3.68)

This inequality provides certain estimates on Λ depending on whether α � β or not.
Since α and β are functions of z (β(z) depends only on η = Im z), we will fix E = Re z

and vary η= Im z from η= 10 down to η= (logN)10
/N . Thanks to (3.65), α(z) is essentially
monotone increasing in η, up to universal constants. The function β(z) is monotonically decreas-
ing. Therefore there exists a threshold η̃ such that for η � η̃ we have α � β and for η � η̃ we
have α � β . To implement precisely the idea of dividing the estimate according to the relative
size of α and β , we will need to choose a large but fixed constant U > 1 depending only on C∗.
Let η̃ = η̃(U,E) be the solution to

√
κ + η = 2U2Kβ(z) where κ = ||E| − 2|. Note that up to a

constant factor, this equation is the same as α(z)= β(z). Since
√
κ + η is increasing while β(z)

is decreasing in η, the solution is unique and one can easily prove that

η̃�N−1/3 (3.69)

for sufficiently large N , depending on U . The implementation of this idea and precise estimates
on Λ is given by the following lemma:

Lemma 3.10 (Dichotomy lemma). Suppose that 4 � 
� C logN/ log logN . Then there is a con-
stant U0 = U0(δ±,C0)� 1 such that for any U � U0, there exists a constant C1(U), depending
only on U , such that for any spectral parameter z ∈ S
 the following estimates hold:

Λ(z)�Uβ(z) or Λ(z)� α(z)

U
if Im z� η̃(U,Re z), (3.70)

Λ(z)� C1(U)β(z) if Im z < η̃(U,Re z) (3.71)

in the set Ω(z)c ∩ B(z)c and for any sufficiently large N �N0(δ±,C0).

Proof. We will set U0 = 9(C∗ +1) and let U �U0 where C∗ is the constant appearing in (3.67).
Depending on the relative size of β and α, which is determined by z, we will either express [v] or
[v]2 from (3.67). This will correspond to the two cases in Lemma 3.10. Recalling that |[v]| =Λ,
the last error term in (3.67) can be easily absorbed for sufficiently large N and we will get a
quadratic inequality for Λ.

Case 1: η= Im z� η̃(U,E). By the definition of η̃, in this case
√
κ + η� 2U2Kβ(z), i.e.,

α(z)� 2U2β(z) (3.72)

by (3.65). From the choice of U0 and U � U0 we get that α � β and 1
2α � C∗β . Expressing [v]

from (3.67) and absorbing the C∗βΛ term into the left hand side, we obtain

1
αΛ� 2Λ2 + 2C∗αβ. (3.73)
2
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Thus either

1

4
αΛ� 2Λ2,

i.e. Λ� α/8 which is larger than α/U , or

1

4
αΛ� 2C∗αβ,

i.e. Λ� 8C∗β �Uβ , which proves (3.70).
Case 2: η= Im z < η̃(U,E). In this case

√
κ + η� 2U2Kβ(z), i.e., α(z)� 2U2K2β(z). We

express [v]2 from (3.67) and we get

Λ2 � 2αΛ+ 2C∗[βΛ+ βα + β2]� C′βΛ+C′β2 (3.74)

with a constant C′ depending on U . This quadratic inequality immediately implies that Λ �
C1(U)β with some U -dependent constant C1(U). Hence we have proved Lemma 3.10. �
3.5. Initial estimates for large η

In this section we show that Theorem 3.1 holds for η= Im z= 10, i.e. on the upper boundary
of S
. This will serve as an initial step for the continuity argument. The proof for η= 10 is similar
to the arguments in Sections 3.2 and 3.3 but much easier. In particular, no a-priori assumption
similar to (3.20) or no bad set B are necessary. We start with the analogue of Lemma 3.6 which
actually holds uniformly for any z with 0 < η = Im z � 10 and not only for z ∈ S
. Note that
these estimates are very weak for small η, but we will use them only for η= 10.

Lemma 3.11. For any z ∈ C with 0< η= Im z� 10, define the exceptional events

Θd(z) :=
{

max
i

∣∣Zi(z)∣∣� (logN)
√
Nη

}
,

Θo(z) :=
{

max
i 
=j
∣∣Z(ij)

ij (z)
∣∣� (logN)
√

Nη

}
,

Θ(z) :=Ωh ∪Θd(z)∪Θo(z), (3.75)

where we recall the definition of Ωh in (3.27). Then there exists constants 0 < φ < 1, C > 1,
c > 0, depending on ϑ (2.17), such that for any 
 with 4/φ � 
� C logN/ log logN and for any
z ∈ S
 we have

P
(
Θ(z)

)
� C exp

[−c(logN)φ

]
, (3.76)

and the pointwise bound

max
i

∣∣Υi(z)∣∣� CN−1/3η−3 in Θ(z)c (3.77)

for sufficiently large N �N0(ϑ,C0). Furthermore, for η� 3 we have the estimate
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Λd(z)+Λo(z)� CN−1/3 in Θ(z)c, (3.78)

for sufficiently large N �N0(ϑ,C0).

Proof. Given the estimate (3.34), for the proof of (3.76) it is sufficient to estimate the probability
ofΘd andΘo. The estimate (3.39) still holds, but we can now bound the last term in (3.39) simply
by

∑
k,l 
=i

∣∣σikG(i)
kl σli

∣∣2 � 1

N

∑
k 
=i

σ 2
ik

ImG
(i)
kk (z)

η
� 1

Nη2
, (3.79)

for any z, using the trivial deterministic estimate

∣∣G(T)
ij

∣∣� η−1 (3.80)

that holds for any i, j and for any T. Combining (3.79) with the large deviation bound (3.10) from
Lemma 3.3 as in (3.38), we obtain P(Θd)� C exp [−c(logN)φ
]. The same argument holds for
the exceptional set Θo involving the off-diagonal elements and this proves (3.76).

From (3.5) and the trivial estimate (3.80), we can estimate the off-diagonal term Gij in the set
Θ(z)c by

|Gij | = |Gii |
∣∣G(i)

jj

∣∣∣∣K(ij)
ij

∣∣� η−2(|hij | + ∣∣Z(ij)
ij

∣∣)
� (logN)


[
1√
Nη2

+ 1√
Nη3

]
�N−1/3η−3, i 
= j, (3.81)

for sufficiently large N . Moreover, the same argument gives

|Gij |
|Gii | = ∣∣G(i)

jj

∣∣∣∣K(ij)
ij

∣∣�N−1/3η−2, i 
= j,

which can be inserted in the definition of A, (3.15), and with Nη� 1, we get

|Ai | � C0

Nη
+ 1

N1/3η3
� 2

N1/3η3

for sufficiently largeN . In the setΘc a similar bound holds for hii andZi using η� 10. Recalling
that Υi =Ai + hii −Zi , and this proves (3.77).

For the proof of (3.78) it is sufficient to bound only Λd , the necessary estimate for Λo is given
in (3.81). We define Υ = maxi |Υi | and note that for η � 3 we have Υ � CN−1/3 in the set Θc

by (3.77). From the self-consistent equation (3.18) and the defining equation (2.12) of msc , we
have

vn =
∑

i σ
2
nivi +O(Υ )

(z+m +∑ σ 2 v +O(Υ ))(z+m )
, 1 � n�N. (3.82)
sc i ni i sc
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Using |Gii | � η−1 from (3.80) and |msc(z)| = | ∫ �sc(x)/(x − z)dx| � η−1, we obtain for η� 3
that

Λd = max
i

|vi | � 2/η� 2/3. (3.83)

By (3.12), we have |z+msc(z)| = |msc(z)|−1 � 3. Together with (3.83), we obtain from (3.82)
that

|vn| � maxi |vi |
|z+msc(z)| − maxi |vi | +O(Υ ). (3.84)

Maximizing over n, we have

Λd = max
n

|vn| � Λd

|z+msc| −Λd

+O(Υ ). (3.85)

Since the denominator satisfies |z + msc(z)| − Λd � 3 − 2/3 = 7/3 by Λd � 2/3, the esti-
mate (3.78) follows from (3.85) and (3.77). This completes the proof of Lemma 3.11. �
3.6. Continuity argument: conclusion of the proof of Theorem 3.1

Fix an energy E with |E| � 5 and choose a decreasing finite sequence ηk ∈ S
, k =
1,2, . . . , k0, with k0 � CN8 such that |ηk − ηk+1| � N−8 and η1 = 10, ηk0 = N−1(logN)10
.
Denote by zk =E + iηk . We will first show that Theorem 3.1 holds for any z= zk .

Throughout this section fix any U �U0 from Lemma 3.10 and recall the definition of η̃(U,E)
from before this lemma. Consider first the case of z1. Since η1 � η̃(U,E), see (3.69), we are in
the first case (3.70) in Lemma 3.10. By Lemma 3.11, we have Λd(z1)+Λo(z1) � CN−1/3 in
the set Θ(z1)

c , in particular, Θ(z1)
c ⊂ B(z1)

c . Moreover, by Λ(z1)� CN−1/3 in the set Θ(z1)
c ,

and (3.65), the second alternative of (3.70) cannot hold and therefore Λ(z1)� Uβ(z1) in the set
Θ(z1)

c ∩Ω(z1)
c ∩B(z1)

c =Θ(z1)
c ∩Ω(z1)

c . Using the probability estimates (3.32) and (3.76),
we have proved that

P
[
Λ(z1)�Uβ(z1)

]+ P
(
B(z1)

)
� C exp

[−c(logN)φ

]
. (3.86)

For a general k we have the following:

Lemma 3.12. There exist constants 0 < φ < 1, C′ > 1, c > 0, depending on ϑ , such that if 

satisfies 4/φ � 
� C′ logN/ log logN and U is chosen U �U0(δ±,C0) (see Lemma 3.10) then
the following hold for any k � k0 and for any sufficiently large N �N0(ϑ, δ±,C0,U):

Case 1. If ηk � η̃(U,E), then

P
[
Λ(zk)�Uβ(zk)

]
� C′k exp

[−c(logN)φ

]

and

P
(
B(zk)

)
� C′k exp

[−c(logN)φ

]
. (3.87)
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Case 2. If ηk < η̃(U,E), then

P
[
Λ(zk)� C1(U)β(zk)

]
� C′k exp

[−c(logN)φ

]

and

P
(
B(zk)

)
� C′k exp

[−c(logN)φ

]
, (3.88)

where C1(U) is given from Lemma 3.10.

Proof. We proceed by induction on k, the case k = 1 has been checked in (3.86). First consider
Case 1, when k < k0 is such that ηk � η̃(U,E), i.e. (3.87) holds by the induction hypothesis. By
the definition of the sequence zk , we have

∣∣Gij (zk)−Gij (zk+1)
∣∣� |zk − zk+1| sup

z∈S


∣∣∣∣∂Gij (z)

∂z

∣∣∣∣�N−8 sup
z∈S


1

|Im z|2 �N−6 (3.89)

for any i, j . Hence |Λ(zk)−Λ(zk+1)| �N−6 � 1
2Uβ(zk+1) and thus

P

[
Λ(zk+1)� 3

2
Uβ(zk+1)

]
� C′k exp

[−c(logN)φ

]
. (3.90)

In other words, the estimate on Λ(zk+1) is deteriorated by a factor 3/2, but it will be gained back
by the dichotomy estimate in Lemma 3.10.

Using (3.89) we also have, in Ω(zk)
c ∩ B(zk)c,

Λd(zk+1)+Λo(zk+1)�Λd(zk)+Λo(zk)+ 2N−6

� (logN)

(
Λ(zk)

2 +Ψ (zk)
)+Λ(zk)+ 2N−6

� (logN)2

√
Uβ(zk)+ Immsc(zk)

Nηk
+ 2Uβ(zk)+ 2N−6. (3.91)

Here in the second line we used the bounds (3.33) and (3.56) that hold on the set Ω(zk)
c∩B(zk)c,

in the last line we used Λ(zk)� Uβ(zk)� (logN)−
. All these estimates hold on an event with
probability at least 1 − C′(k + 1

2 ) exp [−c(logN)φ
] using (3.32) and the estimate on P(B(zk))
from (3.87). Here we assumed that the constant C′ is larger than twice the constant C in (3.32).

By the choice of 
� 4 and the definition of β from (3.64), the last line of (3.91) is bounded
by (logN)−2 and thus we have

P
(
B(zk+1)

)
� C′

(
k + 1

2

)
exp
[−c(logN)φ


]
. (3.92)

Suppose now that k + 1 falls into the first case, ηk+1 � η̃(U,E), then, from (3.72),

3

2
Uβ(zk+1) <

α(zk+1)

U
,

so by the dichotomy estimate (3.70), Λ(zk+1) � 3
2Uβ(zk+1) from (3.90) implies Λ(zk+1) �

Uβ(zk+1) on the set Ω(zk+1)
c ∩ B(zk+1)

c . Thus (3.32), (3.90) and (3.92) imply that
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P
[
Λ(zk+1)�Uβ(zk+1)

]
� C′(k + 1) exp

[−c(logN)φ

]

(3.93)

by using C′ � 2C where C is the constant from (3.32). This proves (3.87), i.e. the induction step
if ηk+1 is in the first case. If ηk+1 falls into the second case, i.e., ηk+1 � η̃(U,E), then (3.90)
gives directly the induction step, i.e. (3.88) for k + 1.

So far we considered Case 1, i.e., we assumed that ηk � η̃(U,E). Now consider Case 2, when
ηk < η̃(U,E) and therefore the induction hypothesis is (3.88). The argument is very similar to the
previous case but Uβ(zk) is replaced with C1(U)β(zk) everywhere in (3.90), (3.91) and we still
obtain (3.92). Since ηk+1 < ηk � η̃(U,E), we can directly refer to (3.71) to obtain the induction
step, i.e. (3.88) for k + 1. This completes the proof of Lemma 3.12. �

Choosing a sufficiently large but fixed U , e.g. U = U0(δ±,C0), we have thus proved that
Λ(zk) � Cβ(zk) for all k � k0 with a constant depending on δ± and C0, in particular Ψ (zk) �
Cβ(zk) by the definition of Ψ (3.26). Using (3.33) and (3.56) we have proved Theorem 3.1
for all zk , k � k0 and any fixed energy E with |E| � 5. For any z = E + iη ∈ S
 there is a
zk = E + iηk with |z − zk| � N−8. Using the Lipschitz continuity of Gij (z) and msc(z) with
Lipschitz constant at most N2, we easily conclude the proof of Theorem 3.1 for any z ∈ S
.
Note that in order to accommodate the higher (logN)-power in β and the additional logarithmic
factors in (3.33) and (3.56) with the final formulation of the result in Theorem 3.1, we needed to
redefine 
→ 
/3 which results in a decreased φ in the final statement. �
4. Optimal error bound in the strong local semicircle law

We have proved Theorem 3.1 which is weaker than the main result Theorem 2.1 but it will
be used as an a-priori bound for the improvement. The key ingredient for the stronger result is
the following lemma which shows that [Z], the average of Zi ’s, is much smaller than the size
of typical Zi . (Notice that in the proof of Theorem 3.1, [Z] was estimated in (3.63) by the same
quantity, Ψ , as each individual Zi .)

For z ∈ S
 define

Γ = Γ (z) :=Ωh ∪ B(z), �=�(z) :=Ω(z)∪ B(z), (4.1)

where Ωh,Ω were defined in (3.27)–(3.28) and B was given in (3.19). Recall that Ωh and Ω

depend on 
 and thus Γ and � also depend on 
 but we omit this fact from the notation. We
remark that Theorem 3.1 shows that there exists a positive constant φ > 0 such that for any
4/φ � 
� logN/ log logN we have

P
(
B(z)
)= P

(
Λd(z)+Λo(z)� (logN)−2)� C exp

[−c(logN)φ

]
, z ∈ S
, (4.2)

since the error bar (logN)
/(Nη)1/3 in Theorem 3.1 is much smaller than (logN)−2. Combin-
ing (4.2) with (3.32) and Γ ⊂�, we get that

P
(
Γ (z)

)
� P
(
�(z)

)
� C exp

[−c(logN)φ

]
, z ∈ S
, (4.3)

with positive constants C,c depending only on ϑ in (2.17), δ± from Assumption (B) and C0
from Assumption (C).
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With this notation, and recalling that Λo(z) = maxi 
=j |Gij (z)|, we then have the following
lemma whose proof will be given separately in Section 7.

Lemma 4.1. There exist positive constants D � 1, A0 � 1, and ψ � min{1/10, φ}, depending
on ϑ , such that for any 
 with

A0 log logN � 
� logN

log logN
, (4.4)

for any p � (logN)ψ
−2 positive even number and for any fixed z ∈ S
 we have

E

[
1
(
Γ c(z)

)∣∣∣∣ 1

N

N∑
i=1

Zi(z)

∣∣∣∣p
]

� (Dp)DpE
[
1
(
Γ c(z)

)[
Λo(z)

2 +N−1]p] (4.5)

for any sufficiently large N �N0(A0,ψ).

The first version of this lemma was presented in Lemma 5.2 of [22] where the p-dependence
of the constant in (4.5) was not carefully tracked and the effect of the exceptional event Γ was
estimated less precisely. This was sufficient since in [22] we applied the result for an exponent p
independent of N ; as a consequence, in particular, the probability estimates for the local semicir-
cle law were only power law and not subexponential in N as here. In the current paper we allow
p to depend on N which requires the more precise form as stated in Lemma 4.1. Furthermore,
here we give a new proof that relies on a different organization of partially independent terms.
The main difference is that here we separate dependences on individual matrix elements, while
in [22] we separated entire rows and columns. The new method is therefore more robust, but
combinatorially more demanding.

Recalling the notation

[Z] = [Z](z)= 1

N

N∑
i=1

Zi(z),

we will apply Lemma 4.1 in the following form:

Corollary 4.2. There exist positive constants D � 1, A0 � 1, and ψ � min{1/10, φ,1/D}, de-
pending on ϑ , such that for any 
 satisfying (4.4), for any p � (logN)ψ
−2 positive even number
and for any fixed z ∈ S
 (2.20) we have for any set Ξ in the probability space

E
[
1
(
Γ c
)∣∣[Z](z)∣∣p]� E

[
1
(
Γ c ∩Ξc

)
Ψ (z)2p

]+ (Dp)Dp
[
P
(
Ω(z)

)+ P(Ξ)
]

(4.6)

where Ω(z) is defined in Lemma 3.6.

Proof. On the right hand side of (4.5) we can split the set Γ c as

Γ c =Ωc
h ∩ Bc = [Ωc ∩ Bc ∩Ξc

]∪ [Ωc ∩ Bc ∩Ξ
]∪ [(Ωc

h \Ωc
)∩ Bc

]
.

On the set [Ωc ∩ Bc ∩Ξ ] ∪ [(Ωc \Ωc)∩ Bc] ⊂ Bc, we estimate Λo trivially by
h
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Λo � (logN)−2 � 1. (4.7)

Since Ωc
h \Ωc ⊂Ω , we have

E
[
1
(
Γ c
)∣∣[Z](z)∣∣p]� (Dp)DpE

[
1
(
Ωc ∩ Bc

)[
Λo(z)

2 +N−1]p]
+ (Dp)Dp

[
P(Ξ)+ P(Ω)

]
. (4.8)

Choosing ψ � 1/D we see that (Dp)D � (logN)
. Thus we can use (logN)
N−1 � CΨ 2(z)

for z ∈ S
 (by Immsc(z)� cη) and that (logN)
Λ2
o � Ψ 2 on Ωc ∩ Bc , see (3.33), to absorb the

(Dp)Dp prefactor in the first term in (4.8). This concludes the proof of Corollary 4.2. �
Lemma 4.3. Fix two numbers 
 and L that satisfy 4 � 
� L� log(10N)

10 log logN , in particular SL ⊂ S
,
and let 0< τ � 1 be an arbitrary constant. For any z=E + iη define

γ = γ (z) := (logN)3
+2

(Nη)τ
. (4.9)

Suppose that for all z ∈ SL we have

Λ(z)� γ (z) (4.10)

and

∣∣[Z](z)∣∣� (logN)3

(
γ (z)+ Immsc(z)

Nη

)
. (4.11)

Suppose that Λ(z)= o(1) for η= 10, |E| � 5. Then in the set Ωc ∩ Bc we have

Λ(z)� (logN)3
+2(Nη)−(τ+1)/2 (4.12)

for any z ∈ SL. Furthermore, if Λ(z)� α(z)/2 and (4.11) hold for some z ∈ SL, then

Λ(z)� C(logN)3
+1
(
γ (z)+ Immsc(z)

α(z)Nη

)
, (4.13)

in the set Ωc ∩ Bc, where α was defined in (3.64).

Proof. In the first part of the proof z ∈ SL is fixed so we drop the z-dependence of various
quantities. Recall (3.64), (3.65) and Lemma 3.4 for msc and α ∼ √

κ + η. From Lemma 3.9 and
using (4.11), in the set Ωc ∩ Bc we have, with w := [v], the estimate

(1 −m2
sc)

m3
sc

w−w2 =O

( |w|2
logN

)
+O

[
(logN)3
+1

(
γ + Immsc

Nη

)]
(4.14)

where we have used (4.10), the definition of Ψ (3.26) and that |w| = Λ. We can complete the
square of the left side and obtain the inequality
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Λ� 2α +C(logN)
3
+1

2

(
γ + α

Nη

)1/2

, (4.15)

where we have used that Immsc � Cα. We claim that in fact

Λ� 2α +C(logN)
3
+1

2

(
γ

Nη

)1/2

(4.16)

also holds; indeed this is trivial if Λ� 2α, and if Λ� 2α then by assumption (4.10) γ �Λ� 2α,
so α can be absorbed into γ in (4.15).

Define

α0 = α0(z) := T (logN)
3
+1

2

(
γ

Nη

)1/2

= T (logN)3
+3/2(Nη)−
1+τ

2 (4.17)

with a large parameter T (independent of N ) to be specified later, and note that α0 � γ for
sufficiently large N .

Suppose that Λ� α/2. In this case the w2 terms are smaller than the leading term αw in the
left hand side of (4.14), therefore we can express |w| =Λ and estimate it by

Λ� C(logN)3
+1
(
γ + Immsc

αNη

)
� C(logN)3
+1

(
γ

αNη
+ 1

Nη

)
. (4.18)

In the second step also used Immsc � Cα. In particular, the first inequality proves (4.13).
Assume now that Λ� α/2 and α � α0. Plugging the lower bound (4.17) on α into (4.18) and

using the definition of γ we obtain

Λ� CT −1(logN)
3
+1

2

(
γ

Nη

)1/2

= CT −2α0. (4.19)

Choosing T as a sufficiently large constant we obtain that

Λ� α

4
(4.20)

under the condition that Λ � α/2 and α � α0. Therefore, as long as α � α0, we have a di-
chotomy: either Λ� α/2 or Λ� α/4.

We now fix E and we continuously decrease η from η = 10 to η = N−1(logN)L, the lower
point in SL. Since Λ(z)� 1 and α(z) is bounded away from zero for η= 10, |E| � 5, we know
that Λ� α/2 holds for η= 10. Since Λ(z) is continuous function, by the dichotomy we have that
Λ� α/4 for all η as long as α � α0. In particular, Λ� CT −2α0 from (4.19) which proves (4.12)
in the case α � α0.

Finally, for α � α0, we can estimate Λ directly via (4.16) and this proves that

Λ� C(logN)
3
+1

2

(
γ

Nη

)1/2

(4.21)

from which (4.12) follows and we have thus completed the proof. �
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Proof of Theorem 2.1. First we explain the idea. We will prove, by an induction on the expo-
nent τ , that Λ � (Nη)−τ holds modulo logarithmic factors with a high probability. Notice that
we proved this statement for τ = 1/3 in Theorem 3.1. Lemma 4.3 asserts that if this statement
is true for some τ , then it also holds for 1+τ

2 assuming a bound on [Z]. This bound can be ob-
tained from Corollary 4.2 with a high probability. Repeating the induction step for O(log logN)
times, we will obtain that τ is essentially one, i.e. we get Theorem 2.1. However, we have to
keep track of the increasing logarithmic factors and the deteriorating probability estimates of the
exceptional sets.

Throughout the proof we fix L satisfying (2.18) with the constant A0 obtained from Corol-
lary 4.2 and we also fix ψ from the same Corollary. We will also use a moving exponent 
 whose
value will always satisfy L/2 � 
� L, in particular SL ⊂ S
.

We recall the definition

γ = γ (z, τ, 
)= (logN)3
+2

(Nη)τ
, (4.22)

where we now emphasize the dependence on τ and 
. Define the events

Rτ,
 :=
⋃
z∈SL

Rτ,
(z), Rτ,
(z) := {Λ(z)� γ (z, τ, 
)
}
. (4.23)

Then (3.1) in Theorem 3.1 states that there is a ψ with 0 <ψ < 1/10 such that for any 
0 := L

we have

P(Rτ,
0)� exp
[−(logN)ψ
0

]
, (4.24)

with τ = 1/3 and for any N � N0(ϑ, δ±,C0). Notice that we have used a weaker form of The-
orem 3.1 by making the threshold γ larger, the restrictions for 
0 stronger and reducing the
exponent φ to ψ since this weaker form will be preserved in the iterative procedure. By setting
a sufficiently large lower threshold on N , we could remove the constants C,c from (3.1). The
general iteration step is included in the following lemma.

Lemma 4.4. There exists a sufficiently large N0 = N0(ϑ, δ±,C0) such that for any N � N0 the
following implication holds. If for some 0< τ < 1 and for some 
 with L/2 � 
� L

P(Rτ,
)� exp
[−(logN)ψ


]
, (4.25)

then

P(Rτ ′,
′)� exp
[−(logN)ψ


′]
, (4.26)

where

τ ′ = τ + 1

2
, 
′ = 
− 3

ψ
. (4.27)
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Proof. Define

Φ =Φ(z, τ, 
) := (logN)

√
γ (z, τ, 
)+ Immsc(z)

Nη
. (4.28)

Fix z ∈ SL, then from Corollary 4.2 with the choice of Ξ =Rτ,
 we have

E
[
1
(
Γ c
)∣∣[Z]∣∣p]� E

[
1
(
Rc
τ,


)
Ψ 2p]+ (Dp)Dp exp

[−c(logN)ψ

]

(4.29)

�Φ2p + (Dp)Dp exp
[−c(logN)ψ


]
, (4.30)

where we have used (4.25) and (3.32) to bound the probability of Ξ and Ω and we used that
Λ� γ on Rc

τ,
 to estimate Ψ �Φ . We will choose p = (logN)a with

a =ψ
− 3. (4.31)

From Markov’s inequality and (4.3) we obtain that

P

(∣∣[Z]∣∣� 1

2
(logN)Φ2

)
� 2p(logN)−pΦ−2p[Φ2p + (Dp)Dp exp

[−(logN)ψ

]]+C exp

[−c(logN)φ

]

� 2p(logN)−p + exp
[
Dp log(2Dp)+ p(logN)− (logN)a+3]+C exp

[−c(logN)φ

]

� exp
[−3(logN)a

]
. (4.32)

Here in the second line we used Φ �N−1/2 from Immsc(z)� cη to estimate Φ−2p . In the final
estimate we used that logp = a log logN � ψ
 log logN � ψ logN and that ψ � φ. This esti-
mate was for any fixed z ∈ SL. By choosing a grid of z-values in SL with spacing of order N−c,
with some large c, we can use the Lipschitz continuity of [Z](z) and Φ(z) to conclude that
essentially the same estimate holds simultaneously for all z ∈ SL.

Combining this with (4.25), we have

∣∣[Z]∣∣� (logN)Φ2 � (logN)3

(
γ + Immsc

Nη

)
and Λ� γ, (4.33)

for all z ∈ SL with a probability at least 1 − exp[−2(logN)a]. We can now apply Lemma 4.3 so
that

Λ(z)� (logN)3
+2(Nη)−(τ+1)/2 (4.34)

holds for any z ∈ SL with a probability bigger than 1 − exp[−(logN)a]. Here we have used that
P(Ω ∪ B)� exp[−2(logN)a] from (4.3). We have thus proved (4.26) and Lemma 4.4. �

Returning to the proof of Theorem 2.1, we choose τ0 = 1/3 and 
0 = L as the initial values
of the iteration. The input condition (4.25) in Lemma 4.4 for the initial step has been checked
in (4.24). Iterating Lemma 4.4 yields a sequence of (τn, 
n) so that τn+1 = τ ′

n and 
n+1 = 
′
n

via (4.27), more precisely
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τn = 1 − 2−n · 2

3
� 1 − 2−n, 
n = L− 3n/ψ,

such that

P

( ⋃
z∈SL

{
Λ(z)� (logN)3
n+2

(Nη)1−2−n

})
� exp

[−(logN)ψ
n
]
. (4.35)

We run the iteration until n= 2 log logN so that

(Nη)2
−n �N2−n � e.

If A0 = 20/ψ , i.e. L� (20/ψ) log logN , then 
n � 2L/3 and thus

P

( ⋃
z∈SL

{
Λ(z)� e(logN)3L+2

Nη

})
� exp

[−(logN)2ψL/3]. (4.36)

This proves (2.19) after renaming 2ψ/3 to a new φ. The proof of (2.21) follows from the estimate
on Λ, from (3.33), (3.56) and (4.3).

Finally, to prove (2.22), we need the following lemma.

Lemma 4.5. Let L� 4 satisfy (2.18) and define the set

UL := {z=E + iη: 5 � |E| � 2 +N−2/3(logN)8L+8, η=N−2/3(logN)2L+1}. (4.37)

Then for A0 large enough in (2.18), we have

P

( ⋃
z∈UL

{
Λ(z)� (logN)−1(Nη)−1})� 1 −C exp

[−c(logN)ψL/2]. (4.38)

Proof. For z ∈ UL we have κ =N−2/3(logN)8L+8 � η and thus we have (see (3.65))

α(z)� c
√
κ + η� cN−1/3(logN)4L+4.

Therefore Λ � α/2 holds on the event Λ(z) � e(logN)3L+2

Nη
for any z ∈ UL. Since UL ⊂ SL, the

probability of this event is bigger than 1− exp [−(logN)2ψL/3] by (4.36). Combining this bound
on Λ with the estimate (3.32) for 
= L, we know that

∣∣[Z](z)∣∣� (logN)2L
γ (z)+ Immsc(z)

Nη

holds with a probability bigger than 1 − 2 exp [−(logN)2ψL/3]. Here we used γ (z) =
(logN)3L+2(Nη)−1 with the choice of τ = 1 and 
= L, see (4.22).

We can now use (4.13) from Lemma 4.3 with 
= L and τ = 1 to have

Λ� C(logN)3L+1
( (logN)3L+2(Nη)−1 + η√

κ√
)

(4.39)

κNη
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with probability larger than 1 − 3 exp [−(logN)2ψL/3]. Here we used the probability esti-
mate (4.3) on P(Ω ∪ B) and the first bound in (3.14). Then using the values of κ and η in
the set (4.37), we obtain

Λ� (logN)−1(Nη)−1

from (4.39) and this proves Lemma 4.5. �
We now prove (2.22). On the set UL we have

Immsc =O

(
η√
κ

)
� (logN)−1(Nη)−1. (4.40)

Combining it with (4.38), we obtain that

P

( ⋃
z∈UL

{
Imm(z)� 2(logN)−1(Nη)−1})� 1 −C exp

[−c(logN)ψL/2]. (4.41)

Fix z=E + iη ∈ UL and define the event

W(z) := {∃j : |λj −E| � η
}
.

Recalling the definition of m,

Imm(z)= 1

N

N∑
j=1

η

(E − λj )2 + η2
, (4.42)

it is clear that Imm(z)� 1
4 (Nη)

−1 on the set W(z). Using (4.41) we obtain that

P
(∃j : 2 +N−2/3(logN)8L+8 � |λj | � 5

)
� C exp

[−c(logN)ψL/2]. (4.43)

Finally, we need to control the probability of a very large eigenvalue. For example, the following
(not optimal) estimate was proved in, e.g., Lemma 7.2 of [23]. We formulate the results for the
largest eigenvalue λN , but analogous results hold for the smallest eigenvalue λ1 as well.

Lemma 4.6. Let H satisfy Assumptions (A), (B), (C) and the subexponential decay condi-
tion (2.17). Then for some ε > 0, depending on ϑ , we have

P(λN �K)� e−Nε logK (4.44)

for any K � 3.

Combining this lemma with (4.43) we completed the proof of (2.22). �
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5. Estimates on the location of eigenvalues

Proof of Theorem 2.2. We now translate the information on the Stieltjes transform obtained in
Theorem 2.1 to prove Theorem 2.2 on the location of the eigenvalues. We will need the following
Lemma 5.1 which is a special case of Lemma 6.1 proved in [22] with the choice A = 0. The
conditions (6.1) and (6.2) stated in Lemma 6.1 of [22] are not sufficient. Instead, the following
slightly stronger assumption is necessary:

∣∣m�(x + iy)
∣∣� CU

y(κx + y)A
, for 1 � y > 0, |x| �K + 1, (5.1)

i.e., it is not sufficient to control only the imaginary part of m�. This stronger condition is needed
in (6.7) of [22], where the imaginary part of m is changed to its real part after an integration by
parts. With the condition (5.1), the proof of Lemma 6.1 in [22] remains otherwise unchanged.
This immediately proves the following lemma as a special case:

Lemma 5.1. Let �� be a signed measure on the real line with supp�� ⊂ [−K,K] for some
fixed constant K . For any E1,E2 ∈ [−3,3] and η > 0 we define f (λ) = fE1,E2,η(λ) to be a
characteristic function of [E1,E2] smoothed on scale η, i.e., f ≡ 1 on [E1,E2], f ≡ 0 on R \
[E1 − η,E2 + η] and |f ′| � Cη−1, |f ′′| � Cη−2. Let m� be the Stieltjes transform of ��.
Suppose for some positive number U (may depend on N ) we have

∣∣m�(x + iy)
∣∣� CU

Ny
for 1 � y > 0, |x| + y �K. (5.2)

Then ∣∣∣∣ ∫
R

fE1,E2,η(λ)�
�(λ)dλ

∣∣∣∣� CU | logη|
N

(5.3)

with some constant C depending on K . �
We will apply this lemma with the choice that the signed measure is the difference of the

empirical density and the semicircle law,

��(dλ)= �(dλ)− �sc(λ)dλ, �(dλ) := 1

N

∑
i

δ(λi − λ).

First we prove (2.26). Choose L := A0 log logN , where A0 is given in Theorem 2.1, and we
define

TN := (logN)L = (logN)A0 log logN

for simplicity. By Theorem 2.1, the assumptions of Lemma 5.1 hold for the difference m� =
m−msc with K = 10 and U = T 4

N if y � y0 := T 10
N /N . For y � y0, set z= x+ iy, z0 = x+ iy0

and estimate
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∣∣m(z)−msc(z)
∣∣� ∣∣m(z0)−msc(z0)

∣∣+ y0∫
y

∣∣∂η(m(x + iη)−msc(x + iη)
)∣∣dη. (5.4)

Note that

∣∣∂ηm(x + iη)
∣∣= ∣∣∣∣ 1

N

∑
j

∂ηGjj (x + iη)

∣∣∣∣ (5.5)

� 1

N

∑
jk

∣∣Gjk(x + iη)
∣∣2 = 1

Nη

∑
j

ImGjj (x + iη)= 1

η
Imm(x + iη), (5.6)

and similarly

∣∣∂ηmsc(x + iη)
∣∣= ∣∣∣∣∫ �sc(s)

(s − x − iη)2
ds

∣∣∣∣� ∫ �sc(s)

|s − x − iη|2 ds = 1

η
Immsc(x + iη).

Now we use the fact that the functions y → y Imm(x + iy) and y → y Immsc(x + iy) are
monotone increasing for any y > 0 since both are Stieltjes transforms of a positive measure.
Therefore the integral in (5.4) can be bounded by

y0∫
y

dη

η

[
Imm(x + iη)+ Immsc(x + iη)

]

� y0
[
Imm(x + iy0)+ Immsc(x + iy0)

] y0∫
y

dη

η2
. (5.7)

By definition, Immsc(x + iy0)� |msc(x + iy0)| � C. By the choice of y0 and Theorem 2.1,
we have

Imm(x + iy0)� Immsc(x + iy0)+ T 4
N

Ny0
� C (5.8)

with very high probability. Together with (5.7) and (5.4), this proves that (5.2) holds for y � y0
as well if U is increased to U = T 10

N .
The application of Lemma 5.1 shows that for any η� 1/N∣∣∣∣ ∫

R

fE1,E2,η(λ)�(λ)dλ−
∫
R

fE1,E2,η(λ)�sc(λ)dλ

∣∣∣∣� C(logN)T 10
N

N
. (5.9)

With the fact: y → y Imm(x + iy) is monotone increasing for any y > 0, (5.8) implies a crude
upper bound on the empirical density. Indeed, for any interval I := [x−η,x+η], with η= 1/N ,
we have

n(x + η)− n(x − η)� CηImm(x + iη)� Cy0 Imm(x + iy0)�
CT 10

N . (5.10)

N
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This bound can be used to estimate the difference between the characteristic function of the
interval [E1,E2] and the smoothed function fE1,E2,η.

Since the probability to have eigenvalues outside the interval [−3,3] are extremely small,
we consider only the case that all eigenvalues are inside [−3,3]. Let E1 = −4 and E2 := E ∈
[−3,3]. Then from (5.9) and (5.10) we have that

∣∣n(E)− nsc(E)
∣∣� C(logN)T 10

N

N
(5.11)

holds for any fixed E ∈ [−3,3] with an overwhelming probability. The supremum over E is
a standard argument for extremely small events and we omit the details. This completes the
proof of (2.26) after possibly increasing L (hence A0) and decreasing φ in order to replace the
(logN)T 10

N with (logN)L.
Now we turn to the proof of (2.25). Let L be as before. Fix any 1 � j �N/2 and let E = γj ,

E′ = λj . Setting tN = (logN)T 10
N = (logN)10L+1 for simplicity, from (5.11) we have

nsc(E)= n
(
E′)= nsc

(
E′)+O(tN/N). (5.12)

Clearly E � 1, and using (5.11) E′ � 1 also holds with an overwhelming probability. First,
using (2.22) and

nsc(x)∼ (x + 2)3/2, for −2 � x � 1, (5.13)

i.e.

nsc(E)= nsc(γj )= j

N
∼ (E + 2)3/2,

we know that (2.25) holds (with a possibly increased power of logN in the left hand side) if

E,E′ � −2 + tNN
−2/3. (5.14)

The correct power (logN)L can be restored by increasing L (hence A0) and decreasing φ, as
before.

Hence, we can assume that one of E and E′ is in the interval [−2 + tNN
−2/3,1]. With (5.13),

this assumption implies that at least one of nsc(E) and nsc(E
′) is larger than t

3/2
N /N . Inserting

this information into (5.12), we obtain that both nsc(E) and nsc(E′) are positive and

nsc(E)= nsc
(
E′)[1 +O

(
t
−1/2
N

)]
,

in particular, E + 2 ∼ E′ + 2. Using that n′
sc(x) ∼ (x + 2)1/2 for −2 � x � 1, we obtain that

n′
sc(E)∼ n′

sc(E
′), and in fact n′

sc(E) is comparable with n′
sc(E

′′) for any E′′ between E and E′.
Then with Taylor’s expansion, we have∣∣nsc(E′)− nsc(E)

∣∣� C
∣∣n′
sc(E)

∣∣∣∣E′ −E
∣∣. (5.15)

Since n′
sc(E)= ρsc(E)∼ √

κ and nsc(E)∼ κ3/2, moreover, by E = γj we also have nsc(E)=
j/N , we obtain from (5.12) and (5.15) that
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∣∣E′ −E
∣∣� C|nsc(E′)− nsc(E)|

n′
sc(E)

� CtN

Nn′
sc(E)

� CtN

N(nsc(E))1/3
� CtN

N2/3j1/3
,

which proves (2.25), again, after increasing L and decreasing φ to achieve the claimed (logN)L

prefactor. This concludes the proof of Theorem 2.2. �
6. Edge universality

In this section, we prove the edge universality, i.e., Theorem 2.4. At the end of Section 6.1 we
will give a heuristic explanation why matching the second moments is sufficient but we first need
some preparation and to introduce various notations. We will consider the largest eigenvalue λN ,
but the same argument applies to the lowest eigenvalue λ1 as well.

For any E1 �E2 let

N(E1,E2) := #{E1 � λj �E2}
denote the number of eigenvalues in [E1,E2]. By Theorem 2.2 (rigidity of eigenvalues), there
exist positive constants A0, φ, C and c > 0, depending only on ϑ , δ± and C0 such that with
setting

L :=A0 log logN (6.1)

we have

P
{∣∣N2/3(λN − 2)

∣∣� (logN)L
}

� C exp
[−c(logN)φL

]
(6.2)

and

P

{
N

(
2 − 2(logN)L

N2/3
,2 + 2(logN)L

N2/3

)
� (logN)L

}
� C exp

[−c(logN)φL
]

(6.3)

for sufficiently large N � N0(ϑ, δ±,C0). These estimates hold for both the v and w ensembles.
Using these estimates, we can assume that s in (2.41) satisfies

−(logN)L � s � (logN)L. (6.4)

With L from (6.1), we set

EL := 2 + 2(logN)LN−2/3. (6.5)

For any E �EL let

χE := 1[E,EL]

be the characteristic function of the interval [E,EL]. For any η > 0 we define

θη(x) := η

2 2
= 1

Im
1

(6.6)

π(x + η ) π x − iη
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to be an approximate delta function on scale η. In the following elementary lemma we compare
the sharp counting function N(E,EL)= TrχE(H) by its approximation smoothed on scale η.

Lemma 6.1. Suppose that the assumptions of Theorem 2.4 hold and L, φ satisfy (6.2) and (6.3).
For any ε > 0, set 
1 :=N−2/3−3ε and η :=N−2/3−9ε . Then there exist constants C,c such that
for any E satisfying

|E − 2|N2/3 � 3

2
(logN)L (6.7)

we have

P
{∣∣TrχE(H)− TrχE ∗ θη(H)

∣∣� C
(
N−2ε + N(E − 
1,E + 
1)

)}
� 1 −C exp

[−c(logN)φL
]

(6.8)

for sufficiently large N . This estimate holds for both the v and w ensembles.

Proof. By (6.5) and (6.7) we have

η� 
1 �EL −E � CN−2/3(logN)L. (6.9)

Since χE is the characteristic function of [E,EL], for any x ∈ R, we have

∣∣χE(x)− χE ∗ θη(x)
∣∣= ∣∣∣∣∣
(∫

R

χE(x)−
EL−x∫
E−x

)
θη(y)dy

∣∣∣∣∣.
Let d = d(x) := |x − E| + η and dL = dL(x) := |x − EL| + η. Using that

∫
θη = 1 and the

estimate

∞∫
α

θη(y)dy = 1

π

∞∫
α

η

y2 + η2
dy � Cη

α + η
, α > 0,

an elementary calculation shows that

∣∣χE(x)− χE ∗ θη(x)
∣∣� Cη

[
EL −E

dL(x)d(x)
+ χE(x)

dL(x)+ d(x)

]
(6.10)

for some constant C > 0. It is easy to check that if min{d, dL} � 
1, then the right side of (6.10)
is bounded by a constant and if min{d, dL} � 
1, then it is less than O(η/
1)=O(N−6ε). Hence
we have ∣∣TrχE(H)− TrχE ∗ θη(H)

∣∣
� C

(
Trf (H)+ η

N(E,EL)+ N(E − 
1,E + 
1)+ N(EL − 
1,∞)

)
, (6.11)

1
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where

f (x) := η(EL −E)

dL(x)d(x)
1(x �E − 
1). (6.12)

With the assumption (6.7), N(E,EL) and N(EL − 
1,∞) can be bounded by using (6.3)
and (6.2). Hence it follows from (6.11) that∣∣TrχE(H)− TrχE ∗ θη(H)

∣∣� C
(
Trf (H)+ N(E − 
1,E + 
1)+N−5ε) (6.13)

holds with a probability larger than 1−C exp[−c(logN)φL], for some constants C and c and for
sufficiently large N , uniformly in E with (6.7). Set

g(y) := 1

y2 + 
2
1

, (6.14)

and notice that

1

a2
� C(g ∗ θ
1)(a) if |a| � 
1, (6.15)

which implies

f (x)

η(EL −E)
= 1(x �E − 
1)

dL(x)d(x)
� C · 1(x �E − 
1)

|E − x|2 � C(g ∗ θ
1)(E − x). (6.16)

Recalling from (2.11) and (6.6) that

1

N
Tr θ
1(H −E)= 1

πN
ImTr

1

H −E − i
1
= 1

π
Imm(E + i
1),

we obtain

Trf (H)� CNη(EL −E)

∫
R

1

y2 + 
2
1

Imm(E − y + i
1)dy

� CN1/3η(logN)L
∫
R

1

y2 + 
2
1

[
Immsc(E − y + i
1)+ (logN)CL

N
1

]
dy, (6.17)

where, by (2.19), the second inequality holds with a probability larger than 1 −
C exp[−c(logN)φL] and we also used (6.9). The integral of the second term in the r.h.s. is
bounded by

CN1/3η(logN)L
∫
R

1

y2 + 
2
1

(logN)CL

N
1
dy �N−2/3η(logN)CL
−2

1 �N−2ε, (6.18)

by using the definitions of 
1 and η.



1480 L. Erdős et al. / Advances in Mathematics 229 (2012) 1435–1515
For the first term in the r.h.s. of (6.17) we use the elementary estimate

Immsc(E − y + i
1)� C

√

1 + ∣∣|E − y| − 2

∣∣.
The integral in the region

A := {∣∣|E − y| − 2
∣∣� 
1

}
can be bounded by

∫
A

Immsc(E − y + i
1)

y2 + 
2
1

dy � C

∫
A

||E − y| − 2|1/2

y2 + 
2
1

dy � C

∫
R

|y|1/2 + |E − 2|1/2

y2 + 
2
1

dy

� C

(
1√

1

+ |E − 2|1/2


1

)
.

On the complementary region we have∫
Ac

1

y2 + 
2
1

Immsc(E − y + i
1)dy � C
√

1

∫
Ac

1

y2 + 
2
1

dy � C

−1/2
1 .

Combining these estimates and using (6.7) together with the definitions of 
1 and η we get

CN1/3η(logN)L
∫
R

1

y2 + 
2
1

Immsc(E − y + i
1)dy �N−2ε,

and therefore, together with (6.18), we have Trf (H)� 2N−2ε . Considering (6.13), we have thus
proved Lemma 6.1. �

Let q : R → R+ be a smooth cutoff function such that

q(x)= 1 if |x| � 1/9, q(x)= 0 if |x| � 2/9,

and we assume that q(x) is decreasing for x � 0.

Corollary 6.2. Suppose the assumptions of Lemma 6.1 hold and E satisfies

|E − 2|N2/3 � (logN)L. (6.19)

Let 
 := 1
2
1N

2ε = 1
2N

−2/3−ε . Then the inequality

TrχE+
 ∗ θη(H)−N−ε � N(E,∞)� TrχE−
 ∗ θη(H)+N−ε (6.20)

holds with a probability bigger than 1 −C exp[−c(logN)φL]. Furthermore, we have
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Eq
(
TrχE−
 ∗ θη(H)

)
� P
(
N(E,∞)= 0

)
� Eq

(
TrχE+
 ∗ θη(H)

)+C exp
[−c(logN)φL

]
(6.21)

for sufficiently large N independent of E as long as (6.19) holds. Notice that the directions in
the inequalities (6.20) and (6.21) are opposite since q is decreasing for positive arguments.

Proof. For any E satisfying (6.19) we have EL − E � 
 thus |E − 2 − 
|N2/3 � 3
2 (logN)L

(see (6.7)), therefore (6.8) holds for E replaced with y ∈ [E − 
,E] as well. We thus obtain

TrχE(H)� 
−1

E∫
E−


dy Trχy(H)

� 
−1

E∫
E−


dy Trχy ∗ θη(H)+C
−1

E∫
E−


dy
[
N−2ε + N(y − 
1, y + 
1)

]
� TrχE−
 ∗ θη(H)+CN−2ε +C


1



N(E − 2
,E + 
)

with a probability larger than 1 −C exp[−c(logN)φL]. From (2.26), (6.19), 
1/
= 2N−2ε and

�N−2/3, we can bound


1



N(E − 2
,E + 
)�N1−2ε

E+
∫
E−2


�sc(x)dx +N−2ε(logN)L1 � 1

2
N−ε

with a very high probability, where we estimated the explicit integral using that the integration
domain is in a CN−2/3(logN)L-vicinity of the edge at 2. We have thus proved

N(E,EL)= TrχE(H)� TrχE−
 ∗ θη(H)+N−ε.

By (6.2), we can replace N(E,EL) by N(E,∞) with a change of probability of at most
C exp[−c(logN)φL]. This proves the upper bound of (6.20) and the lower bound can be proved
similarly.

On the event that (6.20) holds, the condition N(E,∞) = 0 implies that TrχE+
 ∗ θη(H) �
1/9. Thus we have

P
(
N(E,∞)= 0

)
� P
(
TrχE+
 ∗ θη(H)� 1/9

)+C exp
[−c(logN)φL

]
. (6.22)

Together with the Markov inequality, this proves the upper bound in (6.21). For the lower bound,
we use

Eq
(
TrχE−
 ∗ θη(H)

)
� P
(
TrχE−
 ∗ θη(H)� 2/9

)
� P
(
N(E,∞)� 2/9 +N−ε)

= P
(
N(E,∞)= 0

)
,
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where we used the upper bound from (6.20) and that N is an integer. This completes the proof of
the corollary. �
6.1. Green function comparison theorem

Recalling that θη(H)= 1
π

ImG(iη), Corollary 6.2 bounds the probability of N(E,∞)= 0 in
terms of the expectations of two functionals of Green functions. In this subsection, we show that
the difference between the expectations of these functionals w.r.t. two probability distributions v
and w is negligible assuming their second moments match. The precise statement is the following
Green function comparison theorem on the edges. All statements are formulated for the upper
spectral edge 2, but with the same proof they hold for the lower spectral edge −2 as well.

Theorem 6.3 (Green function comparison theorem on the edge). Suppose that the assumptions
of Theorem 2.4, including (2.40), hold. Let F : R → R be a function whose derivatives satisfy

max
x

∣∣F (α)(x)
∣∣(|x| + 1

)−C1 � C1, α = 1,2,3,4, (6.23)

with some constant C1 > 0. Then there exists ε0 > 0 depending only on C1 such that for any
ε < ε0 and for any real numbers E, E1 and E2 satisfying

|E − 2| �N−2/3+ε, |E1 − 2| �N−2/3+ε, |E2 − 2| �N−2/3+ε,

and setting η=N−2/3−ε , we have

∣∣EvF
(
NηImm(z)

)−E
wF
(
NηImm(z)

)∣∣� CN−1/6+Cε, z=E + iη, (6.24)

and

∣∣∣∣∣EvF

(
N

E2∫
E1

dy Imm(y + iη)

)
− E

wF

(
N

E2∫
E1

dy Imm(y + iη)

)∣∣∣∣∣� CN−1/6+Cε (6.25)

for some constant C and large enough N depending only on C1, ϑ , δ± and C0 (in (2.4)).

Theorem 6.3 holds in a much greater generality. We state the following extension which can be
used to prove (2.42), the generalization of Theorem 2.4. The class of functions F in the following
theorem can be enlarged to allow some polynomially increasing functions similar to (6.23). But
for the application to prove (2.42), the following form is sufficient. The proof of Theorem 6.4 is
similar to that of Theorem 6.3 and will be omitted.

Theorem 6.4. Suppose that the assumptions of Theorem 2.4, including (2.40), hold. Fix any
k ∈ N+ and let F : R

k → R be a bounded smooth function with bounded derivatives. Then
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for any sufficiently small ε there exists a δ > 0 such that for any sequence of real numbers
Ek < · · ·<E1 <E0 with |Ej − 2| �N−2/3+ε , j = 0,1, . . . , k, we have

∣∣∣∣∣(Ev − E
w)F(N E0∫

E1

dy Imm(y + iη), . . . ,N

E0∫
Ek

dy Imm(y + iη)

)∣∣∣∣∣�N−δ. (6.26)

Assuming that Theorem 6.3 holds, we now prove Theorem 2.4.

Proof of Theorem 2.4. As we discussed in (6.2) and (6.3), we can assume that (6.4) holds for the
parameter s. We define E := 2+ sN−2/3 that satisfies (6.19). We define EL as in (6.5) with the L
such that (6.2) and (6.3) hold. For simplicity, we set ξ = φL and note that ξ � 2 for sufficiently
large N . With the left side of (6.21), for any sufficiently small ε > 0, we have

E
wq
(
TrχE−
 ∗ θη(H)

)
� P

w(N(E,∞)= 0
)

(6.27)

with the choice


 := 1

2
N−2/3−ε, η :=N−2/3−9ε.

The bound (6.25) applying to the case E1 =E− 
 and E2 =EL shows that there exist δ > 0, for
sufficiently small ε > 0, such that

E
vq
(
TrχE−
 ∗ θη(H)

)
� E

wq
(
TrχE−
 ∗ θη(H)

)+N−δ (6.28)

(note that 9ε plays the role of the ε in the Green function comparison theorem). Then applying
the right side of (6.21) in Lemma 6.2, with ξ = φL� 2, to the l.h.s. of (6.28), we have

P
v(N(E − 2
,∞)= 0

)
� E

vq
(
TrχE−
 ∗ θη(H)

)+C exp
[−c(logN)2

]
. (6.29)

Combining these inequalities, we have

P
v(N(E − 2
,∞)= 0

)
� P

w(N(E,∞)= 0
)+ 2N−δ (6.30)

for sufficiently small ε > 0 and sufficiently large N . Recalling that E = 2 + sN−2/3, this proves
the first inequality of (2.41) and, by switching the role of v,w, the second inequality of (2.41) as
well. This completes the proof of Theorem 2.4. �
Proof of Theorem 6.3. Notice that

N

E2∫
E1

dy Imm(y + iη)= η

E2∫
E1

dy TrG(z)G(z), z= y + iη. (6.31)

We now set up notations to replace the matrix elements one by one. This step is identical for the
proof of both (6.24) and (6.25), and we will use the notations of the case (6.24) which are less
involved.
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Fix a bijective ordering map on the index set of the independent matrix elements,

φ : {(i, j): 1 � i � j �N
}→ {1, . . . , γ (N)}, γ (N) := N(N + 1)

2
, (6.32)

and denote by Hγ the generalized Wigner matrix whose matrix elements hij follow the v-
distribution if φ(i, j)� γ and they follow the w-distribution otherwise; in particular H0 =H(v)

and Hγ(N) =H(w). The specific choice of the ordering map (6.32) is irrelevant; in the following
argument, φ could be any bijective ordering map. With η=N−2/3−ε , it was proved in (2.21) that
for any constant ξ > 0,

P

(
max

0�γ�γ (N)
max

1�k,l�N
max
E

∣∣∣∣( 1

Hγ −E − iη

)
kl

− δklmsc(E + iη)

∣∣∣∣�N−1/3+2ε
)

� 1 −C exp
[−c(logN)ξ

]
(6.33)

with some constants C,c and large enough N � N0 (may depend on ξ ). The last maximum in
the formula (6.33) runs over all E satisfying |E− 2| �N−2/3+ε . When applying (2.21), we have
used (logN)4L(Nη)−1 �N−1/3+2ε and that

Immsc(E + iη)�
√|E − 2| + η� CN−1/3+ε/2 (6.34)

for |E − 2| � CN−2/3+ε .
We set z=E+ iη where |E− 2| � CN−2/3+ε and η=N−2/3−ε . From (6.33), (6.34) and the

identity

Imm(z)= 1

N
ImTrG= η

N

∑
ij

GijGij ,

we have that ∣∣∣∣η2
∑
ij

GijGij

∣∣∣∣= ∣∣NηImm(z)
∣∣� CN2ε (6.35)

and ∣∣∣∣η2
∑
i=j

GijGij

∣∣∣∣�Nη2(|msc| +CN−1/3+2ε)� CN−1/3−2ε (6.36)

hold with a probability larger than 1 −C exp[−c(logN)ξ ]. Since the derivative of F is bounded
as in (6.23), there exists C depending on F , ϑ , δ± and C0 such that∣∣∣∣EF(η2

∑
ij

GijGij

)
− EF

(
η2
∑
i 
=j

GijGij

)∣∣∣∣� CN−1/3+Cε. (6.37)

This holds for both the v and the w ensembles.
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To show (6.24), we only need to prove that for small enough ε, there exists C depending on
F , ϑ , δ± and C0 such that∣∣∣∣EvF

(
η2
∑
i 
=j

G
(v)
ij G

(v)
ji

)
− E

wF
(
G(v) →G(w)

)∣∣∣∣� CN−1/6+Cε, (6.38)

where G(v) and G(w) denote the Green functions of the H(v) and H(w), respectively. Here the
shorthand notation F(G(v) → G(w)) means that we consider the same argument of F as in the
first term in (6.38), but all G(v) terms are replaced with G(w). In fact, the upper index notation is
slightly superfluous since the Green function is the same, only the underlying ensemble measure
changes, but we wish to emphasize the difference between the two ensembles in this way as well.

Similarly, for (6.25), we only need to prove that for small enough ε, there exists C depending
on F , ϑ , δ± and C0 such that

∣∣∣∣∣EvF

(
N

E2∫
E1

dy

(
η
∑
i 
=j

G
(v)
ij G

(v)
ji (y + iη)

))
− E

wF
(
G(v) →G(w)

)∣∣∣∣∣� CN−1/6+Cε. (6.39)

Consider the telescopic sum of differences of expectations

EF

(
η2
∑
i 
=j

(
1

H(v) − z

)
ij

(
1

H(v) − z

)
ji

)
− EF

(
H(v) →H(w)

)

=
γ (N)∑
γ=1

[
EF
(
H(v) →Hγ

)− EF
(
H(v) →Hγ−1

)]
. (6.40)

Let E(ij) denote the matrix whose matrix elements are zero everywhere except at the (i, j) posi-
tion, where it is 1, i.e., E(ij)

k
 = δikδj
. Fix a γ � 1 and let (a, b) be determined by φ(a, b)= γ .
For simplicity to introduce the notation, we assume that a 
= b. The a = b case can be treated
similarly. We note the total number of the diagonal terms is N and the one of the off-diagonal
terms is O(N2). We will compare Hγ−1 with Hγ for each γ and then sum up the differences
according to (6.40).

Note that these two matrices differ only in the (a, b) and (b, a) matrix elements and they can
be written as

Hγ−1 =Q+ 1√
N
V, V := vabE

(ab) + vbaE
(ba),

Hγ =Q+ 1√
N
W, W :=wabE

(ab) +wbaE
(ba), (6.41)

with a matrix Q that has zero matrix element at the (a, b) and (b, a) positions and where we set
vji := vij for i < j and similarly for w. Define the Green functions

R := 1
, S := 1

, T := 1
. (6.42)
Q− z Hγ−1 − z Hγ − z
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We first claim that the estimate (6.33) holds for the Green function R as well. More precisely,
the probability of the event

ΩR := max
1�k,l�N

max
E

∣∣Rkl(E + iη)− δklmsc(E + iη)
∣∣�N−1/3+2ε (6.43)

(where maxE is the maximum over all E with |E − 2| �N−2/3+ε) satisfies

P(ΩR)� C exp
[−c(logN)ξ

]
(6.44)

for any fixed ξ > 0. To see this, we use the resolvent expansion

R = S +N−1/2SV S +N−1(SV )2S + · · · +N−9/5(SV )9S +N−5(SV )10R. (6.45)

Since V has only at most two nonzero elements, when computing the (k, 
) matrix element of
this matrix identity, each term is a sum of finitely many terms (i.e. the number of summands
is N -independent) that involve matrix elements of S or R and vij , e.g. (SV S)k
 = Skivij Sj
 +
Skj vjiSi
. Using the bound (6.33) for the S matrix elements, the subexponential decay for vij
and the trivial bound |Rij | � η−1 �N , we obtain that the estimate (6.33) holds for R as well.

After having introduced these notations, we are in a position to give a heuristic power counting
argument that is the core of the proof. In particular, we can explain the origin of the second
moment matching condition. Take F(x) = x for simplicity. A resolvent expansion analogous
to (6.45) gives

Eη
∑
i

ImSii = ηEIm
∑
i

[
Rii −N−1/2(RVR)ii +N−1((RV )2R)

ii
+ · · ·] (6.46)

which is an expansion in the order of N−1/2 since the matrix V contains only a few nonzero
elements of size N−1/2. Notice that η

∑
i ImSii estimates the number of eigenvalues near E in

a window of size η. For the two ensembles to have the same local eigenvalue distribution on
scale η, we need the error term to be less than order one even after performing the telescopic
sum. In the bulk, η has to be chosen as η ∼ N−1 and we can view η

∑
i as order one in the

power counting. Since in the telescopic expansion we will have N2 terms to sum up, we need
that the error term of the expansion is o(N−2) for each replacement step, i.e., for each fixed label
(a, b). This explains the usual condition of four moments to be identical for the Green function
comparison theorem in the bulk [23] since the first four terms in (6.46) have to be equal. Near
the edges, i.e., at energies E with |E − 2| � N−2/3, the correct local scale is η ∼ N−2/3 and
the strong local semicircle law (2.21) implies that the off-diagonal Green functions are of order
N−1/3 and the diagonal Green functions are bounded. Hence the size of the third order term
ηE
∑

i N
−3/2((RV )3R)ii is of order

ηNN−3/2N−2/3 =N−2+1/6

where we used that, for a generic label (a, b), there are at least two off-diagonal resolvent terms
in ((RV )3R)ii . Notice that the error term is still larger than N−2, required for summing over a, b
(this argument would be sufficient if we had a matching of three moments and only the fourth
order term in (6.46) needed to be estimated). The key observation is that the leading term, which
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gives this order N−2+1/6, has actually almost zero expectation which improves the error to be
less than o(N−2). This is due to the fact that with the help of (6.33) we are able to follow the
main term in the diagonal elements of the Green functions and thus compute the expectation
fairly precisely. Notice that similar reasons apply to the proof of Lemma 4.1 in Section 7.

6.2. Main lemma

The key step to the proof of Theorem 6.3 is the following lemma:

Lemma 6.5. Fix an index γ , recall the definitions of Q, R and S from (6.42) and suppose first
that γ = φ(a, b) with a 
= b. For any small ε > 0 and under the assumptions in Theorem 6.3 on
F , E, E1 and E2, there exists C depending on F , ϑ , δ± and C0 (but independent of γ ) and there
exist constants AN and BN , depending on the distribution of the Green function Q, denoted by
dist(Q), and on the second moments of vab , denoted by m2(vab), such that∣∣∣∣EF(η2

∑
i 
=j

Sij Sji(z)

)
− EF

(
η2
∑
i 
=j

RijRji(z)

)
−AN

(
m2(vab),dist(Q)

)∣∣∣∣
� CN−13/6+Cε, (6.47)

with z=E + iη, η=N−2/3−ε , and

∣∣∣∣∣EF
(
η

E2∫
E1

dy
∑
i 
=j

Sij Sji(y + iη)

)
− EF

(
η

E2∫
E1

dy
∑
i 
=j

RijRji(y + iη)

)

−BN
(
m2(vab),dist(Q)

)∣∣∣∣∣� CN−13/6+Cε (6.48)

for large enough N (independent of γ ). The constants AN and BN may also depend on F and on
the parameters ϑ , δ± and C0, but they depend on the centered random variable vab only through
its second moments.

Finally, if a = b, i.e. γ = φ(a, a), then the bounds (6.47) and (6.48) hold with CN−11/6+Cε
standing on their right hand side.

The same estimates hold if S is replaced by T everywhere and note that Q is independent
of vab and wab . Since m2(vab) = m2(wab), we obviously have that AN(m2(vab),dist(Q)) =
AN(m2(wab),dist(Q)). Thus we get from Lemma 6.5 that in case of a 
= b∣∣∣∣EF(η2

∑
i 
=j

Sij Sji(z)

)
− EF

(
η2
∑
i 
=j

Tij T ji(z)

)∣∣∣∣� CN−13/6+Cε (6.49)

and a similar bound for the quantity (6.48). In case of a = b, the estimate is only CN−11/6+Cε .
Recalling the definitions of S and T from (6.42), the bound (6.49) compares the expectation of a
function of the resolvent of Hγ and that of Hγ−1. The telescopic summation then implies (6.38)
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and (6.39) since the number of summands with a 
= b is of order N2 but the number of summands
with a = b is only N . This completes the proof of Theorem 6.3. �
Proof of Lemma 6.5. We will only prove the more complicated case (6.48); the proof can be
adapted easily for (6.47) which will be omitted. Similarly to ΩR from (6.43), define

ΩS := max
1�k,l�N

max
E

∣∣Skl(E + iη)− δklmsc(E + iη)
∣∣�N−1/3+2ε,

where maxE is the maximum over all E with |E − 2| �N−2/3+ε . Since S is the Green function
of Hγ−1, we obtain from (6.33) directly that

P(ΩS)� C exp
[−c(logN)ξ

]
(6.50)

for any fixed ξ > 0. Finally, set

Ωv := {|vab| �Nεσab
}
, and Ω :=ΩR ∪ΩS ∪Ωv. (6.51)

Using (6.44), (6.50) and the subexponential decay of vab , we obtain

P(Ω)� C exp
[−c(logN)ξ

]
, (6.52)

for any fixed ξ > 0 and large enough N . Since the arguments of F in (6.48) are bounded by
CN2+2ε and F(x) increases at most polynomially, it is easy to see that the contribution of the
set Ω to the expectations in (6.48) is negligible. We can thus concentrate on the set Ωc.

Define xS and xR by

xS := η

E2∫
E1

dy
∑
i 
=j

Sij Sji(y + iη), xR := η

E2∫
E1

dy
∑
i 
=j

RijRji(y + iη), (6.53)

and decompose xS into three parts

xS = xS2 + xS1 + xS0 , xSk := η

E2∫
E1

dy
∑

i 
=j,|{i,j}∩{a,b}|=k
Sij Sji(y + iη), (6.54)

and xRk are defined similarly. Here k = |{i, j} ∩ {a, b}| is the number of times a and b appears
among the summation indices i, j (if a = b then we count it only once); clearly k = 0,1 or 2.
The number of the terms in the summation of xSk is O(N2−k) since a and b are fixed. From the
resolvent expansion, we have

S =R −N−1/2RVR +N−1(RV )2R −N−3/2(RV )3R +N−2(RV )4S. (6.55)

In the following formulas we will omit the spectral parameter from the notation of the resolvents.
The spectral parameter is always y + iη with y ∈ [E1,E2], in particular |y − 2| �N−2/3+ε .
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If |{i, j} ∩ {a, b}| = k, using (6.55) and (6.33), we have in Ωc

∣∣N−m/2[(RV )mR]
ij

∣∣� CmN
−m/2+3mεN−(2−k)/3, m ∈ N+, k = 0,1,2, (6.56)

for some constants Cm. Furthermore, we can replace the last R by S, i.e., we also have∣∣N−2[(RV )4S]
ij

∣∣� CN−2−(2−k)/3+Cε. (6.57)

Therefore, in Ωc we have∣∣xSk − xRk

∣∣� CN−5/6−2k/3+Cε, k = 0,1,2. (6.58)

Inserting these bounds into the Taylor expansion of F and keeping only the terms larger than
o(N−2), we obtain∣∣∣∣E[F (xS)− F

(
xR
)]− E

(
F ′(xR)(xS0 − xR0

)+ 1

2
F ′′(xR)(xS0 − xR0

)2 + F ′(xR)(xS1 − xR1
))∣∣∣∣

� CN−13/6+Cε, (6.59)

where we used the remark after (6.52) to treat the contribution on the event Ω . Since there is no
x2 appearing in (6.59), we can focus on the case k = 0 or 1.

For k = 0 or 1, we define Q(k)

 for 
= 1, 2 or 3, as the sum of the terms in xSk − xRk in which

the total number of vab or vba is 
, i.e.,

Q
(k)
1 := −N−1/2η

E2∫
E1

dy
∑

|{i,j}∩{a,b}|=k

(
Rij (RVR)ji + (RVR)ijRji

)
, (6.60)

Q
(k)
2 :=N−1η

E2∫
E1

dy
∑

|{i,j}∩{a,b}|=k

(
Rij
(
(RV )2R

)
ji

+ ((RV )2R)
ij
Rji

+ (RVR)ij (RVR)ji
)
, (6.61)

Q
(k)
3 := −N−3/2η

E2∫
E1

dy
∑

|{i,j}∩{a,b}|=k

(
Rij
(
(RV )3R

)
ji

+Rji
(
(RV )3R

)
ij

+ ((RV )2R)
ij
(RVR)ji + (RVR)ij

(
(RV )2R

)
ji

)
. (6.62)

By these definitions and (6.56), we have

Q
(k)

 �N−
/2−1/3−2k/3+Cε in Ωc. (6.63)

Furthermore, with (6.56) and (6.57), we decompose xSk − xRk as

xS − xR =Q
(k) +Q

(k) +Q
(k) +O

(
N−7/3+Cε). (6.64)
k k 1 2 3
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The last two terms in (6.62) can also be bounded by using (6.56), i.e.,

Q
(k)
3 =O

(
N−13/6+Cε)

−N−3/2η

E2∫
E1

dy
∑

|{i,j}∩{a,b}|=k

(
Rij
(
(RV )3R

)
ji

+Rji
(
(RV )3R

)
ij

)
in Ωc. (6.65)

Inserting (6.63) and (6.64) into the second term of the l.h.s. of (6.59), with the bounds on the
derivatives of F , we have

E

(
F ′(xR)(xS0 − xR0

)+ F ′(xR)(xS1 − xR1
)+ 1

2
F ′′(xR)(xS0 − xR0

)2)
= B + EF ′(xR)Q(0)

3 +O
(
N−13/6+Cε), (6.66)

where

B := E

( ∑
k=0,1

F ′(xR)[Q(k)
1 +Q

(k)
2

]+ 1

2
F ′′(xR)[Q(0)

1

]2)

= E

( ∑
k=0,1

F ′(xR)Evab

[
Q
(k)
1 +Q

(k)
2

]+ 1

2
F ′′(xR)Evab

[
Q
(0)
1

]2) (6.67)

depends on vab only through its expectation (which is zero) and on its second moments.
First we give a trivial estimate on Q(0)

3 . In case i, j are distinct from a and b, it is easy to see
by writing out terms in (6.65) that they contain at least three off-diagonal elements of resolvent;
for example in the term RijRjavabRbavabRbavabRbi , appearing in Rij ((RV )3R)ji , the resolvent
matrix elements RijRjaRbi are off-diagonal. Each off-diagonal matrix element of R is bounded
by N−1/3+2ε in Ωc

R , while the diagonal terms can be estimated by |msc|, hence by a constant,
at a negligible error in the set Ωc ⊂Ωc

R . This shows that each term in the integrand in (6.65) is
bounded by C[N−1/3+2ε]3. Note that every estimate is uniform in y, the real part of the spectral
parameter, as long as |y − 2| �N−2/3+ε . Estimating F ′ trivially, we thus obtain∣∣E[F (xS)− F

(
xR
)]−B

∣∣� CN−11/6+Cε.

This bound proves Lemma 6.5 for the case a = b.
For a 
= b this estimate would not be sufficient since the number of pairs a 
= b to sum up in

the telescopic summation is of order N2. However, we will show that in this case the expectation
of the Q(0)

3 term is of smaller order than the trivial estimate gives.
From now on we assume that a 
= b. By (6.65) we have, in Ωc that

Q
(0)
3 =O

(
N−13/6+Cε)−N−3/2η

E2∫
E1

dy
∑
j 
=a,b

∑
i 
=j,a,b[

(RijRjavabRbbvbaRaavabRbi +RiavabRbbvbaRaavabRbjRji)+ (a ↔ b)
]
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=O
(
N−13/6+Cε)−N−3/2η

E2∫
E1

dy
∑
j 
=a,b

∑
i 
=j,a,b[(

m2
scRijRjaRbi +m2

scRiaRbjRji
)|vab|2vab + (a ↔ b)

]
. (6.68)

Note that we explicitly collected those terms that contain the most diagonal elements
of R; these are the main terms of Q

(0)
3 . There are several other terms, for example

RijRjavabRbavabRbavabRbi , that appear in the expansion of Rij [(RV )3R]ji , but these are lower
order terms and can be directly included in the error term. In the second step in (6.68) we esti-
mated the diagonal terms by msc at a negligible error in the set Ωc ⊂Ωc

R .
We note that vab is independent ofR and Evab |vab|2vab =O(1). Combining (6.68) with (6.66)

and (6.59), we obtain∣∣E[F (xS)− F
(
xR
)]−B

∣∣
� CN−13/6+Cε + ∣∣EF ′(xR)Q(0)

3

∣∣
� CN−13/6+Cε +CN−5/6+Cε

× max
y

max
i 
=j : {i,j}∩{a,b}=∅

[∣∣EF ′(xR)RijRjaRbi∣∣+ ∣∣EF ′(xR)RiaRbjRji∣∣+ (a ↔ b)
]
,

(6.69)

where we used the trivial bounds on F ′ and msc and we again used that every estimate is uniform
in y, the real part of the spectral parameter, as long as |y − 2| � N−2/3+ε . As before, maxy in
the last line of (6.69) indicates maximum over all y with |y − 2| � N−2/3+ε and the spectral
parameter of all resolvents is y + iη.

The following lemma shows that the expectation of the product of the off-diagonal terms
in (6.69) is of smaller order than the trivial estimate gives.

Lemma 6.6. Under the assumption of Lemma 6.5 and assuming that a, b, i, j are all different,
we have ∣∣EF ′(xR)RijRjaRbi(y + iη)

∣∣�N−4/3+Cε (6.70)

for any y with |y − 2| � N−2/3+ε , and the same estimate holds for the other three terms in the
r.h.s. of (6.69).

If this lemma holds, then we have thus proved in the case a 
= b that∣∣E[F (xS)− F
(
xR
)]−B

∣∣�N−13/6+Cε (6.71)

where B is defined in (6.67). With the definitions of x’s in (6.53), this completes the proof of
Lemma 6.5 for the remaining a 
= b case. �
Proof of Lemma 6.6. With the relation between R and S in (6.45) and (6.56), one can see
that (6.70) is implied by
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∣∣EF ′(xS)SijSjaSbi∣∣�N−4/3+Cε, (6.72)

under the assumption that a, b, i, j are all different. This replacement is only a technical con-
venience when we apply the large deviation estimate (Lemma 3.3) below. Lemma 3.3 was
formulated with random variables of equal variance, while the matrix elements of Q cannot
all be normalized to have the same variance since two matrix elements are zero. The contribution
of these two elements is negligible anyway, but the presentation of the argument is simpler if we
do not have to carry them separately in the notation. Since S is the Green function of a usual gen-
eralized Wigner matrix with all variances being positive, it is easier to deal with (6.72) instead
of (6.70).

From the identity (3.7) applied to the Green function S, we have for any different i, j and a∣∣Sij − S
(a)
ij

∣∣= ∣∣SiaSaj (Saa)−1
∣∣� C(Nη)−2 � CN−2/3+Cε in Ωc. (6.73)

From (6.33) we have

|Sij | �N−1/3+Cε, i 
= j, in Ωc. (6.74)

Combining (6.73) and (6.74), we have∣∣xS − x̃S
∣∣�N−1/3+Cε, (6.75)

where x̃S is defined using the resolvent of the matrix H(a)
γ−1 exactly as xS was defined using the

resolvent S of matrix Hγ−1. As usual, H(a)
γ−1 denotes the matrix Hγ−1 with a-th row and column

removed. Similarly, we have

∣∣SijSjaSbi − S
(a)
ij SjaS

(a)
bi

∣∣�N−4/3+Cε, in Ωc. (6.76)

Hence by these inequalities and the bounds on the derivatives of F , we have

∣∣EF ′(xS)SijSjaSbi∣∣� ∣∣E[F ′(x̃S)]S(a)ij SjaS
(a)
bi

∣∣+O
(
N−4/3+Cε). (6.77)

Applying the identity (3.5) to Sja , we have

Sja = SjjS
(j)
aa Z

(S)
ja , with Z(S)

ja :=
∑

st /∈{a,j}
hjsS

(ja)
st hta − hja, (6.78)

where hαβ = (Hγ−1)αβ . With the bound on the matrix elements of S in (6.33) and the iden-
tity (3.7), in the set Ωc we have

Sjj =msc +O
(
N−1/3+Cε), S

(j)
aa =msc +O

(
N−1/3+Cε),

S
(ja)
ss =msc +O

(
N−1/3+Cε). (6.79)

Setting
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ΩZ := {∣∣Z(S)
ja

∣∣�N−1/3+Cε}
with a sufficiently large constant C, Lemma 3.3 implies that

P(Ω ∪ΩZ)� C exp
[−c(logN)ξ

]
,

for any fixed ξ > 0 since on the set Ωc we have

∑
s,t /∈{a,j}

σ 2
jsσ

2
ta

∣∣S(ja)st

∣∣2 �
C2

0

N2η

∑
s 
=a,j

ImS
(ja)
ss �N−2/3+Cε

using the last formula in (6.79). Therefore, with (6.78), in Ωc ∩Ωc
Z we have

Sja =m2
scZ

(S)
ja +O

(
N−2/3+Cε). (6.80)

Combining (6.80) with (6.77), we see that

∣∣EF ′(xS)SijSjaSbi∣∣� ∣∣m2
sc

∣∣∣∣∣∣E[F ′(̃xS)]S(a)ij S
(a)
bi

( ∑
st /∈{a,j}

hjsS
(ja)
st hta − hja

)∣∣∣∣
+O
(
N−4/3+Cε). (6.81)

Since x̃S , S(a)ij S
(a)
bi , hjs and S(ja)st are all independent of the a-th row and column of Hγ−1, and

the expectations of hta and hja are zero, the first term in r.h.s. of (6.81) equals to zero. This
implies (6.72) and completes the proof of (6.70). The other terms in (6.69) can be bounded
similarly. This completes the proof of Lemma 6.6. �
7. Proof of Lemma 4.1

7.1. Setup and notations

The p-th moment of
∑N

i=1Zi is given by

1

Np
E1
(
Γ c
)∣∣∣∣∣

N∑
q=1

Zq

∣∣∣∣∣
p

= 1

Np
E

∑
#

N∑
q1=1

· · ·
N∑

qα=1

· · ·
N∑

qp=1

1
(
Γ c
)
Z#
q1

· · ·Z#
qp
, (7.1)

where the various #’s can be either 0 or the complex conjugate. The precise choice of # will be
irrelevant for our argument and the summation over them yields an irrelevant overall factor 2p .

We write up the definition of Zqα from (3.16) as follows:

Zqα =
N∑

2 3

G
(qα)

q2
αq

3
α

[
hqα,q2

α
hq3

α,qα
− δq3

α,q
2
α
σ 2
q2
α,qα

]
, (7.2)
qα,qα=1



1494 L. Erdős et al. / Advances in Mathematics 229 (2012) 1435–1515
where the summation is over all q2
α 
= qα and q3

α 
= qα . To bookkeep the indices in a uniform
way, we denote qα by q1

α and we organize the three indices (q1
α, q

2
α, q

3
α) into a vector qα for each

α = 1,2, . . . , p.
Furthermore, we organize these p vectors into a 3 × p matrix q = (q

j
α), for α = 1, . . . , p

and j = 1,2,3, with entries taking values in NN := {1,2, . . . ,N}. The slots of the matrix q,
parametrized by (j,α), α = 1,2, . . . , p, j = 1,2,3, are called vertices, since we will build a
graph upon them. The element qjα will be called the index assigned to the vertex (j,α). The first
entry q1

α in qα will play a special role, it will be called location index, the other two indices, q2
α ,

q3
α will be called nonlocation indices. Similarly, (1, α) will be called location vertex and (2, α),
(3, α) will be called nonlocation vertices. A pair of indices is called label. We also define the set
of labels in qα that contain q1

α :

Qα := {(q1
α, q

2
α

)
,
(
q1
α, q

3
α

)
,
(
q2
α, q

1
α

)
,
(
q3
α, q

1
α

)}
, α = 1,2, . . . , p,

and sometimes we will use a single letter ν or μ for labels, i.e. for elements of
⋃p

α=1Qα . Note
that Qα contains any label ν together with its transpose νt , where νt := (p, q) if ν = (q,p).
Carrying ν together with its transpose is necessary since hν = h̄νt , i.e. matrix elements with
labels ν and νt are not independent.

With these notations, we have

1

Np
E1
(
Γ c
)∣∣∣∣∣

N∑
i=1

Zi

∣∣∣∣∣
p

= 1

Np

∑
q

Φq, (7.3)

where we defined

Φq := E1
(
Γ c
) p∏
α=1

[
G
(q1
α)

q2
αq

3
α
ξ(qα)

]#
, ξ(qα) := hq1

α,q
2
α
hq3

α,q
1
α
− δq3

α,q
2
α
σ 2
q2
α,q

1
α
. (7.4)

The summation in (7.3) runs over all 3 × p matrices q with elements from NN and with the
restriction that

q2
α 
= q1

α, and q3
α 
= q1

α. (7.5)

Let

Qq =Q :=
p⋃

α=1

Qα (7.6)

denote the set of all possible labels of h-variables appearing in the ξ(qα) factors and notice that
its cardinality is bounded by |Q| � 4p.

We would like to compute the expectation in (7.4) by first taking the expectation with respect
to the hν -variables explicitly appearing in the ξ ’s. Recall G(q) = (H (q) − z)−1 is the Green
function of H(q) which is an (N − 1)× (N − 1) matrix after removing the q-th row and column
from H . Thus G(q1

α) is independent of the random variables hν , ν ∈ Qα , i.e. those h-variables
that explicitly appear in ξ(qα). There are, however, three complications. First, while each Green
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function G(q1
α), α = 1,2, . . . , p, is independent of hν , ν ∈ Qα , by definition, it still depends on

the other hμ-variables, μ ∈ Qβ , β 
= α. Second, we have to deal with coincidences; the same
h-variable may appear in ξ(qα) and ξ(qβ) with α 
= β; in fact these terms give the nonzero
contributions. We will develop a graphical scheme to bookkeep the structure of coincidences and
estimate the number of the off-diagonal resolvent elements. Finally, there is a small technical
problem related to the factor 1(Γ c) that depends on all h-variables, but this factor equals one
with a very high probability so a fairly easy argument can remove it.

To resolve the first problem, we use the resolvent expansion to express explicitly the depen-
dence of G(q1

α) on the random variables hν with label ν ∈Qβ , β 
= α. For q fixed, let U 〈α〉 =U
〈α〉
q

be the matrix

(
U 〈α〉)

i,k
:= (H(q1

α)
)
i,k
, for (i, k) ∈Q(α)

q :=Q(α) =
⋃

β∈{1,...,p},β 
=α
Qβ, (7.7)

and (U 〈α〉)i,k := 0 otherwise. Note that the number of nonzero matrix elements of U 〈α〉 is
bounded by |Q| � 4p. Define

H [α] =H [α]
q :=H(q1

α) −U 〈α〉, G[α]
q =G[α] := (H(q1

α) −U 〈α〉 − z
)−1

.

Notice that G[α]
q is independent of all the h-factors that explicitly appear in

∏
α ξ(qα). From the

resolvent expansion, we have

G(q1
α) =

∞∑
nα=0

(−G[α]U 〈α〉)nαG[α]. (7.8)

To estimate the size of these Green functions, we first note that there is a positive universal
constant c such that on the set Γ c we have

max
i 
=j |Gij | =Λo � 1

(logN)2
, c� |Gii | � 1 + 1

(logN)2
. (7.9)

This follows from the fact that c′ � |msc(z)| � 1 with some positive universal c′ > 0 and
for any z ∈ S
, see (3.13). By the perturbation formulas (3.6) and (3.7) we have G

(k)
ij =

Gij −GikGkj /Gkk for i, j 
= k, thus we also have

max
i 
=j
∣∣G(k)

ij

∣∣� 2Λo � C

(logN)2
, c′ �

∣∣G(k)
ii

∣∣� 1 + C

(logN)2
, (7.10)

where i, j 
= k. In the good set Γ c , the matrix elements of U 〈α〉 satisfy

∣∣U 〈α〉
ij

∣∣� (logN)L/10

√
N

�N−1/4 (7.11)

(here we used that L� logN/ log logN ), and G[α] is bounded as
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max
i 
=j
∣∣G[α]

ij

∣∣� 2Λo � C

(logN)2
,
∣∣G[α]

ii

∣∣� 1 + C

(logN)2
in Γ c. (7.12)

To see (7.12), we expand

G[α] =
∞∑
m=0

(
G(q1

α)U 〈α〉)mG(q1
α) in Γ c,

and use (7.11) and the bounds (7.10) on the matrix elements of G(q), q ∈ NN .
Using (7.11) and (7.12) and recalling that only finitely many matrix elements of U are

nonzero, we easily see that the expansion (7.8) is convergent and it can be truncated at finite
nα so that the error term can be estimated. Thus there will be no convergence problem and we
will focus on getting estimates.

We set

n := (n1, n2, . . . , np), |n| =
p∑

α=1

nα.

With this expansion, we can write (7.4) as

Φq =
∞∑
n=0

∑
|n|=n

Φn
q ,

Φn
q := E1

(
Γ c
) p∏
α=1

[
M(nα)ξ(qα)

]#
, (7.13)

M(nα) = M(nα)
q := [(−G[α]U 〈α〉)nαG[α]]

q2
α,q

3
α

(7.14)

=
∑

να1 ,ν
α
2 ,...,ν

α
nα

∈Q(α)

Vq
(
μα, να,nα

)
(7.15)

with να := (να1 , ν
α
2 , . . . , ν

α
nα
) and we have expandedU 〈α〉 appearing in [(−G[α]U 〈α〉)nαG[α]]q2

α,q
3
α

and used the notation

Vq
(
μα, να,nα

) := (−1)nαG[α]
μα1
hνα1

G
[α]
μα2
hνα2

· · ·hναnα G
[α]
μαnα+1

. (7.16)

The summation in (7.15) is over all possible ν-labels of the h factors in (7.16). The appearance
of the μα-labels in (7.16) is just notational simplification, they are explicit functions of να and
qα as follows:

μα1 = (q2
α,
[
να1
]

1

)
, μα2 = ([να1 ]2, [να2 ]1), μα3 = ([να2 ]2, [να3 ]1), . . . ,

μαnα+1 = ([ναnα ]2, q3
α

)
, (7.17)

where [ναj ]1 and [ναj ]2 denotes the first and second element of the label ναj . Notice that G[α] is
independent of all matrix elements hjk explicitly appearing in the ξ -factors in (7.13).
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Hence

Φn
q := E1

(
Γ c
)∑

ν

p∏
α=1

[
Vq
(
μα, να,nα

)
ξ(qα)

]#
, (7.18)

where the summation is over all p-tuple of label sequences ν = (ν1, ν2, . . . , νp) ∈ A(q,n) :=∏p

α=1[Q(α)]nα . The number of different ν’s is bounded by |A(q,n)| � (4p)n.

7.2. Strategy of the proof presented in the simplest example

In order to motivate the reader before we start the detailed estimates, we show our strategy
via the simplest case p = 2,

1

N2
E1
(
Γ c
)∣∣∣∣∣

N∑
i=1

Zi

∣∣∣∣∣
2

= 1

N2
E1
(
Γ c
) N∑
i,j=1

ZiZj .

We write out

Zi =
∑
k,l 
=i

G
(i)
kl

[
hikhli − δklσ

2
ik

]
, Zj =

∑
m,n
=j

G
(j)
mn

[
hjmhnj − δmnσ

2
jm

]
,

thus we have

1

N2
E1
(
Γ c
)∣∣∣∣∣

N∑
i=1

Zi

∣∣∣∣∣
2

= 1

N2
E1
(
Γ c
) ∑
ijklmn

G
(i)
kl

[
hikhli − δklσ

2
ik

]
G
(j)
mn

[
hjmhnj − δmnσ

2
jm

]
. (7.19)

With the general notation α = 1,2 and the six indices in the summation are organized into a 3×2
matrix with columns q1 = (q1

1 , q
2
1 , q

3
1 ) and q2 = (q1

2 , q
2
2 , q

3
2 ), i.e.

q =
⎛⎝q1

1 q1
2

q2
1 q2

2
q3

1 q3
2

⎞⎠=
(
i j

k m

l n

)
.

The only restriction for these indices is that the top element of each column is distinct from the
other two below. The setsQ1 ={(i, k), (k, i), (i, l), (l, i)} andQ2 ={(j,m), (m, j), (j, n), (n, j)}
contain the labels of the h factors that explicitly appear in Zi and Zj , respectively.

Now we expand G(i) =G(q1
1 ) in the variables hν labelled by ν ∈Q2. We thus decompose the

minor H(q1
1 ) =H [1] +U 〈1〉, where the matrix U 〈1〉 contains only four nonzero entries hjm, hmj ,

hjn and hnj with labels from Q2, and H [1] contains all other entries of H(q1
1 ). The resolvent

G[1] = (H [1] − z)−1 is now independent of all expansion variables hν with ν ∈ Q = Q1 ∪Q2.
Note, however, that this decomposition depends on q, i.e. it will be different for each summand
in (7.19). Since U 〈1〉 is small, we can expand
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G(i) =G(q1
1 ) =G[1] −G[1]U 〈1〉G[1] +G[1]U 〈1〉G[1]U 〈1〉G[1] · · · ,

and a similar expansion holds for G(j) =G(q1
2 ).

We insert these expansions into (7.19) and organize the terms according to their number of the
explicit h factors. Effectively, each h factor has a sizeN−1/2 (neglecting logarithmic corrections).
The centered random variable ξ(q)= hq1,q2hq3,q1 −δq2,q3σ 2

q1,q2 has size N−1 and the subtracted

expectation δq2,q3σ 2
q1,q2 is treated on the same footing as hh for the purpose of power counting.

Typically we need to show that terms with less than eight h factors have zero expectation to
compensate for the sixfold summation of order N6 with the prefactor N−2 in (7.19). Depending
on certain coincidences among the summation indices, sometimes terms with less than eight h
factors already give nonzero contribution, but then the combinatorial factor from the summation
is smaller. Furthermore, we want to bookkeep the number of the off-diagonal matrix elements
since the final estimate is in terms of a power of Λo.

The leading term in (7.19),

G
[1]
kl

[
hikhli − δklσ

2
ik

]
G

[2]
mn

[
hjmhnj − δmnσ

2
jm

]
, (7.20)

has four h factors but its expectation vanishes unless at least two summation indices in (7.19)
coincide, so the sixfold summation is effectively only fourfold. Here the key observation is that
if at least one h factor appears linearly in the expansion, then the expectation is zero. However,
since the quadratic factor ξ(q1)= [hikhli − δklσ

2
ik] has zero expectation, it is not sufficient to set

k = l and m= n to get a nonzero contribution; there must be coincidences between the h factors
in [hikhli − δklσ

2
ik] and in [hjmhnj − δmnσ

2
jm]. For example the case i = j , k =m, l = n yields a

nonzero contribution, i.e. the summation is only threefold. Moreover, if both resolvent elements
in (7.20) are off-diagonal, then we get an estimate of orderN−2N3(N−1/2)4Λ2

o =Λ2
oN

−1. If one
of the resolvent elements is diagonal, say k = l, then the other one has to be diagonal as well,
m= n, otherwise the expectation is zero. This forces one more coincidence, i.e. either i = j and
k = l =m= n or i =m= n, j = k = l. In both cases the summation in (7.19) gives only N2 and
the total estimate is of order N−2.

The next order terms in the expansion are of the form

(
G[1]U 〈1〉G[1])

kl

[
hikhli − δklσ

2
ik

]
G

[2]
mn

[
hjmhnj − δmnσ

2
jm

]
=
∑

a,b∈Q2

G
[1]
ka U

〈1〉
ab G

[1]
bl

[
hikhli − δklσ

2
ik

]
G

[2]
mn

[
hjmhnj − δmnσ

2
jm

]
with five h factors. Notice that two new summation indices, a, b, have appeared, but their com-
binatorics is of order one and not of order N2. In fact, U 〈1〉

ab is just one of hjm, hnj or their
transposes. Again, there should be at least three coincidences among the indices i, j, k, l,m,n
to avoid that at least one h variable appears linearly or that at least one of the quadratic factors
ξ(q1), ξ(q2) remains isolated leading to zero expectation. It is again easy to see that we collect
at least Λ2

o (in fact, typically Λ3
o) unless at least one additional index coincides.

The terms with six h factors are either of the form

(
G[1]U 〈1〉G[1]) [hikhli − δklσ

2 ](G[2]U 〈2〉G[2]) [hjmhnj − δmnσ
2
]

kl ik mn jm
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or of the form

(
G[1]U 〈1〉G[1]U 〈1〉G[1])

kl

[
hikhli − δklσ

2
ik

]
G

[2]
mn

[
hjmhnj − δmnσ

2
jm

]
.

In both cases at least two h factors appear linearly, yielding zero expectation, unless there are two
coincidences among i, j, k, l,m,n. Thus the summation in (7.19) is effectively reduced from N6

to N4. Since h6 ∼ (N−1/2)6 =N−3, we obtain that (7.19) is of order N−1. Moreover, in all cases
there are at least two off-diagonal resolvent elements, unless an additional coincidence occurs.
Thus the estimate is N−1(Λ2

o +N−1). The seventh order terms can be dealt with similarly.
The lowest order nonzero terms with distinct i, j, k, l,m,n indices have eight h factors and

they are of the form

(
G[1]U 〈1〉G[1]U 〈1〉G[1])

kl

[
hikhli − δklσ

2
ik

](
G[2]U 〈2〉G[2]U 〈2〉G[2])

mn

[
hjmhnj − δmnσ

2
jm

]
.

We now have four U -factors, so they can ensure that all variables hik , hli , hjm, hnj appear
quadratically to prevent zero expectation. For example, the term

G
[1]
kmhmjG

[1]
jj hjnG

[1]
nl

[
hikhli − δklσ

2
ik

]
G

[2]
mkhkiG

[2]
ii hilG

[2]
ln

[
hjmhnj − δmnσ

2
jm

]
has nonzero expectation. Moreover, there are four resolvents in off-diagonal form, unless there
is an index coincidence, so the size of this term is N−2N6(N−1/2)8Λ4

o =Λ4
o.

The mechanism to estimate the term (7.18) for general p is the same, but the bookkeeping
is more tedious. We will have to estimate the size of each non-vanishing term as powers of N
and Λ2

o.
The power counting in N is relatively straightforward. It is easy to see that if all indices in

the matrix q are distinct, then at least 2p new h factors must come from the Vq factors to ensure
that none of the h factors in

∏
α ξ(qα) appears linearly (otherwise the expectation would be zero).

Thus the total number of h factors is at least 4p and their size is estimated by (N−1/2)4p =N−2p .
Together with the N−p prefactor in (7.3), this will compensate for the N3p combinatorial factor
coming from the summation over all 3 × q matrices. If some indices in q coincided, then the
corresponding h factors could appear with a higher multiplicity in

∏
α ξ(qα), so their expectation

would not necessarily vanish even without an additional h factor from Vq. Each coincidence in
q reduces the number of necessary h factors from Vq at most by two, hence keeping the overall
balance of N -powers.

The power counting in Λo is more complicated and it is related to the fact that the expectation
of each ξ is zero. This means that an index coincidence of the form q2

α = q3
α does not imply non-

vanishing expectation yet. The requirement of nonzero expectation either forces coincidences of
indices among h factors in different ξ terms, but then typically two indices have to match, so
we gain an additional N−1; or it forces matching h factors in the ξ -terms with U -factors in the
expansion (7.8). The latter implies, however, that instead of a single resolvent G[α] we consider
a longer expansion of the form G[α]U 〈α〉G[α] · · · which typically has at least two off-diagonal
resolvents instead of only one. These two scenarios yield an additional factor (Λ2

o + N−1) for
each ξ -factor. This gives (Λ2

o +N−1)p as a final estimate.
In the next section we give the precise details of this strategy.
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7.3. Detailed proof of Lemma 4.1

The proof will be divided into three parts. The first part is a technical preparation to deal
with the very small probability event represented by the set Γ , where either h or a resolvent is
too large. It can be skipped at the first reading. In the second part we organize the expansion
by encoding the coincidence structure of various terms by a graph. Finally, in the third part we
estimate the size of each term with the help of the graphical representation.

7.3.1. Cutoff of small probability events
Since |hij | � (logN)L/10N−1/2 in the set Γ c and (7.12) also holds in Γ c, we clearly have

∣∣1(Γ c
)
ξ(qα)Vq

(
μα, να,nα

)∣∣� C

[
C(logN)L/10

√
N

]nα (logN)L/10

N
. (7.21)

Hence we have

∣∣Φn
q

∣∣� (Cp)n
[
(logN)L/10

√
N

]n(
(logN)L/10

N

)p
, (7.22)

where (Cp)n is the combinatorics of the summation over ν in (7.18). Thus we have

1

Np

∑
q

Φq = 1

Np

∑
q

∞∑
n=0

∑
|n|=n

Φn
q

� (logN)pL/10Np

∞∑
n=0

(Cp)n
∑
|n|=n

[
(logN)L/10

√
N

]n
, (7.23)

where we used that the summation over all q yields a factor N3p . Since the number of n =
(n1, n2, . . . , np) with |n| = n is bounded by 2n+p , the last term is bounded by

(
CN(logN)L/10)p ∞∑

n=0

[
Cp(logN)L/10

√
N

]n
. (7.24)

Since p � (logN)L/10 and L � logN/ log logN , the sum of the tail terms with n � 6p is
bounded by CN−5p/2, for sufficiently large N , hence for the bound (4.5) we only have to es-
timate terms with n� 6p.

We denote all independent random variables by h = (hν) and split them according to the set Q
(see (7.6)), i.e., we will write h = (h1,h2) with h2 = (hν : ν ∈Q) and h1 = (hν : ν /∈Q). Denote
the corresponding projection by πj , j = 1,2, i.e. πjh = hj . Define

(
Γ c
)

1 := π1
(
Γ c
)
, Y c :=

∏
ν∈Q

{
hν : |hν | � (logN)L/10|σν |

}⊂ C
Q,

Y := C
Q \ Y c. (7.25)
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By definition, G[α] depends only on variables h1. Furthermore, for any h1 ∈ (Γ c)1 there exists
h2 such that h = (h1,h2) ∈ Γ c , in particular, the estimates (7.12) hold for any h1 ∈ (Γ c)1. By
definition of Γ c , we have

Γ c ⊂ (Γ c
)

1 × Y c (7.26)

and (7.21) holds in the set (Γ c)1 × Y c . From the resolvent expansion, we have for i 
= j , and for
h1 ∈ (Γ c)1,

G
[α]
ij (h1)=G

[α]
ij (h)= (H(α) −U 〈α〉 − z

)−1
ij

=
∞∑

nα=0

[(
G(α)U 〈α〉)nαG(α)

]
ij

(7.27)

=G
(α)
ij +

∞∑
nα=1

[(
G(α)U 〈α〉)nαG(α)

]
ij
. (7.28)

Using

1
(
Γ c
)= 1

((
Γ c
)

1

)− 1
((
Γ c
)

1 × Y c \ Γ c
)− 1

((
Γ c
)

1

)
1(Y ), (7.29)

we can rewrite Φn
q as

Φn
q := Φ̃n

q +Xn
q,1 +Xn

q,2, (7.30)

Φ̃n
q :=

∑
ν∈A(q,n)

Φ̃n
q,ν,

Φ̃n
q,ν := E1

((
Γ c
)

1

) p∏
α=1

Vq
(
μα, να,nα

)
ξ(qα), (7.31)

Xn
q,1 := −E1

((
Γ c
)

1

)
1(Y )

∑
ν

p∏
α=1

Vq
(
μα, να,nα

)
ξ(qα), (7.32)

Xn
q,2 := −E1

((
Γ c
)

1 × Y c \ Γ c
)∑

ν

p∏
α=1

Vq
(
μα, να,nα

)
ξ(qα). (7.33)

Analogously to (7.21)–(7.23), we can bound Xn
q,2 as follows

1

Np

∑
q

6p∑
n=0

∑
|n|=n

∣∣Xn
q,2

∣∣� (Cp)6p
(
N(logN)L/10)p

P(Γ )� C exp
[−c(logN)φL

]
, (7.34)

using the fact that the estimate (7.21) holds even on (Γ c)1 ×Y c since all G[α] appearing in Vq de-
pend only on {hν : ν /∈Q}. In the last step we used (4.3), n� 6p � 6(logN)φL−2 � 6(logN)L/10.
For the other error term we have
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1

Np

∑
q

6p∑
n=0

∑
|n|=n

∣∣Xn
q,1

∣∣� (Cp)6p
(
N(logN)L/10)p exp

[−c(logN)ψL
]

� C exp
[−c(logN)ψL

]
. (7.35)

Here we have used that for a sufficiently large L, the integration of h2 over the set Y , i.e. an
O(p)-moment of the random variables hν , ν ∈ Q, in the regime where |hν | � (logN)L/10σν ,
is bounded by C exp [−c(logN)ψL] with some positive ψ , depending on ϑ due to the subex-
ponential decay (2.17) and due to the fact that p � (logN)ψL−2. In the estimate (7.35) we also
used that (7.12) holds on (Γ c)1 to estimate the G[α] factors remaining from the Vq terms after
integrating out the random variables hν , ν ∈Q.

Collecting the estimates from (7.30), (7.34) and (7.35), we have

1

Np

∑
q

Φq � 1

Np

∑
q

6p∑
n=0

∑
|n|=n

∣∣Φ̃n
q

∣∣+C exp
[−c(logN)ψL

]
. (7.36)

The last error term can be absorbed into the N−p term in (4.5) using that p � (logN)ψL−2.
Hence we only have to estimate the contribution of Φ̃n

q . The key observation is that

Ehν1
((
Γ c
)

1

)
ξ(qα)= 0 (7.37)

for any α = 1,2, . . . , p and for any ν ∈Q. Furthermore, any resolvent G[α] appearing explicitly
in

p∏
α=1

Vq
(
μα, να,nα

)= p∏
α=1

(−1)nαG[α]
μα1
hνα1

G
[α]
μα2
hνα2

· · ·hναnα G
[α]
μαnα+1

(7.38)

is independent of any hν , ν ∈Q. Therefore the expectation in (7.31) is nonzero only if for each
ν ∈ Q, either hν (or its transpose hνt ) appears explicitly in (7.38) or hν (or its transpose hνt )
appears in two different ξ(qα) factors in (7.31). The first scenario imposes restrictions on the
indices of the two resolvents G[α] neighboring hν in (7.38) and we will infer that some of these
resolvents must be off-diagonal that can be estimated by Λo. The second scenario restricts the
total combinatorics of the summation over the q indices in (7.36), which gain can also be ex-
pressed as a power of N−1/2. In the next step we set up a graphical representation to effectively
bookkeep all possible situations.

7.3.2. Combinatorics
Recall that q is a 3 × p matrix with 3p slots. The estimate of Φ̃n

q defined in the previous

section depends on the structure of the indices q = (q
j
α), more precisely, it depends on which of

the indices qjα coincide. The relevant structure of these coincidences will be encoded by a graph,
G(q), to be defined below. Roughly speaking (with some modifications specified below), the
vertex set of G(q) will be the set of possible slots of the matrix q; two vertices (j,α) and (i, β)
are connected by an edge if the corresponding indices coincide, qjα = qiβ . Then the summation
over q in the right side of (7.36) will be performed in two steps: first we sum over all possible
graphs, then we sum over all possible q’s compatible with this graph, i.e. we write
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∑
q

=
∑
G

∑
q: G(q)=G

, (7.39)

where the first summation is over all graphs with at most 3p vertices. In fact, only certain special
graphs G will be compatible with a choice of indices q that occur in our expansion and their
number will be bounded by pCp .

The reason for this resummation is that the size of Φ̃n
q is essentially given by the number of the

off-diagonal resolvents in the expansion (7.31), but considering only those terms which are not
zero due to the expectation (see (7.51) below). This number can be estimated via the coincidence
graph.

We now define the graph G(q), describing the relevant coincidence structure of q, by perform-
ing the following four-step procedure. Strictly speaking, the graph is defined on a subset of the
3p vertices (or slots in the matrix) labelled by coordinates (j,α) with 1 � j � 3 and 1 � α � p.
We will say that a vertex (j,α) has the value r if qjα = r , in other words, the index qjα assigned
to the vertex (j,α) will be sometimes also referred to as the value of that vertex. If it does not
lead to confusion, we will often simply refer to qjα instead of the vertex (j,α), e.g. we will say
that two indices, qjα and qiβ are connected by an edge, meaning that the vertices (j,α) and (i, β)
are connected.

Let 
(q) denote the number of different location indices, i.e.,


= 
(q) := ∣∣{q1
α: 1 � α � p

}∣∣, (7.40)

where | · | denotes the cardinality of the set, disregarding multiplicity. We group together all
columns with the same location indices; the union of these columns will be called group. Let
m1,m2, . . . ,m
 denote the multiplicity of the groups, i.e., the number of columns with the same
location indices. We clearly have


∑
s=1

ms = p. (7.41)

We start with the matrix q and perform the following operations to obtain G(q). In Steps 1 and 2
we specify the vertex-set of G(q) by removing some of the original 3p vertices. Steps 3 and 4
specify the edges of G(q). After each step we give an intuitive explanation.

Step 1. If q2
α = q3

α , we replace q3
α by ∗ and the vertex (3, α) will not be part of the graph G(q).

In the matrix, we put a ∗ in its location. We now call q2
α a duplex and put a subscript d

to indicate it.
Explanation: If q2

α = q3
α then the two h factors in ξ(qα) are the same. This coincidence

has to be treated separately, since it does not automatically lead to nonzero expectation
due to Eξ(qα)= 0. It will thus be easier to merge the vertices (2, α) and (3, α) into one
vertex.

Step 2. For α 
= β and any i, j ∈ {2,3} we call the vertices (j,α) and (i, β) (and the corre-
sponding indices qjα and qiβ ) twin if qjα = q1

β and qiβ = q1
α . We now replace qjα and qiβ

by t to indicate a twin but we do not make any change on location index. Vertices with
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t will not be part of the graph G(q). Notice that by the restriction (7.5), qjα 
= q1
α and

thus q1
α 
= q1

β , i.e., twins can only be formed in different groups, i.e. in columns with
different location indices.
Explanation: This is the situation where there is a coincidence among the h factors in
two different

ξ(qα)= hq1
α,q

2
α
hq3

α,q
1
α
− δq3

α,q
2
α
σ 2
q2
α,q

1
α

and

ξ(qβ)= hq1
β ,q

2
β
hq3

β ,q
1
β

− δq3
β ,q

2
β
σ 2
q2
β ,q

1
β

, α 
= β,

e.g. q2
α = q1

β and q2
β = q1

α . Such coincidence results in nonzero expectation with respect
to hq1

α,q
2
α

without forcing hq1
α,q

2
α

to also appear somewhere in the resolvent expansions,
i.e. in one of the Vq factors in (7.38). This means that hq1

α,q
2
α

may not generate an ad-
ditional off-diagonal resolvent element. We will remove such vertices from the graph
to allow a more uniform treatment for the rest and we will account for the twins sepa-
rately.

Step 3. Two vertices are connected by an edge in G(q) if the indices assigned to them are the
same, except if both vertices are in the first row of the matrix. I.e., edges connect vertices
with identical indices, except that there is no edge between any two location indices.
Explanation: Since the location index plays a different role than the two nonlocation in-
dices, their possible coincidence have separately been taken into account by the concept
of groups.

Step 4. We add an edge between a duplex (q2
α)d and its location index q1

α if the multiplicity of
the group that the duplex belongs to is one, i.e. if the duplex is isolated.
Explanation: This is a purely technical convenience. Later we will consider connected
components of G(q). Isolated duplex will be treated separately (see Case 1 below in the
proof of Proposition 7.1), but artificially making the two vertices of a duplex into one
connected component will allow us to simplify the argument of Lemma 7.2.

We remark that the number of different graphs arising in via this procedure is bounded by pCp .
This is because G(q) has the following special structure. Its vertices are partitioned into equiv-
alence classes (according to the common value of their indices) and any two vertices within an
equivalence class are connected by an edge, unless they are both location vertices. The number
of partitions of the vertices is at most pCp . Furthermore, there are additional edges between du-
plexes and their location vertices if the corresponding location index appears only once in q, but
the possible combinatorics of these additional edges is at most a factor of 2p .

Having defined G(q), the next step is to assign a weight to all vertices as follows.

Definition 7.1 (Weight of vertices and groups in G(q)).

(i) In a group with multiplicity ms = 1 each vertex has weight zero.
(ii) In a group with multiplicity ms > 1 we assign a weight 1 to each duplex in the group; all

other nonlocation vertices in the group will have a weight 1/2.
(iii) The total weight of a group is the sum of weights of its vertices.
(iv) The total weight W =W(q) of the graph is the sum of the weights of all vertices.
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Clearly, the total weight of each group is at most ms � 2(ms − 1). Thus the total weight of
the graph satisfies, by (7.41),

W �

∑

s=1

2(ms − 1)= 2(p− 
). (7.42)

If all location indices are distinct, then all weights are zero. In this case, each nonlocation
index in G(q) forces a new h term in Vq, see (7.38); note that this statement used that twins are
taken out of the graph. If some location indices coincide, i.e. we have a group with multiplicity
larger than one, then the possible coincidences of nonlocation indices within the group may yield
nonzero expectation without forcing a corresponding h factor in Vq. This may shorten the expan-
sion (7.38), hence reduce the total number of the off-diagonal elements. The weight measures the
maximal reduction of the off-diagonal elements in (7.38) due to the larger multiplicity, compared
with the multiplicity one case.

Definition 7.2 (Independent nonlocation indices). Denote by Nind the number of different non-
location indices that do not coincide with any location index i.e.,

Nind =Nind(q) := ∣∣{qjα : 2 � j � 3, 1 � α � p
} \ {q1

α: 1 � α � p
}∣∣, (7.43)

where again | · | denotes the cardinality of the set, disregarding multiplicity. The elements of this
set will be called independent nonlocation indices.

Note that Nind gives the actual number of different q2
α and q3

α in the second sum in the right
hand side of (7.39). Together with the number of groups 
, i.e. the number of different location
indices, the number of terms in the

∑
q summation will be bounded by NNind+
.

We show an example to illustrate this procedure and definitions. Let p = 13 and

q =
( 1 2 3 3 4 4 5 5 5 5 6 7 8

10 1 2 9 7 15 9 9 9 9 2 4 14
10 11 5 6 7 12 9 9 13 13 2 12 14

)
. (7.44)

Then after the first step, we get( 1 2 3 3 4 4 5 5 5 5 6 7 8
(10)d 1 2 9 7d 15 9d 9d 9 9 2d 4 14d

∗ 11 5 6 ∗ 12 ∗ ∗ 13 13 ∗ 12 ∗

)
. (7.45)

After the second step we have( 1 2 3 3 4 4 5 5 5 5 6 7 8
(10)d 1 2 9 t 15 9d 9d 9 9 2d t 14d

∗ 11 5 6 ∗ 12 ∗ ∗ 13 13 ∗ 12 ∗

)
. (7.46)

In this example, the graph G(q) will have 31 vertices, identified with the slots of the ma-
trix in (7.46) that contain numbers. The slots with stars and t’s do not count as vertex of G(q).
The different location indices are 1,2,3,4,5,6,7,8 and the different nonlocation indices are
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9,10,11,12,13,14,15, thus 
= 8, Nind = 7. The multiplicity of the groups with different loca-
tion indices are m1 = m2 = m6 = m7 = m8 = 1, m3 = m4 = 2, m5 = 4. For simplicity, in this
example, we chose 1,2,3,4,5,6,7,8 to be the eight different location indices and we used them
to label the groups as well. We also used the consecutive seven numbers for nonlocation indices.
In general, both the location and nonlocation indices can be arbitrary numbers between 1 and N .

For brevity, we will often use the index associated to a vertex to refer to a vertex, e.g., when we
refer to the index 2d in (7.46), we really mean the vertex (2,11) since q2

11 = 2d . This sometimes
creates confusion (e.g., there are two vertices 9) and in that case, we will be specific.

All vertices with identical indices are connected by an edge, except that there is never an edge
between any two vertices in the first row. Furthermore, there is an edge between 2d and 6 (more
precisely, between the vertices (2,11) and (1,11)); similarly for 14d and 8, but there is no edge
between the nonlocation indices 9d and their location indices 5 since they belong to a group with
multiplicity bigger than one (four) due to the four location indices 5. The vertices with 2,5,9,6
(with common location index 3) the vertices with 12,15 (with location index 4) and the two 9’s
and 13’s (with common location index 5) all receive a weight 1/2. The weight of both 9d ’s is 1
and all other vertices have weight zero. Notice that the index pair (5,9) appears twice but they
are not twins (there are no twins inside a group), similarly the two (5,9d) are not twin indices.

We will consider connected components of this graph. Due to the special rule involving du-
plexes, a connected component may contain different indices, for example

C = {(1,2), (2,3), (2,11), (3,4), (1,11)
}

(7.47)

is a connected component in (7.46), since q1
2 = q2

3 = q2
11 = 2, q3

4 = q1
11 = 6 and q1

11 = 6 is
connected to q2

11 = 2d . With as slight abuse of notation, encoding the elements of C only with
the indices qiα instead of the vertices (i, α) we can write C = {2(loc.),2,2d,6,6(loc.)}, where
(loc.) refers to location index. The list of all connected components in (7.46) is

{1,10d,1}, {11}, {
2(loc.),2,2d,6,6(loc.)

}
, {3}, {3}, {4}, {4}, {7};{

5,5(loc.),5(loc.),5(loc.),5(loc.)
}
, {15}, {12,12}, {9d,9d ,9,9,9},

{13,13}, {8,14d}, (7.48)

using the shorter and somewhat ambiguous index-notation.

7.3.3. Estimates on the integrals
We now estimate Φ̃n

q,ν from (7.31). Let O = O(q,n,ν) be the number of the off-diagonal
Green functions appearing in the expansion of the right hand side of (7.31), i.e., in

p∏
α=1

Vq
(
μα, να,nα

)
ξ(qα)=

p∏
α=1

(−1)nαG[α]
μα1
hνα1

G
[α]
μα2
hνα2

· · ·hναnα G
[α]
μαnα+1

ξ(qα) (7.49)

(see (7.16) and (7.17)). Define

Λ̃o = max
∣∣G[α]

ij

∣∣ (7.50)

α=1,...,p;i 
=j
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to be the maximum of the off-diagonal elements of the Green functions G[α]. Note that Λ̃o is
independent of the random variables hν , ν ∈ Q. In particular, the bound Λ̃o � C/(logN)2 � 1
from (7.12) holds not only on Γ c but on (Γ c)1 as well. Then, with O = O(q,n,ν), and using
n� 6p, we have

∣∣Φ̃n
q

∣∣= ∣∣∣∣∣E1
((
Γ c
)

1

)∑
ν

p∏
α=1

V
(
μα, να,nα

)
ξ(qα)

∣∣∣∣∣
�N−n/2−p(Cp)Cp

∑
ν

E
[
1
((
Γ c
)

1

)
(Λ̃o)

O
]
, (7.51)

where for the expectation of the random variables hν , ν ∈Q, we have used estimate of the form

E|h1|a1 · · · |hk|ak �
(
CmCN−1/2)m, m :=

∑
j

aj , (7.52)

for any aj nonnegative integers, where the constant C depends only on ϑ . The total number
of h factors appearing in (7.49) is n1 + n2 + · · · + np + 2p = n + 2p, and (7.52) shows that
their expectation can be bounded in terms of their total number

∑
j aj irrespective of the precise

distribution of the individual exponents a1, a2, . . . , ak . Thus N−1/2 appears to the power n+ 2p
in (7.51).

We also recall that the number of terms in the summation over ν ∈A(q,n) in (7.51) is bounded
by (4p)n, see remark below (7.18).

Since we have Λ̃o � 1 on the set (Γ c)1, we also have the trivial estimate

Λ̃O
o �N [p−O/2]+[Λ̃2

o +N−1]p
where [ ]+ denotes the positive part. Thus the main term in (7.36) is estimated as

1

Np

∑
q

6p∑
n=0

∑
|n|=n

∣∣Φ̃n
q

∣∣
� (Cp)CpE

[
1
((
Γ c
)

1

)
Λ̃2
o +N−1]p

×
∑
G

∑
q: G(q)=G

6p∑
n=0

∑
|n|=n

∑
ν∈A(q,n)

N−2p−n/2+[p−O/2]+1
(
Φ̃n

q,ν 
= 0
)
. (7.53)

From (7.29) we have the decomposition

1
((
Γ c
)

1

)= 1
(
Γ c
)+ 1

((
Γ c
)

1 × Y c \ Γ c
)+ 1

((
Γ c
)

1

)
1(Y ). (7.54)

Since Λ̃o � 1 on the set (Γ c)1, the contributions from the sets (Γ c)1 × Y c \ Γ c and (Γ c)1 × Y

can be estimated in the same way as in (7.34), (7.35) by C exp [−c(logN)ψL]. Finally, we can
use

Λ̃O
o � 2ΛO

o
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on the set Γ c ⊂ (Γ c)1 × Y c (see (7.12)) and thus we can replace E[1((Γ c)1)Λ̃
2
o + N−1]p in

(7.53) by 2pE[1(Γ c)Λ2
o +N−1]p with a negligible error C exp [−c(logN)ψL].

By (7.40) and Definition 7.2, the total number of different summation indices q in (7.53) is
Nind + 
. We will prove that

2p+ n+O � 2Nind + 2
 (7.55)

and

4p+ n� 2Nind + 2
 (7.56)

hold for any q, n and ν for which Φ̃n
q,ν 
= 0. Since the summations over G, n, n and ν give a

factor at most pCp , these two inequalities imply that (7.53) is bounded by the right hand side
of (4.5). This proves Lemma 4.1 assuming (7.55) and (7.56).

We now prove (7.55) and (7.56). Recalling the total weight of the graph W satisfies W �
2(p− 
) by (7.42), the inequality (7.55) is a consequence of the following

Proposition 7.1. For any q, n and ν such that Φ̃n
q,ν 
= 0, we have

W(q)+ |n| +O(q,n,ν)� 2Nind(q). (7.57)

Proof. We consider connected components C of the graph G(q). If a connected component
consists of only one location index, we call it trivial, and we will consider only nontrivial com-
ponents. Nontrivial components always contain at least one nonlocation vertex since location
indices are never connected directly by an edge. We will prove that (7.57) holds for each non-
trivial connected components and then we will sum these inequalities.

To formulate the statement precisely, we need a few notations. We will fix q, n and ν ∈
A(q,n); all quantities in the following notations will depend on these parameters.

For each nontrivial connected component C of G(q), let IC denote the set of all nonlocation
indices appearing in C, i.e.,

IC := {qiα: (i, α) ∈ C, i = 2,3
}
, (7.58)

and for the purpose of IC we do not distinguish between indices with or without a possible d
(duplex) subscript. Let LC denote the set of all labels associated with C together with their
transposes νt , where νt = (q,p) if ν = (p, q), i.e.,

LC := {(q1
α, q

i
α

)
: (i, α) ∈ C

}∪ {(qiα, q1
α

)
: (i, α) ∈ C

}
. (7.59)

For example, LC = {(2,3), (3,2), (6,2), (2,6), (3,6), (6,3)} for the connected component C
from (7.47). Let

n(C)= n(C;q,n,ν) :=
p∑ nα∑

1
(
ναm ∈ LC

)

α=1m=1
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be the total number of hν -factors with ν ∈ LC appearing in the expansion (7.49) without the h
factors from

∏
α ξ(qα). Finally, we define W(C) = W(C;q) as the total weight of the compo-

nent C, i.e. the sum of the weights of vertices in C.
The following key quantity will be used to count the number of the off-diagonal resolvent

matrix elements appearing in the expansion.

Definition 7.3. For σ ∈ IC , let

2O(σ) :=
p∑

α=1

nα+1∑
m=1

[
1
([
μαm
]

1 = σ,
[
μαm
]

2 
= σ
)+ 1

([
μαm
]

2 = σ,
[
μαm
]

1 
= σ
)]
,

i.e., 2O(σ) is the number of times that σ appears as one of the two indices of an off-diagonal
Green function in the expansion (7.49). Let

O(C)=O(C;q,n,ν) :=
∑
σ∈IC

O(σ) (7.60)

i.e., 2O(C) is the number of times that an index associated with C appears in an off-diagonal
Green function in (7.49).

Note that we do not directly count the total number O of the off-diagonal resolvent matrix el-
ements, we rather count how often a fixed nonlocation index contributes to an off-diagonal Green
function factor. In this way we can determine how much each nonlocation index contributes to
off-diagonal matrix elements and we can perform our estimates for each component separately.

By definition of the edges in the graph, two different nontrivial components C1,C2 have
disjoint sets of nonlocation indices; IC1 ∩ IC2 = ∅. As a corollary, the sets LC for different
components are also disjoint since the twins are eliminated and for any fixed q,n and ν we have∑

C

n(C;q,n,ν)� |n|,
∑
C

O(C;q,n,ν)�O(q,n,ν), (7.61)

where the summations are over all nontrivial connected components. Strict inequality can happen
as there are indices left out in twins. Moreover, we define

Nind(C)=Nind(C;q) := ∣∣{qjα : 2 � j � 3, 1 � α � p, (j,α) ∈ C
} \ {q1

α: 1 � α � p
}∣∣

to be the number of independent nonlocation indices in the component C. This is the same
concept as Nind(q) defined in (7.43) but restricted to a fixed component C. We clearly have∑

C

W(C)=W,
∑
C

Nind(C;q)=Nind(q). (7.62)

We will prove below that (7.57) holds in each nontrivial component C, i.e. for Φ̃n
q,ν 
= 0, we have

W(C;q)+ n(C;q,n,ν)+O(C;q,n,ν)� 2Nind(C;q), (7.63)

then (7.57) will follow from (7.61) and (7.62).
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Lemma 7.2. Let C be a nontrivial connected component of G(q). Then Nind(C)� 1.

Proof. Suppose that C contains at least two different independent nonlocation indices qjα 
= qiβ
and consider a path in G(q) connecting their vertices W1 = (j,α) and W2 = (i, β). Along this
path there must be two subsequent vertices whose indices are different. Considering the con-
struction of G(q), this can happen only along an edge created by the special rule in Step 4 in the
definition of G(q), i.e. there is a duplex connected to its location vertex (any other edge connects
identical indices). For definiteness, we may choose the notation W1 and W2 in such a way that
along the path from W1 to W2 the first special edge created by Step 4 with different indices is
reached at its nonlocation vertex (duplex vertex), call it U1. Clearly U1 and W1 have the same
index. Let now E be the edge connecting U1 to its location vertex V1 ∈ C, then by the choice of
U1 the index of V1 differs from that of U1. Let D be the set of all vertices with the same value
as U1 and let D1 be the set of all vertices with the same value as V1, then D and D1 are disjoint
subsets of C.

We claim that apart from V1, D1 consists of nonlocation vertices only. Suppose this is not
the case. Then there is another location vertex V ′

1 taking the same value as V1. But this implies
that V1 and V ′

1 belong to a group with multiplicity at least two. In this case, however, we did not
connect the duplex V to its location vertex and this leads to contradiction.

The number of independent nonlocation indices in D is exactly one, namely the index of W1.
The number of independent nonlocation indices in D1 is zero since they take the same value as
a location index.

Suppose that D ∪D1 did not exhaust C. In order that D1 ∪D is connected to another vertex
with a different value, once again, there must be an edge E′ connecting a duplex vertex to its
location vertex; one of these two vertices must be D1 ∪D, the other one must be in the comple-
ment. We claim that the duplex is in D1 ∪D. Indeed, the location vertex cannot be in D1 ∪D,
since D has no location vertex at all (otherwise the index of U1 would not be independent) and
D1 has only one location index, V1, that is already connected within D ∪D1 to its duplex.

Let U2 denote the duplex in D ∪D1 that is connected to its location index V2 /∈D ∪D1 and
let D2 denote the set of vertices with the same value as V2. As before, we can establish that D2
contains only nonlocation indices, apart from V2, and there is no independent nonlocation index
in D2.

If D ∪D1 ∪D2 did not exhaust C, we continue the process by defining new sets D3, D4, etc.
until C is exhausted, but we never get a new independent nonlocation index. This proves that
Nind(C)� 1. �

We can start proving (7.63). We fix the parameters q,n and ν and omit them from the notation.
We will distinguish the following cases that clearly cover all possibilities.

Case 1. C consists of a duplex (q2
α)d and its location index q1

α .
Setting ν := (q1

α, q
2
α), we know, in particular, that hν or hνt do not appear in any other ξ(qβ),

β 
= α since C is an isolated component, not connected to any other vertices. Then, by the obser-
vation made in (7.37), hν (or hνt ) must explicitly appear in (7.38) and it clearly must appear in
one of the following ways, with some β 
= α,

(1): G
[β]
f1,q

1
α
hq1

αq
2
α
G

[β]
q2
α,f2

, or G
[β]
f2,q

2
α
hq2

αq
1
α
G

[β]
q2
α,f2

, fi 
= qiα, (7.64)

(2): hq1q2G
[β]

2 2hq2q1 , or hq2q1G
[β]

1 1hq1q2 . (7.65)

α α qα,qα α α α α qα,qα α α
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The main reason why only one of these possibilities occurs is because the indices qiα, i = 1,2,
appear only in C. So either (1) both Green functions neighboring hν (or hνt ) are off-diagonal, or
(2) either of the neighboring Green function is diagonal. In the latter case, however, the expan-
sion must continue on the other side of this diagonal Green function with another factor hq1

αq
2
α

(or hq2
αq

1
α
). The reason for this last statement is that the expansion cannot start or terminate with

a diagonal Green function of the form G
[β]
q1
α,q

1
α

or G[β]
q2
α,q

2
α

since that would entail that q1
α (or q2

α)

equals to q2
β or q3

β , which would mean that C contained other elements as well.
In the first case, n(C) � 1 and we have identified two indices of the off-diagonal Green

functions associated with q2
α , i.e. O(C) � 1. In the second case, we find that hν or hνt appear

altogether twice and hence n(C)� 2. Since Nind(C) = 1 in this case, we have thus proved that
in both cases

W(C)+ n(C)+O(C)� 2 = 2Nind(C). (7.66)

Notice that we did not use weight W(C) here.

Case 2. C is an isolated non-duplex vertex.
Since C is nontrivial, we can assume that C consists of a single vertex (2, α) (the case of

(3, α) is identical). Let ν := (q1
α, q

2
α). Consider the expansion of G[α], see (7.16). The first and

the last Green functions in this expansion will be called extreme Green functions; if nα = 0, then

the single Green function G
(q1
α)

q2
αq

3
α

will be called extreme. Since this expansion contains hμ factors

only with μ ∈ Q(α) and q2
α 
= qiβ for any β 
= α (since C is an isolated vertex), thus q2

α cannot

appear as an index of any hμ. Then the first Green function in (7.16) must be of the form G
[α]
q2
α,f

with some f 
= q2
α , i.e. it must be off-diagonal, thus O(C) � 1

2 . Furthermore, hν or hνt must
appear as

(1): hq1
αq

2
α
G

[β]
q2
α,f

or G
[β]
f,q2

α
hq2

αq
1
α
, f 
= q2

α, (7.67)

(2): hq1
αq

2
α
G

[β]
q2
α,q

2
α
hq2

αq
1
α

or hq2
αq

1
α
G

[β]
q1
α,q

1
α
hq1

αq
2
α
. (7.68)

In the first case (1), we have identified another index of the off-diagonal Green function associ-
ated with q2

α , so O(C)� 1 and n(C)� 1. In the second case (2), we find that hν and hνt appear
altogether twice and thus n(C) � 2. In both cases we have proved (7.63) since Nind(C) = 1.
Again, the weight W(C) was not used.

Case 3. C has only one nonlocation vertex, (i, α), i = 2,3, and at least one location vertex (1, β)
with β 
= α.

In this case the nonlocation index qiα is equal to a location index, henceNind(C)= 0 and (7.63)
is obvious.

Case 4. C has more than one nonlocation vertex.
Suppose the weight of a nonlocation vertex (2, α) in C is zero. Then hq1

αq
2
α

(or hq2
αq

1
α
) must

appear in (7.49) (apart from the ξ factors) and thus it contributes to n(C) by one. Here we are
using the following reason:
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(†) If hq1
αq

2
α

and hq2
αq

1
α

appear in
∏

β ξ(qβ) at least twice, then either (2, α) is a twin vertex or
the multiplicity of the group containing (2, α) is more than one.

Both cases contradict our definitions; twins are not part of G(q), and nonlocation vertices in
groups with higher multiplicity have nonzero weight. But if hq1

αq
2
α

and hq2
αq

1
α

appear only once in∏
β ξ(qβ) (namely, only in the factor ξ(qα)), then at least one of them need to appear at least one

more times in (7.49) to make the expectation nonzero.
Hence if we have at least two weight zero nonlocation vertices in C, then n(C)� 2 and (7.63)

holds. Note that each of these two vertices contribute to n(C) by one, since together with their
own location vertex they must form two different labels, otherwise they would be part of a twin
or a group with multiplicity at least 1 and their weight would not be zero. We can also assume
that the total weight W(C) is less than 2 or, if there is a weight zero nonlocation vertex, hence
n(C)� 1, then the total weight is at most W(C)� 1/2. In all other cases (7.63) follows trivially
from Nind(C)� 1.

So we only have to consider the following remaining cases:

1. The nonlocation vertices of C consist of exactly two weight 1/2 vertices v1, v2.
First notice that these two vertices must have the same index. Otherwise they could be in the
same connected component only if one of them, say v2, would be equal to a duplex (q2

β)d

with some β 
= α where v1 = q
j
α (j ∈ {2,3}), and this duplex would belong to a group with

multiplicity one (a connecting edge between vertices with different indices can be provided
only via a special edge from Step 4 between a duplex and its location vertex and only if the
corresponding group has multiplicity one). But in this case the weight of the nonlocation
vertex (2, β) in C would be zero by (i) of Definition 7.1.
Thus the two vertices v1, v2 cannot be in the same column of the matrix (otherwise they
formed a duplex), so without loss of generality we can assume that they are of the form
(2, α) and (2, β) with α 
= β and we know that q2

α = q2
β .

Consider first the case q1
α 
= q1

β . By the fact that the common value q2
α = q2

β appears only
twice in C, both factors hq1

αq
2
α

and hq1
βq

2
β

(or their transposes) have to appear in (7.49). Thus

n(C)� 2 and (7.63) holds.
Finally, consider the case q1

α = q1
β . Since q2

α and q2
β have weight 1/2, they are not duplex.

By construction, we have to expand the Green function G
(q1
α)

q2
α,q

3
α
. Since q2

α 
= q3
α , in the ex-

pansion (7.49), the first Green function G[α]
μα1

is off-diagonal (otherwise the beginning of the

expansion were G[α]
q2
α,q

2
α
hq2

αq
1
α
· · · , but hq2

αq
1
α

cannot appear in the expansion of G
(q1
α)

q2
α,q

3
α
). Hence

q2
α appears as an index of an extreme off-diagonal Green function. Similar statement holds

for q2
β . Hence we have identified two indices of the off-diagonal Green functions associated

with C so that O(C)� 1 and together with W(C)� 1 we obtain that (7.63) holds.
2. The nonlocation vertices of C consist of exactly one weight 1/2 vertex, and one weight 1

vertex.
Since the weight 1 vertex is a duplex, these two vertices cannot be in the same column of q.
Without loss of generality, let (2, α) be the weight 1/2 vertex and let (2, β)d be the weight 1
vertex, α 
= β . We can consider two cases: q1

α 
= q1
β and q1

α = q1
β . As before, for the first case,

n(C)� 1. For the second case, q2
α cannot appear as an index of any hν in any other ξ(qγ ) for

γ 
= α,β since C consist of exactly two columns, namely the columns α and β . Thus hq1,q2

α α
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or its transpose must appear in the expansion of G[α] and therefore we can find q2
α as one of

the indices of an extreme off-diagonal Green function. Hence we have O(C) � 1/2 in the
second case. Since W(C)� 3/2, we obtain in both cases that (7.63) holds.

3. The nonlocation vertices ofC consist of exactly one weight 1/2 vertex one weight zero vertex.
Since the two vertices have different weights, they are in different columns of the matrix.
Without loss of generality, we can assume that the weight 1/2 vertex is (2, α) and the weight
zero vertex is (2, β) with α 
= β . In this case, both hq1

αq
2
α

and hq1
βq

2
β

(or their transposes) have

to appear in the expansion, thus n(C)� 2 and (7.63) holds.
4. The nonlocation vertices of C consist of exactly three weight 1/2 vertices.

Similar arguments as in the first case, we can show that these three vertices are in different
columns and we can thus assume that they are of the form (2, α), (2, β) and (2, γ ) with
different α,β, γ . If q1

α = q1
β = q1

γ , then q2
α appears as an index of an extreme off-diagonal

Green function in the expansion of G
(q1
α)

q2
α,q

3
α

and O(C) � 1/2. On the other hand, if one of

the three location indices, say q1
α , differed from the other two, then hq1

αq
2
α

(or its transpose)
have to appear in the expansion and n(C)� 1. In either case, together with W(C)� 3/2, we
obtain (7.63).

The main reason of the previous proof is that any weight 1/2 vertex either associated with an
index of an extreme off-diagonal Green function or there is an h factor associated with it. We
have thus proved Proposition 7.1. �

Finally, we have to prove the inequality (7.56). Let d denote the number of duplexes. Let a1
be the number of nontrivial components C that contain only one nonlocation vertex and let a2 be
the number of nontrivial components C that contain at least two nonlocation vertices. Since by
Lemma 7.2 we have Nind =∑C Nind(C)� a1 + a2 and obviously 
� p, it is sufficient to show
that

2p+ n� 2(a1 + a2).

Since there are 2p − d nonlocation vertices, we have 2p − d � a1 + 2a2, thus it is sufficient to
show that n+ d � a1. But each component with a single nonlocation vertex, say (2, α), is either
a duplex or it gives rise to a factor hq1

αq
2
α

(or its transpose) that must appear in the expansion,
hence it contributes to n. This shows (7.56) and this completes the proof of Lemma 4.1. �
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[19] L. Erdős, B. Schlein, H.-T. Yau, Wegner estimate and level repulsion for Wigner random matrices, Int. Math. Res.

Not. 2010 (3) (2010) 436–479.
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