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a b s t r a c t

The central coefficients of powers of certain polynomials with arbitrary degree in x form
an important family of integer sequences. Although various recursive equations address-
ing these coefficients do exist, no explicit analytic representation has yet been proposed.
In this article, we present an explicit form of the integer sequences of central multinomial
coefficients of polynomials of even degree in terms of finite sums over Dirichlet kernels,
hence linking these sequences to discrete nth-degree Fourier series expansions. The ap-
proach utilizes the diagonalization of circulant Booleanmatrices, and is generalizable to all
multinomial coefficients of certain polynomials with even degree, thus forming the base
for a new family of combinatorial identities.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let k ∈ N, k ≥ 1 and

P2k(x) = 1 + x + x2 + · · · + x2k (1)

be a finite polynomial of even degree in x. Using the multinomial theorem and collecting terms with the same power in x,
the nth power of P2k(x) with n ∈ N, n ≥ 1 is then given by

P2k(x)n =

1 + x + x2 + · · · + x2k

n
=

2kn
l=0

p(n)
l,2kx

l, (2)

where p(n)
l,2k denotes the multinomial coefficient (e.g., see [4, Definition B, p. 28]) given by

p(n)
l,2k =


ni


n

n0, n1, . . . , n2k


(3)

∀l ∈ [0, 2kn], where in the last equation the sum runs over ni ∈ [0, n] ∀i ∈ [0, 2k] with n0 + n1 + · · · + n2k = n and
n1 + 2n2 + · · · + 2kn2k = l. The central (2k+ 1)-nomial coefficientsM(2k,n), e.g., the central trinomial (k = 1), pentanomial
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(k = 2) or heptanomial (k = 3) coefficients, are then given by

M(2k,n)
= p(n)

⌊2kn/2⌋,2k ≡ p(n)
kn,2k. (4)

Eqs. (3) and (4) provide a definition of the central coefficients in terms of sums over products of binomial coefficients.
However, their explicit calculation constitutes a numerically non-trivial problem, especially for large k and n, as it involves
sumsover specific partitions of integer numbers. Although various recursive equations addressing these coefficients do exist,
and the Almkvist–Zeilberger algorithm [2] allows for a systematic derivation of recursions for multinomial coefficients in
the general case, no explicit analytical representation of these coefficients has yet been proposed in the literature.

Mathematically, the central multinomial coefficients M(2k,n) are linked to the number of closed walks of length n in
random graphs, and recently an approach has been proposed which translates this combinatorially hard problem into one
of taking powers of a specific type of circulant Boolean matrices [8, Equations (7) and (8)]. In this paper, we detail this
approach, and prove a simple relation between central (2k + 1)-nomial coefficients defined in (4) and finite sums over
Dirichlet kernels of fractional angles (for Dirichlet kernels, e.g., see [6], and Chapter I, §29 in [3]). This explicit analytical
representation not only allows for a fast numerical evaluation of central multinomial coefficients, but also for an explicit
construction of the whole class of sequences of central multinomial coefficients (see the On-Line Encyclopedia of Integer
Sequences, OEIS, [10]; e.g., OEIS A002426, A005191, A025012, A025014).

2. A trace formula

Let N = 2kn + 1 with n, k ∈ N. Consider the N × N circulant matrix

AN,2k = circ

(1,

2k  
1, . . . , 1, 0, . . . , 0 )


= circ


2k
l=0

δj,1+lmodN


j


. (5)

Multiplying AN,2k by a vector x = (1, x, x2, . . . , x2kn) will yield the original polynomial as the first element in the resulting
vector AN,2kx. Similarly, taking the n′th (n′

≤ n) power of AN,2k and multiplying the result with x will yield P2k(x)n
′

as first
element. Thus An′

N,2k will contain the sequence of multinomial coefficients p(n′)
l,2k in its first row. Moreover, as the power of a

circulant matrix is again circulant, this continuous sequence of non-zero entries in a given row will shift by one column to
the right on each subsequent row, and wraps around once the row-dimension N is reached. This behavior will not change
even if one introduces a shift bym columns of the sequence of 1’s in AN,2k, as this will correspond to simply multiplying the
original polynomial by xm. Such a shift, however, will allow, when correctly chosen, to bring the desired central multinomial
coefficients on the diagonal of An′

N,2k.
We can formalize this approach in the following.

Lemma 1. Let

A(m)
N,2k = circ


2k
l=0

δj,1+(m+l) mod N


j


(6)

with m ∈ N0 be circulant Boolean square matrices of dimension N = 2kn + 1 with k, n ∈ N. The central (2k + 1)-nomial
coefficients are given by

M(2k,n)
=

1
N
Tr

A(N−k)
N,2k

n
, (7)

where Tr(A) denotes the trace of matrix A.

Proof. Let B = circ

(0, 1, 0, . . . , 0)


be a N × N cyclic permutation matrix. Note that B has the following properties:

B0
≡ I = BN

Bm
= Br with r = m mod N

BnBm
= B(nm) mod N , (8)

where I denotes the identity matrix of order N . The set of powers of the cyclic permutation matrix, {Bm
},m ∈ [0,N], then

acts as a basis for the circulant matrices A(m)
N,2k defined in (6) (e.g., see [11, Section 1.10] and [5] for a thorough introduction

into circulant matrix algebra).
Let us first consider the casem = 0. It can easily be shown that

A(0)
N,2k = I +

2k
l=1

Bl.
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Applying the multinomial theorem and ordering with respect to powers of B, we have for the nth power of A(0)
N,2k

A(0)
N,2k

n
=


n0+n1+···+n2k=n


n

n0, n1, . . . , n2k


In0Bn1+2n2+···+2kn2k

= b(n)
0 I +

2kn
l=1

b(n)
l Bl

= circ


b(n)
0 , b(n)

1 , . . . , b(n)
2kn


, (9)

where b(n)
l = p(n)

l,2k.
For m > 0, we have

A(m)
N,2k = Bm

+

2k
l=1

Bm+l
= Bm


I +

2k
l=1

Bl


,

and obtain, with (9), for the nth power


A(m)
N,2k

n
= Bmn


b(n)
0 I +

2kn
l=1

b(n)
l Bl


. (10)

Using (8), the factor Bmn shifts and wraps all rows of the matrix to the right bymn columns, so that


A(m)
N,2k

n
= b(n,m)

0 I +
2kn
l=1

b(n,m)
l Bl

= circ


b(n,m)
0 , b(n,m)

1 , . . . , b(n,m)
2kn


,

where b(n,m)
l = b(n)

(l−nm) mod N with b(n)
l = p(n)

l,2k given by (3).
Using the standard enumeration of matrix elements starting with 1, for m = 0, the desired central multinomial coeffi-

cients can be found in row 1, column ⌊N/2⌋ + 1 = kn + 1, i.e. M(2k,n)
= b(n)

kn . Observing that

(l − n(N − k)) mod N ≡ (l + kn) mod N,

a shift bym = N − k yields

M(2k,n)
= b(n)

(l+kn) mod N = b(n,N−k)
l . (11)

That is, setting l = 0, the central (2k+ 1)-nomial coefficientsM(2k,n) reside on the diagonal of

A(N−k)
N,2k

n
. Taking the trace of

A(N−k)
N,2k

n
thus proves (7). �

With Lemma 1, the sequences of central (2k + 1)-nomial coefficientsM(2k,n) are given in terms of the trace of powers of
the N × N circulant Boolean matrix

A(N−k)
N,2k = circ


(1,

k  
1, . . . , 1, 0, . . . , 0,

k  
1, . . . , 1)


= circ


k

l=0

δj,1+l +

k−1
l=0

δj,N−l


j


. (12)

This translates the original combinatorial problem into one of matrix algebra, specifically the problem of finding powers of
circulant matrices, which can be solved in an analytically exact fashion.

3. A sum formula

Not only can circulant matrices be represented in terms of a simple base decomposition using powers of cyclic
permutation matrices, but circulant matrices also allow for an explicit diagonalization (e.g., see [11, Section 1.6]). The latter
will be utilized to prove
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Lemma 2. Let N = 2kn + 1 with k, n ∈ N. The sequence of central (2k + 1)-nomial coefficients M(2k,n) is given by

M(2k,n)
=

1
N


(2k + 1)n +

2kn
l=1


sin


(2k+1)
N lπ


sin
 1
N lπ

 n
. (13)

Proof. As A(N−k)
N,2k , Eq. (12), is a circulant matrix, we can utilize the circulant diagonalization theorem [11, Section 1.6] to

calculate its nth power. This theorem states that all circulants C constructed from an arbitrary N-dimensional vector c =

(c1, c2, . . . , cN) are diagonalized by the same unitary matrix U. That is,

C = circ(c1, c2, . . . , cN) = UEU−1, (14)

where U denotes the unitary matrix with components

urs =
1

√
N

exp

−

2π i
N

(r − 1)(s − 1)


(15)

and E = diag[Er(C)] the diagonal matrix with eigenvalues

Er(C) =

N
j=1

cj exp

−

2π i
N

(r − 1)(j − 1)


, (16)

r, s ∈ [1,N]. In components, (14) reads

cij =

N
r,s=1

uirersu∗

sj, (17)

where u∗
rs denotes the complex conjugates of urs and ers = δrsEr(C).

With (12) and (16), the eigenvalues of A(N−k)
N,2k are

Er(A
(N−k)
N,2k ) =

N
j=1


k

l=0

δj,1+l +

k−1
l=0

δj,N−l


e−2π i (r−1)(j−1)/N

=

k
l=0

e−2π i (r−1)l/N
+

k−1
l=0

e−2π i (r−1)(N−l−1)/N

= 1 +

k
l=1


e−2π i (r−1)l/N

+ e−2π i (r−1)(N−l)/N

,

where in the first sumwe split off the l = 0 term and in the second sum changed the summation variable l → l+1. Utilizing
Euler’s formula and observing that r is an integer number, we further obtain

Er(A
(N−k)
N,2k ) = 1 +

k
l=1


cos


(r−1)l

N 2π


+ cos

−

(r−1)l
N 2π + 2π(r − 1)


− i sin


(r−1)l

N 2π


− i sin

−

(r−1)l
N 2π + 2π(r − 1)



= 1 + 2
k

l=1

cos


(r−1)l
N 2π



=

1 + 2 sin
k(r − 1)

N
π

cos
 (1 + k)(r − 1)

N
π


sin
 r − 1

N
π

, if r > 1;

2k + 1, if r = 1.

Finally, using the product-to-sum identity for trigonometric functions [1, 4.3.31–33], the last equation can be simplified,
yielding

Er(A
(N−k)
N,2k ) =

sin
2k + 1

N
(r − 1)π


sin
 1
N

(r − 1)π

, if r > 1;

2k + 1, if r = 1.
(18)
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With Eqs. (15), (17) and (18), one obtains for the elements of the nth power of A(N−k)
N,2k

A(N−k)
N,2k

n
pq =

N
r=1

uprEn
r u

∗

rq

=
1
N


En
1 +

N
r=2

En
r e

−2π i (r−1)(p−q)/N



=
1
N


(2k + 1)n +

2kn
r=1


sin
 2k+1

N rπ


sin
 1
N rπ

 n

e−2π i r(p−q)/N


.

Taking the trace, finally, proves (13). �

Lemma 2 can now be utilized to establish a direct link between central (2k + 1)-nomial coefficients and the nth-degree
Fourier series approximation of a function via the Dirichlet kernel Dk[θ ] (e.g., see [6] and [3]), the main result of this study:

Proposition 1. Let N = 2kn + 1 with k, n ∈ N. The sequence of central (2k + 1)-nomial coefficients M(2k,n) is given by

M(2k,n)
=

1
N


(2k + 1)n +

2kn
l=1


Dk
 1
N 2lπ

n
. (19)

Proof. Using the trigonometric representation of Chebyshev polynomials of the second kind,

U2k[cos(α)] =
sin[(2k + 1)α]

sin[α]
,

Eq. (13) takes the form

M(2k,n)
=

1
N


(2k + 1)n +

2kn
l=1


U2k

cos
 1
N lπ

n
.

Observing that U2k[cos(lπ/N)] ≡ Dk[2lπ/N] thus proves (19). �

4. Concluding remarks

Eqs. (13) and (19) are remarkable in several respects. First, the trigonometric terms in (13) show a striking similarity
to the famous Kasteleyn product formula for the number of tilings of a 2n × 2n square with 1 × 2 dominos (e.g.,
[7, Equation (13)], and [9] for context). Secondly, both (13) and (19) provide general, explicit representations of the sequences
of central (2k+1)-nomial coefficients in terms of a linearly growing, but finite, sum over analytic constructs, thus effectively
translating a combinatorial problem into an analytical one. Note specifically that k = 1, n ∈ N yields the sequence of central
trinomial coefficients (OEIS A002426), k = 2 the sequence of central pentanomial coefficients (OEIS A005191), and k = 3
the sequence of central heptanomial coefficients (OEIS A025012).

Finally, utilizing trigonometric identities and identities obeyed by Chebyshev polynomials, these explicit representations
may help to formulate general recurrences not just for central multinomial coefficients of a given sequence, but between
different sequences.Moreover, by using different shift parametersm (see proof of Lemma1), each (2k+1)-nomial coefficient
could potentially be represented in a similarly explicit analytical form, thus allowing for a fast numerical calculation of
arbitrary (2k + 1)-nomial coefficients.
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