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The study of the minima of indefinite binary quadratic forms has a long history 
and the classical results concerning the determination of such minima are stated in 
terms of the continued fraction expansion of the roots. These results are recast in 
geometric terms. Using this, and well-known geometric properties of the modular 
group, some necessary and sufftcient conditions for a certain class of quadratic 
forms to have positive unattained minima are obtained. 

1. INTRODUCTION 

We consider a binary quadratic form 

j-(x, y) = .x2 + bxy + cy2, (1.1) 

where a, b, c are real and the discriminant d = b’ - 4ac is positive. We define 

M(f) = inf( If(x, y)l; x, y integers, (x, y) f (0, O)} 

and 

m(f) = M(f) d I”. 

It is this term, m(f), which we consider as the minimum of the formf. 
We say that f(x, y) = ,x2 + bxy + cy2 and f,(x, , y,) = a,.~: + b, s, .I*, + 

c, yf are equivalent if there is a transformation T 

T: 
x=rx, +sy,, 

ru-st= 1. 
y  = ix, + u.v,, 

where Y, s, t, u are integers such that T transforms f(x, v) intof,(x, , y,). 
The quadratic equationf(x. 1) = 0 has two distinct real roots a, /I and we 

have 
f(x, y) = a(x - ay)(x ~ py). (1.2) 
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If either root is rational then m(f) = 0 and so we assume from now on that 
neither root is rational. Following Dickson [ 1, p. IOO] we say that f is an 
Hermite reduced form if 

a>1 and -1 <ro<o. (1.3) 

The study of the minima of binary quadratic forms and its connection 
with Diophantine approximation has a long history and there is a large 
literature dating back to the last century. The classical theory, due originally 
to Lagrange, may be found in Dickson [ 1, 21. We summarise what we need 
of the classical theory. 

THEOREM A. (i) Two equivalent binary quadratic forms have the same 
minimum. 

(ii) Every binary quadratic form with irrational roots is equivalent to 
a reduced form. 

(iii) Suppose f is of the form (1.2) and is reduced. We represent a and 
/I bv infinite continued fractions 

and form the sum 

a= [bo,b,,bz,...], 

-P= [O,b-,,b-,,...I 

P/ = [bi, bi+ 1 v** ] + [O,bi-l,bi-2,***] 

for every integer i, then m(f) = iyf( l/,ui). 

This theorem then, solves the problem of the determination of the 
minimum of a quadratic form-at least in principle. In practice, the 
algorithm given in part (iii) is difftcult to use and the procedure described 
there seems somewhat difficult to motivate. 

Our first aim is to recast this theorem in geometrical terms and to show in 
particular that the condition given in (iii) has a very elementary inter- 
pretation which completely avoids the technicalities of the continued fraction 
theory. We obtain, as a consequence, a new proof of Theorem ,A. Our 
second aim is to use this new formulation to obtain information about binary 
forms with a positive unattained minimum. Of course, in studying the 
possible values of m(f), one may restrict attention to forms which attain 
their minimum-as the minimum of any form must be attained by some 
form 13, p. 3891. It is, however, of some interest to find forms which do not 
attain their minima and the first example, due to Schur, was reported in a 
paper by Remak [6]. Quite recently, examples of such forms were given by 
Setzer in the case where a, /3 are quadratic integers [ 71. We will be able to 
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give a fairly complete classification of those forms (1.2) which have a 
positive unattained minimum in the case where a, /3 are quadratic integers. 

We denote by r the modular group 

az + b 
Y, V(z)= cz+d’ ----a,b,c,dEZ,ad-bc= 1 

and state our first result. 

THEOREM 1. (i) If a, p are irrational reals then for some V E T we 
have either 

V(a) > 1 and --1< V(p)<0 

or 

VP)> 1 and -1 < V(a) < 0. 

(ii) Zf f is the quadratic form (1.2) then 

m(f)= 
1 

sup{] V(a) - V(p)\: V E F) ’ 

(iii) There exists 5’ E r, S = (az + b)(cz + d)-‘, with IS(a) - S(,LJ)l = 
sup{ 1 V(a) - V(jI)l: V E r) if and onZy if 1 f (d, -c)l = M(f ). 

Thus to minimise a quadratic form one seeks to pull apart the roots as 
much as possible using elements in the modular group. In fact Theorem 1 
contains all the information given in Theorem A. To see this recall that two 
forms. 

f = 4x - w>(x - PYh 

g = a,&, - aI y,>(x, -P, Y,) 

are equivalent if and only if la,/al = ](a -P)/(ai -p,)] and, for some V E T, 
V(a) = a,, V(J) =/3i [ 1, p. 991. In view of this remark the first two parts of 
Theorem A follow immediately from Theorem 1. 

We now consider part (iii) of Theorem A. If i is positive we set S,/T, = 
lb,, b, ,..., bi-,] in lowest terms. Now Markoff has shown [4, p. 3851 that 
Pi = Jzr If (Si, Till -‘I where D is the discriminant of the formJ Sincefis of 
the form (1.2) we observe that D= [a(a -p)]’ and SO pi= Ial la -PI 
/f (Si, Ti)l -I. Now we find integers ai, bi so that a,S, + bi Ti = 1 and then 
V(z) = (aiz + bi)(-Tiz + S,))’ is in r. A routine calculation shows that 

I vi(a) - Vi(p)1 = la -PI I(--T,a + S,)(--TdJ + S,)I ’ 
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and we have shown that pi = 1 V,(a) - V&3)1. There is a similar result in the 
case where i is negative and we see that in order to maximise ,U~ we should 
maximise 1 V(a) - V(p)1 over the set of transforms V in r with the property 
that V-‘(co) is a convergent in the continued fraction expansion of a or /I. 
In view of the fact that these convergents are the best rational approx- 
imations to a and /I it is not difficult to prove that we obtain the same result 
if we maximise ( V(a) - V(p)1 over all V in r. 

Theorem 1 will be proved in Section 2. We will now state our results 
concerning binary quadratic forms with positive unattained minima. 

An irrational number a is a quadratic irrational if it is a root of a 
quadratic equation with integer coefficients. We denote the other root by a*. 
A quadratic irrational a is a quadratic integer if aa* and a + a* are 
integers. This is equivalent to requiring that a be an irrational root of a 
quadratic equation x2 + 3x + C = 0 and B and C integers. 

We will see in Section 2 that a is a quadratic irrational if and only if there 
exists a hyperbolic transform in r fixing a and a*. This leads rather easily to 
our next result. 

THEOREM 2. Let a, /? be quadratic irrationals with a # j?, a # j?*. Then 
the number n is an accumulation point of the set (1 V(a) - V(j?)l: V E T} if 
andonlyifn=~T(a)-T(a*)Jorn=~T(CI)-T(j3*)~firsomeTET’. 

We remark that this is precisely Theorem l(a) of Setzer [7]. 
From now on we restrict our attention to quadratic integers a, j? and we 

wish to determine whether the form (1.2) has an attained minimum. We may 
as well assume that lb-P*l>ia-a*1 an we have the following result. d 

THEOREM 3. Suppose a, ,LI are quadratic integers with I/? -/I* I> 
Ia - a* / and that a does not lie in the segment between /3 and /3*, then 
sup{ 1 V(a) - V@)l: V E r) is attained. 

Following Setzer we define, for our quadratic irrationals a, b the forms 

A(x, y) = (x - ay)(x - a*y). 

3(x, Y) = (x - PY)(X - P”Y>* 
(1.4) 

It turns out to be important whether or not the pair p, p* are interchanged 
by an elliptic element of order two in K This is equivalent to the equation 
B(x, y) = -1 having a solution in integers-a fact which we prove later. 

THEOREM 4. of a, p are quadratic integers with I/3 - /3* I > 1 a - a* I and 
if B(x, ~1) = - 1 has a solution in integers, then sup (1 V(a) - V@)l: V E r} is 
attained. 
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If one considers the possible arrangements of the four numbers a, L(*. p. 
,G” on the real line there are eight such arrangements with ip - j3* / > 1 a - a * / 
and which fail to satisfy the hypothesis of Theorem 3. In two of these the 
hypothesis of Theorem 4 is necessary and sufficient for the supremum to be 
attained. 

THEOREM 5. If a, p are quadratic integers and if B(x, y) = -1 has no 
solution in integers then in either of the two cases 

(i) @<a* <a<p*,or 

(ii) P*<a<a*</3 

sup{/ V(a) - Vv)j: VE I-} = I/? -/?* 1 and is not attained. 

In the remaining six cases we must impose an extra condition in order to 
ensure that the supremum is not attained. 

THEOREM 6. If a, p are quadratic integers with I/? -/3* / > 2 la - a* / 
and if B(x, y) = -1 has no solution in integers then in any of the following 
four cases sup{ 1 V(a) - V(p)i: V E r} = ip - /?* / and is not attained: 

(iii) p < a < /?* < a, 

(iv) a* <P<a </3*, 

(v 1 a*<P*<a<P, 

(vi) P*<a<p<a*. 

THEOREM 7. If a, p are quadratic integers with lp-/3*~ 2 
2/a-a*l+2.5-“* and ifB(x, y) = -1 has no solution in integers then in 
either of the following two cases sup{\ V(a) - VCp)I: V E T} = ip - /3* 1 and is 
not attained: 

(vii) B < a < a* <p*, 

(viii) p* < a* < a < j3. 

In view of Theorem 1 we can say that if the hypotheses of Theorems 5, 6 
or 7 are satisfied then m(f) = l/3-p* 1~’ and is not attained. We remark 
that Setzer’s conditions for unattained unfinium are slightly stronger than 
those required in Theorem 7. If the hypotheses of Theorem 3 or 4 are 
satisfied then m(f) is attained. 
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2. PROOFS OF THEOREMS 1 AND 2 

Let a, /I be real irrationals. If VE r, V(z) = (az t b)(cz t d))’ then 

V(a) - v-(p) = a-P 
(ca + d)(cP t d) - 

There exist infinitely many co-prime pairs c, d with 

la+ 44 G Js;c,2 (Hurwitz’ theorem). 

For each such pair we may find a transform V(z) = (az t b)(cz t d)-’ in r 
and, from (2.1), 

I 0) - WI = la-PI 
Ica+dl/c/?td( 

> la-PI \/s 
IP+d/cl 

Ia -PI fi 
’ la-81 tjatd/cl' 

which clearly exceeds 2 for some V. So assuming that 1 V(a) - V(j.?)l > 2 we 
translate the smaller of V(a), I’(/?) into (-1,0) by a power of the element 
P(z) = z + 1 (in r). This proves part (i) of Theorem 1. 

We see immediately from (2.1) that 

I V(a) - WI = lf(4 -c>l-’ @, (2.2) 

where D is the discriminant off. As before, given d, c, relatively prime we 
can construct an element V of r satisfying (2.2) and the remaining two parts 
of Theorem 1 follow immediately. 

To prove Theorem 2 we start by showing that any quadratic irrational is 
fixed by some hyperbolic element in r. Suppose a is a root of 
Ax2 t Bx + C = 0, with A, B, C integers and D = B2 - 4AC positive and 
non-square. We solve the Pellian equation t2 - Du2 = 4 in integers t, u 
(U # 0) and set 

H(z) = {l/2@ - Bu) z - Cu} . {Auz t 1/2(t + Bu)} -I, 

which clearly is a hyperbolic element in r and fixes a. 
Given the hypotheses of Theorem 2 we let H,, H, be hyperbolic elements 

in r fixing a, a* and p, /I*, respectively. Choose T E r and suppose that q = 
IT(a)- T(a*)J. If a* is the attractive fix point of H, then we see that 
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TH;(a) = r(a) and THY@) -+ T(a*) as n + too. Thus q is an accumulation 
point of (1 V(a) - V(/?)l: V E r). 

Suppose now that v is an accumulation point of {I V(a) - V($)l: V E T}. 
Since the translation z: z + z + 1 belongs to r we can find a sequence 
(V,} CT and two real numbers A, p with (L -p( = q and Vn(a)+ A. 
V,(p)-+,u as n-co. Select w on the geodesic joining a to /I and observe 
that, on a subsequence if necessary, (V,(w)) converges to either 1 or ,u. 
Suppose V,(w) +,u, then we have a geodesic ray joining cc) to a whose 
images approximate the geodesic joining L to ,LL Since a is a hyperbolic fix 
point it is well known (see [5], for example) that under these circumstances 
the geodesic joining L to ,U is an image of the axis of H,. Thus for some 
T E I-, v = ) A- ,D ) = j T(a) - T(a *)I and the proof of Theorem 2 is complete. 

3. PROOFS OF THEOREMS 3 AND 4 

We start with a lemma. 

LEMMA. Let a be a quadratic integer then 

(a) IV(a)- V(a*)l<la-a*\forafl VET. 

(b) rfl V(a) - V(a*)l + Ia -a*\ then I V(a) - V(a*)I < 4 Ia -a*]. 

(c) Zf V(a) - V(a*) = a -a* thenfir some integers m, n, V= P”H”. 
where H is the h.vperbolic transform fixing a, a* and P is the translation 
P(z) = 2 + 1. 

(d) Zf V(a) - V(a*) = a* - a then for some integer n, V = P”E. 
where E is an elliptic element of order two interchanging a and a*. 

Proof. From (1.4) and (2.2) we observe that 

IV(a)-V(a*)l=Ia-a*I.lA(d,--c)/-‘. 

where A is the quadratic form 

A(x, y) = (x - ay)(x - a*y) 

and Y(z) = (az + b)(cz + d)-’ E f. Since a is a quadratic integer A@, y) has 
integer coefficients, note also that c2 + d2 > 0 and therefore (A(d, -c)/ > 1. 
This proves part (a). If lA(d, -c)l # 1 then (A(d, -c)l > 2 and this proves 
part (b). Now suppose V(a) - V(a*) = a - a*. From (1.4) and (2.1) we see 
that A(d, -c) = 1. An easy calculation yields 

V(a)-a=bc(a+a*)+acaa*+bd, 

which is an integer, say n. Therefore V(a) = P”(a) and P-” V fixes a. Thus 
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P-“V is a power of H and part (c) is proved. Suppose finally that 
v(a)-v(ar*)=a*-athenweseefrom(1.4)and(2.1)thatA(d,-c)=-l. 
An easy calculation yields 

V(a) - a* = -(acaa* + ad(a + a*) + bd), 

which is an integer, say n. Therefore V(a) = P”(a*) and P-“V(a) = a*. 
Similarly, F”V(a*) = a. Thus (P-“V)’ fixes a, a*, since P-“V is clearly 
not a power of H we must have (P-“V)’ = I and the proof of the lemma is 
complete. 

We now prove Theorem 3. In view of Theorem 2 and the lemma we have 
only to find V E r with 1 V(a) - V(/?)l > I/3 - ,8* 1 and the theorem is proved. 
Let H be the primitive hyperbolic element fixing p, ,f3* and with p* as the 
attractive fixed point. Since all elements of r are orientation preserving we 
see that for all positive integers n, H”(a) lies outside the segment joining /3 to 
/I* and so, for n large enough, 

I H’W - H%)l = IP - H”(a)1 

> IP-P*L 

which completes the proof of Theorem 3. 
To prove Theorem 4 we assume B(x, u) = -1 has a solution in integers. 

By (2.1) and part (d) of the lemma we note that there is an elliptic element 
of order two, E E r with E(jl) =/I*. We assume that a lies in the segment 
joining /3 to /I*, otherwise we can appeal to Theorem 3. Now observe that 
E(a) lies outside the segment joining /3 to /I*. With H defined as above we 
see as before that for large enough positive n 

I H-“E@) - H-“E(a)( = I/?* - H-“E(a)1 

> P-P*12 

which completes the proof of Theorem 4. 

4. PROOFS OF THEOREMS 5, 6 AND 7 

Suppose V. given by V(z) = (az + b)(cz + d)- ’ E r then the isometric 
circle, I(V), is given by 

Z(V)= (z: /cz+d(= 1) provided c # 0. 

We recall that the action of V is an inversion in I(V) followed by a reflection 
in the perpendicular bisector of the line joining the centers of I(v) and 
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I( V ’ ). We note that the radius of Z(V) is 1 cl ’ and this is at most one. We 
note further that if y is a quadratic integer then 

1)’ - y* I > Js. (4.1) 

We now prove Theorem 5 and we will consider only case (i)--case (ii) 
has a similar proof. Suppose the result is false. Then. from Theorem 2. we 
see that for some I’ E f 

lUa)- vu>IP-P*I > k-PI. (4.2) 

Using (2.1) we see that Ic(x + dl . Icp + dl < 1 if V(z) = (az + b)(cz + d) ’ 
and so either a or p is interior to Z(V). 

Case 1. Suppose V(J) < V(u), since Y is orientation preserving we must 
have either 

or 

b’(p*) < v@) < V(u”) < V(a) (4.3 ) 

VP) < V(a*) < V(a) < V(j?*). (4.4) 

However. (4.4) implies that 1 V(J) - Vfp*)l > ( V(a) - V(J)/ which, together 
with (4.2), contradicts the lemma. So we must have (4.3). Now if a is 
interior to I(V) we see from (4.1) that a*, /I are exterior to I(V) and. from 
our remarks on the action of V, we deduce that 1 V(a*) - V@)l < /a* -pi. 
Thus 

I v(a) - VW < I v(a) - Ua*)l + I WY - Ua*)l 
</a-a**I+Ip-a*1 

=/a -PI, 

which contradicts (4.2). 
On the other hand, if /3 is interior to I(V) then a, /I* are exterior to I(V) 

and we see that 

I V(a) - VP)1 < I v(a) - W*)l from (4.3) 

< 2. 

and this, with (4.1). contradicts (4.2). 

Case 2. Suppose V(a) < V(J). since V is orientation preserving we must 
have either 

(4.5) 
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V(a) < V@*) < V(j?) < V(a*). (4.6) 

However, (4.6) implies that 1 V(a) - V(a*)l > 1 V(a) - U/3)1, which, with 
(4.2), contradicts the lemma. So we must have (4.5). Now if a is interior to 
Z(V) then a*, p are exterior to Z( I’) and we see that 

I Wd - WJ>l < I Va*> - WI from (4.5) 

< 2, 

and this, with (4.1), contradicts (4.2). 
On the other hand, if /? is interior to Z(V) then a, p* are exterior to Z(V) 

and, from our remarks on the action of V, we observe that 

I v(a) - WI = I Wd - VP* >I + I W*> - WQI 
< 1+ 1 vcp*> - V@)(. 

(4.7) 

Now since B(x, v) = -1 has no solution in integers we see from the lemma 
and (4.5) above that ( Y(@*) - Y@)( < \p - /?* 112. Thus from (4.2) and (4.7) 
we see that 

which contradicts (4.1). We have shown that (4.2) cannot be true for any 
V E f and this completes the proof of Theorem 5. 

To prove Theorem 6 we consider only case (iii) as the others are similar. 
We suppose that B(x, y) = -1 has no solution in integers, that I@ -p* I > 
2/a-a*1 and that for some VET 

(4.8) 

and we derive a contradiction. Assuming (4.8) we note that V(a) < V(J), 
otherwise either I UP) - W*I > I v(a) - WI or I v(a) - Va*I > 
/ V(a) - V(p)1 both of which, in view of (4.8), contradict the lemma. Thus we 
have 

v(a) < VW*> < V(a*) < VW) (4.9) 

and so 

I v(a) - U./3l < I V(a) - %*)I + I UP) - W*I 
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in view of the lemma and the fact that B(x, JJ) = -1 has no solution in 
integers. This inequality and (4.8) imply that I/I -/I*) < 2 Ia - a* ( and the 
proof of Theorem 6 is complete. 

We now prove Theorem 7 and consider only case (vii). Suppose then that 
B(x, y) = - 1 has no solution in integers and, for some V E Z. 

Iv(a)- w)I>IP-P*l> I-PI. 

If I’(J) < V(a) then we must have 

(4.10) 

Vtj?*) < VW) < V(a) < V(a*) (4.11) 

otherwise either 1 V(/3) - L’(JI*)l > 1 V(a) - V(jI)l or ) V(a) - V(a*)I > 
1 k’(a) - V(p)/ both of which, in view of (4.1 l), contradict the lemma. Either 
a or /I is interior to Z(V) and it follows that a*, p* are both exterior to Z(V). 
Considering the action of V we see that 1 V(a*) - I’@*)1 < 1 and from 
(4.10). (4.1 1) and (4.1) we derive a contradiction. Thus we must have 

V(a) < V(a*) < U/3*) < U/I). (4.12) 

If V composed with a translation does not fix a, a* then from the lemma we 
see that IV(a)- If(a 1/2la-a*1 and IV@*)- V(J)(< 1/2//3-p*l. 
Since a*, /I* are both exterior to Z(V) we see that I V(a*) - I’(/*)1 < 1 and 
from (4.12) 

II@)-V@>I< 1+1/2Ia-a*l+1/2IP-P*I. 

Using (4.10) we find 

(P-P*/<Ia-a*/+2. (4.13) 

Now suppose V fixes a, a *. Since either a or /I is interior to Z(V) we see that 
the center of Z(V) is to the left of a. Inverting in Z(V) the image of a* is a 
and the image of j?* is to the right of the center of Z(V). Thus 
( V(a*) - V(p*)l does not exceed the distance from the center of Z(V) to a. 

Call this latter distance x and we have x(la - a*1 +x) = ICI *, where 
l’(z) = (az + b)(cz + d)- ‘. Thus 

1 
x< la-a*l*lG12 ‘5 

and we have proved that I V(a*) - V(p*)l < 5 I”. From (4.12) we see that 

I v(a) - UJ)l = I V(a) - v(a*)l + 1 V(a*) - V@*>I + 1 V@) - V(p*>I 

</a-a*/+5-“2++I&P*l. 
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From (4.10) we find 

(4.14) 

This completes the proof of Theorem 7. 
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