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Abstract

We propose a concept of module liaison that extends Gorenstein liaison of ideals and prov
equivalence relation among unmixed modules over a commutative Gorenstein ring. Analyz
resulting equivalence classes we show that several results known for Gorenstein liaison are
in the more general case of module liaison. In particular, we construct two maps from the set
liaison classes of modules of fixed codimension into stable equivalence classes of certain r
modules. As a consequence, we show that the intermediate cohomology modules and prope
being perfect, Cohen–Macaulay, Buchsbaum, or surjective-Buchsbaum are preserved in even
liaison classes. Furthermore, we prove that the module liaison class of a complete interse
codimension one consists of precisely all perfect modules of codimension one.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

So far liaison theory can mainly be considered as an equivalence relation among
mensional subschemes. It started with the idea to gain information on a given cu
embedding it into a well understood curve, a linking curve, such that there is a re
curve that is easier to study. The idea makes sense in any dimension and traditiona
complete intersections were used as linking objects. This leads to the theory of co
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intersection liaison. It has reached a very satisfactory stage for Cohen–Macaulay ide
[18] and for subschemes of codimension two (cf. [3,22,28,31,32]).

However, it is impossible to extend all the nice results about codimension two
schemes to higher codimension. Recently, anumber of papers (most notably [19]) ha
shown that a more convincing theory emerges if one allows as linking schemes i
of complete intersections, more generally, arithmetically Gorenstein schemes. Th
ory is called Gorenstein liaison. For an extensive introduction, we refer to [23] or
The results in [19] suggest to think of Gorenstein liaison theory as a theory of diviso
arithmetically Cohen–Macaulay subschemes. For example, it is shown in [19] that any tw
linearly equivalent divisors on a smooth arithmetically Cohen–Macaulay subscheme
Gorenstein linked in two steps. An application of the new theory to simplicial polyt
can be found in [26]. One can interpret this success as a consequence of enlarging
smaller complete intersection liaison classes to the larger Gorenstein liaison classes.

However, despite recent efforts and many partial results (cf., e.g., [8–11,15–17,2
Gorenstein liaison classes are not yet well understood. In this paper, we propose to
a better understanding of Gorenstein liaison and to extend the range of applicati
liaison theory by further enlarging Gorenstein liaison classes. To this end we introd
new concept of module liaison.

There are other reasons that motivate the quest for a liaison theory of modules. Id
subschemes are often studied by means of associated modules/sheaves such as t
ical module. New insight can be expected when modules and ideals can be treate
equal footing.

Module liaison will provide a new tool for studying modules. Recently, Casanell
Drozd, and Hartshorne [8] showed that liaison classes of codimension two ideal
normal Gorenstein algebraR are related to special maximal Cohen–Macaulay mod
overR. Module liaison could be helpful in investigating such modules more directly.

The need for a liaison theory of modules is also reflected by the fact that so fa
different proposals of module linkage (including this one) have been developed ind
dently [20,21,37]. However, while the other proposals do generalize complete inters
liaison, only the concept proposed here provides an extension of Gorenstein liaison
more detailed comparison we refer to Remark 3.20.

Let us now describe the structure of the paper. In Section 2 we introduce the m
that will be used to link. We require that these modules have a finite self-dual reso
Modules with this property are called quasi-Gorenstein because they generalize quotie
of Gorenstein rings by Gorenstein ideals, but they are Gorenstein modules only
are maximal modules. We provide several classes of examples in order to illustrate t
abundance of quasi-Gorenstein modules.

Our concept of module liaison is introduced in Section 3. We consider unmixed
ules over a local Gorenstein ring and graded unmixed modules over a graded Gor
K-algebra whereK is a field. Throughout the paper we focus on the graded case be
there additional difficulties occur. Nevertheless, we show for every unmixed moduleM,
each integerj , and every quasi-Gorenstein moduleC with the same dimension asM that
the modulesM, M(j), andM ⊕C all belong to the same even liaison class (Lemmas 3
3.14). We also discuss several examples and the relation to the other notions of m
linkage. Furthermore, we describe some specializations of our module liaison. For
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ple, the concept of submodule liaison arises if we restrict the class of considered m
to submodules of a given free moduleF . In the special case whereF = R is a Gorenstein
ring, submodule liaison is the same as Gorenstein liaison of ideals.

Then we begin our investigation of the properties of linked modules. In Section
discuss the Hilbert polynomials of linked modules. In particular, we show that

degC = degM + degN

if the modulesM,N are directly linked by the moduleC.
In order to trace structural properties under liaison we introduce so-called resol

of E-type andQ-type in Section 5. Proposition 5.6 shows how theE-type andQ-type res-
olutions of directly linked modules are related. It allows us to define mapsΦ andΨ from
the even liaison classes of modules of fixed codimension into the set of stable equiv
classes of certain reflexive modules (Theorem 5.7). The existence of these maps im
ately produces necessary conditions for two modules being in the same even liaiso
It remains a major problem to decide whether these maps are injective since an affirmat
answer would give a parametrization of the even liaison classes of modules.

Much progress in liaison theory has been driven by the question which properti
transferred under liaison. In Section 6 we use the mapsΦ andΨ to extend various result
in [21,28,33]. For example, we show that the projective dimension as well as (up to d
shift) the intermediate local cohomology modules are preserved in an even module
class. The same kind of preservation is true for the properties being Cohen–Macaul
locally Cohen–Macaulay, Buchsbaum, and surjective-Buchsbaum, but even in the who
liaison class.

The final Section 7 is devoted to the description of a whole module liaison clas
main result, Theorem 7.1, says thatM is in the liaison class ofR/aR wherea �= 0 is any
element of the Gorenstein domainR if and only if M is a perfect module of codimensio
one. Note that this result would follow immediately if we knew that the mapsΦ andΨ

were injective.
Our concept of module liaison could easily be extended to a non-commutative s

The resulting theory should certainly be investigated. We leave this for future work.

2. Quasi-Gorenstein modules

In this section we introduce the modules we will use for linkage.
Throughout the paperR denotes a local Gorenstein ring with maximal idealm or a

standard graded GorensteinK-algebra over the field[R]0 = K. In the latter casem =⊕
i>0[R]i denotes the irrelevant maximal ideal ofR. Usually we focus on the graded ca

in order to keep track of occurring degree shifts. Ignoring degree shifts, all definitions and
results hold analogously in the local case.

Since the ringR will be fixed we often refer toR-modules just as modules. Moreov
all modules will be finitely generated unless specified otherwise.
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We denote theith local cohomology module of the moduleM by Hi
m(M). We will use

two duals ofM, theR-dualM∗ := HomR(M,R) and the Matlis dualM∨. Note that the
latter is the graded module HomK(M,K) if M is graded.

The Hilbert function rankK [M]t of a noetherian or artinian gradedR-moduleM is
denoted byhM(t). The Hilbert polynomialpM(t) is the polynomial such thathM(j) =
pM(j) for all sufficiently largej . Theindex of regularity of M is

r(M) := inf
{
i ∈ Z | hM(j) = pM(j) for all j � i

}
.

The shifted moduleM(j), j ∈ Z, has the same module structure asM, but its grading is
given by[M(j)]i := [M]i+j .

Let M be anR-module wheren + 1 = dimR andd = dimM. Then

KM = Extn+1−d
R (M,R)

(
r(R) − 1

) ∼= Extn+1−d
R (M,KR)

is said to be thecanonical module of M. It is the R-module representing the funct
Hd

m(M ⊗R −−)∨.
Recall that a perfect module is a Cohen–MacaulayR-module with finite projective di-

mension.

Definition 2.1. A quasi-Gorenstein R-module M is a finitely generated, perfectR-module
such that there is an integert and a (graded) isomorphismM

∼−→ KM(t).

Remark 2.2. (i) Following Sharp [34],M is a GorensteinR-module if its completionM̂
is isomorphic to a direct sum of copies ofKR̂ . In particular, it is a maximalR-module.
Hence, a quasi-Gorenstein module is Gorenstein if and only if it is maximal because in th
case it is simply a finitely generated, freeR-module.

(ii) Let M = R/I be a cyclic module. Then the following conditions are equivalent
e.g., [7, Theorem 3.3.7]):

(a) R/I is a quasi-GorensteinR-module.
(b) R/I is a Gorenstein ring andI is a perfect ideal.
(c) I is a Gorenstein ideal.

We denote byM∗ the R-dual HomR(M,R) of an R-module M. The number
codimM := dimR − dimM is called thecodimension of M.

Let M be a perfect module of codimensionc with minimal free resolution

0→ Fc
ϕc−→ Fc−1 → ·· · ϕ1−→ F0 → M → 0.

We call this resolutionself-dual if there is an integers such that the dual resolution

0 → F ∗
0 (s)

ϕ∗
1−→ F ∗

1 (s) → ·· · ϕ∗
c−→ F ∗

c (s) → ExtcR(M,R)(s) → 0

is (as exact sequence) isomorphic to the minimal free resolution ofM.
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We denote the initial degree of a graded moduleM by

a(M) := inf
{
i ∈ Z | [M]i �= 0

}
.

Lemma 2.3. Let M be a perfect module. Then we have:

(a) M is a quasi-Gorenstein module if and only if its minimal free resolution is self-dual.
(b) If M ∼= KM(t) then t = 1− r(M) − a(M).

Proof. (a) If M has a self-dual minimal free resolution then we have in particularM ∼=
ExtR(M,R)(t) for some integert . Thus,M is a quasi-Gorenstein module. The conve
follows from the uniqueness properties of minimal free resolutions.

(b) The Hilbert functionhM and the Hilbert polynomialpM of M can be compared b
means of the following Riemann–Roch type formula

hM(j) − pM(j) =
d∑

i=0

(−1)i rankK
[
Hi

m(M)
]
j

whered = dimM. SinceM ∼= KM(t) is Cohen–Macaulay we obtain

hM(i) − pM(i) = rankK
[
Hd

m(M)
]
i
= rankK [KM ]−i = hM(−i − t).

Using the definitions ofa(M) andr(M) we deducer(M) = 1− a(M) − t . �
There is an abundance of quasi-Gorenstein modules though one has to be more

in the graded case than in the local case.

Remark 2.4. While over a local ring the direct sum of quasi-Gorenstein modules is a
quasi-Gorenstein, this is not always true for graded modules. In fact, ifC is a graded quasi
Gorenstein module then, for example,C2 ⊕ C(1) is not quasi-Gorenstein because ther
no integerj such thatC2 ⊕ C(1) ∼= (C2 ⊕ C(−1))(j).

However,Ck andC ⊕ C(j) are always quasi-Gorenstein.

There are plenty of quasi-Gorenstein modules that are not a direct sum of proper
Gorenstein submodules.

Example 2.5. (i) Let c � 3, u � 1 be integers and consider a sufficiently general homom
phismϕ :R(−1)u+c−1 → Ru. Then its cokernel will have the expected codimensionc.
Denote byC the symmetric power of cokerϕ of order c−1

2 . Its resolution is given by
an Eagon–Northcott complex which is easily seen to be self-dual. HenceC is a quasi-
Gorenstein submodule of codimensionc.

(ii) In [14] Grassi defines a strong Koszul module as a module that has a free reso
which is analogous to the Koszul complex. Such a module is in particular quasi-Gore
For a specific example, take two (graded) symmetric homomorphismsϕ,ψ :F(−j) → F



U. Nagel / Journal of Algebra 284 (2005) 236–272 241

quasi-

es.

scuss
that

s

-

sults.
[13],
whereF is a freeR-module of finite rank such thatϕ ◦ ψ = ψ ◦ ϕ and{detϕ,detψ} is a
regular sequence. Then the moduleC with the free resolution

0 → F(−2j)

[−ψ
ϕ

]
−−−−→ (F ⊕ F)(−j)

[
ϕ ψ

]
−−−→ F → C → 0

is a quasi-Gorenstein module of codimension two.
Note, that Grassi [14] and Böhning [4] have obtained some structure theorems for

GorensteinR-modules of codimension at most two that also admit a ring structure.
(iii) Every perfectR-module of codimensionc gives rise to a quasi-Gorenstein modul

In fact, if j is any integer thenM ⊕ KM(j) is a quasi-Gorenstein module because

Extc
(
M ⊕ KM(j),KR

) ∼= KM ⊕ KKM (−j) ∼= M(−j) ⊕ KM = (
M ⊕ KM(j)

)
(−j).

3. Module linkage: definition, examples, and specializations

The goal of this section is to introduce our concept of module liaison and to di
some of its variations. Finally, we will compare it with other notions of module liaison
exist in the literature.

Let C be anR-module. We denote by Epi(C) the set ofR-module homomorphism
ϕ :C → M whereM is anR-module and imϕ has the same dimension asC. Given a ho-
momorphismsϕ ∈ Epi(C) we want to construct a new homomorphismLC(ϕ). Ultimately,
we will see that this construction gives a map Epi(C) → Epi(C) ∪ {0}.

Definition 3.1. Let C be a quasi-Gorenstein module of codimensionc and letϕ ∈ Epi(C).
Let s be the integer such that Extc

R(C,R)(s) ∼= C. Consider the exact sequence

0 → kerϕ → C → imϕ → 0.

It induces the long exact sequence

0 → ExtcR(imϕ,R)(s) → ExtcR(C,R)(s)
ψ ′

−→ ExtcR(kerϕ,R)(s)

→ Extc+1
R (imϕ,R)(s) → ·· · .

By assumption there is an isomorphismα :C → ExtcR(C,R)(s). Thus we obtain the homo
morphismψ := ψ ′ ◦ α :C → ExtcR(kerϕ,R)(s) which we denote byLC(ϕ). (Its depen-
dence onα is not made explicit in the notation.)

Note thatLC(ϕ) is the zero map ifϕ ∈ Epi(C) is injective.
In order to analyze this construction in more detail we need two preliminary re

The first is a version of results of Auslander and Bridger [2] and Evans and Griffith
respectively. It is stated as Proposition 2.5 in [28]. We denote the cohomological annihilator
AnnR H i

m(M) by ai (M).
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Lemma 3.2. Let R be a Gorenstein ring and let M be a finitely generated R-module. Then
the following conditions are equivalent:

(a) M is a k-syzygy.
(b) dimR/ai (M) � i − k for all i < dimR.

Moreover, if k � 3 then conditions (a) and (b) are equivalent to the condition that M is
reflexive and ExtiR(M∗,R) = 0 if 1 � i � k − 2.

Recall that there is a canonical mapM → KKM . It is an isomorphism ifM is Cohen–
Macaulay, but is neither injective nor surjective, in general.

We say thatM is an unmixed module if all its associated prime ideals have the s
height.

Lemma 3.3. Let M be an R-module. Then we have:

(a) Its canonical module KM is unmixed.
(b) If M is unmixed then the canonical homomorphism M → KKM is injective.

Proof. Claim (a) is well known. We sketch its proof because we will use also the me
for showing (b). Letc denote the codimension ofM. Then we choose homogeneous for
f1, . . . , fc ∈ AnnM such that the idealI := (f1, . . . , fc) ⊂ R is a complete intersection
Thus, the ringS := R/I is Gorenstein andM is a maximalS-module. Now, we will use the
fact thatM is an unmixedR-module if and only ifM is torsion-free as anS-module. In-
deed, this follows by comparing the cohomological characterizations of the correspo
properties (cf., for example, Lemma 3.2 and [28, Lemma 2.11]).

Moreover, there is an isomorphism

KM
∼= HomS(M,S).

It implies claim (a) because theS-dual of a module is a reflexiveS-module.
Claim (b) follows similarly. Indeed, the assumption provides thatM is a torsion-free

S-module. Thus the canonical mapM → HomS(HomS(M,S), S) is injective. Using the
isomorphism above we are done.�

Now we are ready to describe properties ofLC(ϕ).

Proposition 3.4. Let C be a quasi-Gorenstein module and let ϕ ∈ Epi(C) be a homomor-
phism which is not injective. Then we have:

(a) There is an exact sequence

0 → Kimϕ(t) → C → imLC(ϕ) → 0

where t = 1− r(C) − a(C).
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(b) LC(ϕ) ∈ Epi(C).
(c) The image imLC(ϕ) is an unmixed R-module.
(d) If imϕ is unmixed then there is an isomorphism imLC(LC(ϕ)) ∼= imϕ.

Proof. Let c denote the codimension ofM.
(a) According to our assumption kerϕ is a non-trivial submodule of the quas

Gorenstein moduleC. SinceC is an unmixed module and Ass(kerϕ) ⊂ AssC we conclude
that dim(kerϕ) = dimC. By the definition ofψ = LC(ϕ) we know that there is an exa
sequence

0 → ExtcR(imϕ,R)(s) → C
ψ−→ ExtcR(kerϕ,R)(s) → Extc+1

R (imϕ,R)(s) → 0

wheres = t − r(R) + 1 = r(C) − r(R) − a(C) because of Lemma 2.3. Claim (a) follow
According to Lemma 3.3 the canonical moduleKkerϕ is an unmixed module of dimen

sion dimC. On the other hand we have dimExtc+1
R (imϕ,R) < dim im(ϕ) = dimC. Hence

imψ is an unmixed module of dimension dimC which proves claims (b) and (c).
(d) We use the technique of the previous lemma. LetI ⊂ Ann(kerϕ) be a complete in

tersection of codimensionc. PutS = R/I . SinceC is Cohen–Macaulay the exact sequen

0 → kerϕ → C → imϕ → 0

induces isomorphisms

ExtiR(kerϕ,R) ∼= Exti+1
R (imϕ,R) for all i > c.

By our assumption, imϕ is torsion-free asS-module. It provides that dimExti
R(kerϕ,R) �

dimR − i − 2 for all i > c where we use the convention that the trivial module has
mension−∞. It follows that kerϕ is a reflexiveS-module. Hence the canonical m
kerϕ → KKkerϕ

∼= HomS(HomS(kerϕ,S), S) is an isomorphism.
Now we consider the exact sequence

0 → imψ → Kkerϕ(t) → Extc+1
R (imϕ,R)(t) → 0.

We already know that dim(Extc+1
R (imϕ,R)) � dimC −2. Hence the last sequence induc

an isomorphism

KKkerϕ (−t) ∼= Kimψ.

Therefore the exact sequence

0 → Kimϕ(t) → KC(t) → imψ → 0

provides the exact sequence

0 → Kimψ → KKC (−t) → KKimϕ
(−t) → Extc+1(imψ,R) → 0.
R
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Using the last isomorphism above we get the following commutative diagram with
rows

0 KKkerϕ KKC

γ
KKimϕ Extc+1

R (imψ,R)(t) 0

0 kerϕ C imϕ 0

where the vertical maps are the corresponding canonical homomorphisms. Since
leftmost vertical maps are isomorphisms and the third one is injective we conclud
there is an isomorphism

imγ ∼= imϕ.

But imγ is isomorphic to im(LC(LC(ϕ))) which proves claim (d). �
The preceding result allows us to define.

Definition 3.5. Let C be a quasi-Gorenstein module with the isomorphismα :C
∼−→

KC(t). Then the mapLC : Epi(C) → Epi(C) ∪ {0}, ϕ �→ LC(ϕ), is called thelinking map
with respect toC (andα). Here 0 denotes the trivial homomorphismC → 0R.

Remark 3.6. The linking map respects isomorphisms in the following sense: Letϕ, ϕ′
be two homomorphisms in Epi(C). Following the description of the linking map it is n
difficult to see that imϕ ∼= imϕ′ implies imLC(ϕ) ∼= imLC(ϕ′). Moreover, part (d) of
the previous result shows that the converse is true provided imϕ and imϕ′ are unmixed
modules.

Definition 3.7. We say that twoR-modulesM,N aremodule linked in one step by the
quasi-Gorenstein moduleC if there are homomorphismsϕ,ψ ∈ Epi(C) such that

(i) M = imϕ, N = imψ and
(ii) M ∼= imLC(ψ), N ∼= imLC(ϕ).

Most of the time we abbreviate module linkage by m-linkage.

Remark 3.8. (i) Modules that are module linked in one step will also be calleddirectly
m-linked modules.

(ii) If M andN are directly m-linked byC then, by the definition of the linking mapLC

and the previous lemma, we have that dimM = dimN = dimC andM, N are unmixed
R-modules.

(iii) Module linkage is shift invariant in the following sense. The modulesM, N are
directly linked byC if and only if the modulesM(j), N(j) are directly linked byC(j)

wherej is any integer.
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The following observation allows us to construct plenty of modules that are linked
given module.

Remark 3.9. (i) If M is anR-module such that there is an epimorphismϕ :C → M andM

has the same dimension asC but is not isomorphic toC, then the modulesN := imLC(ϕ)

andM are m-linked becauseM ∼= imLC(LC(ϕ)) by Proposition 3.4.
By abuse of notation we sometimes writeLC(M) instead of imLC(ϕ). Then two mod-

ulesM andN are m-linked in one step if and only if there is a suitable quasi-Goren
moduleC such thatN ∼= LC(M), or equivalentlyM ∼= LC(N).

(ii) A simple way to produce an epimorphismϕ as above in order to link a given modu
M is the following. Choose a freeR-moduleF such that there is an epimorphismψ :F →
M and take a complete intersection idealc of codimensionc = codimM in AnnR M.
Thenψ induces an epimorphismF/cF → M. Thus, the mapϕ :F/cF ⊕ KF/cF → M

whereKF/cF maps onto zero satisfies the requirements becauseF/cF ⊕ KF/cF is quasi-
Gorenstein by Example 2.5(iii). The last step, i.e., adding the canonical module, can
omitted if F/cF is already a quasi-Gorenstein module.

The following examples illustrate the flexibility of our concept of module liaison.

Example 3.10. (i) Every perfect moduleM is linked to itself as a consequence of the ex
sequence

0 → KM → M ⊕ KM → M → 0.

This is very much in contrast to the situation of linkage of ideals where self-linked id
are rather rare.

(ii) Every free moduleF of rankr > 1 is directly m-linked to a free module of small
rank.

In fact, writeF = R(j) ⊕ G and setC := R(j) ⊕ G ⊕ G∗(−2j). ThenC∗ ∼= C(−2j),
thus the exact sequence

0 → G∗(2j) → C → F → 0

shows thatF = R(j) ⊕ G is directly m-linked toG.

Allowing one more link, we can extend the last example to non-free modules.

Lemma 3.11. Let D be a quasi-Gorenstein module and let M be any unmixed module such
that M and D have the same dimension. Then M ⊕ D can be linked to M in two steps.

Proof. By assumption onD, there is an integers such thatKD
∼= D(−s).

As in Remark 3.9, we choose a freeR-moduleF and a complete intersection ideac
such thatM ∈ Epi(F/cF). Then Example 2.5(iii) shows thatC := F/cF ⊕ KF/cF (s) is
quasi-Gorenstein. Thus, we can use this module to linkM to a moduleN .
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By our choice of the twists in the definition ofC, the moduleD ⊕ C is quasi-
Gorenstein, too. It follows that the modulesD ⊕ M andN are linked byD ⊕ C proving
our claim. �

By its definition, module linkage is symmetric. Thus, it generates an equivalence
tion.

Definition 3.12. Module liaison or simply liaison is the equivalence relation generat
by direct module linkage. Its equivalence classes are called (module) liaison classes or
m-liaison classes. Thus, two modulesM andM ′ belong to the same liaison class if the
are modulesN0 = M,N1, . . . ,Ns−1,Ns = M ′ such thatNi andNi+1 are directly linked
for all i = 0, . . . , s − 1. In this case, we say thatM andM ′ arelinked in s steps. If s is even
thenM andM ′ are said to beevenly linked.

Even linkage also generates an equivalence relation. Its equivalence classes ar
even (module) liaison classes.

Example 3.13. SinceR is linked to itself byR2, the even liaison class and the liaison cl
of R agree. It contains all non-trivial freeR-modules of finite rank. Indeed, Example 3.
show that every free module is in the liaison class of a free module of rank one. B
modulesR(j) (j ∈ Z) andR are directly linked byR ⊕ R(j).

We will see in Corollary 6.13 that the finitely generated, freeR-modules form the whole
liaison class ofR.

Since the module structure of a module is not changed by shifting, the following
erty of module liaison is certainly desirable.

Lemma 3.14. Let M be an unmixed module and let j be any integer. Then M and M(j)

belong to the same even m-liaison class.

Proof. Let N be any module that is directly linked toM by the quasi-Gorenstein mod
ule C. Such modules exist by Remark 3.9. Assume thatKC

∼= C(−t). ThenC ⊕ KC(i) is
quasi-Gorenstein for alli ∈ Z and we have the exact sequence

0 → KM(t) ⊕ KC(i) → C ⊕ KC(i) → N → 0.

Hence,N is directly linked toM(i − t) ⊕ C for everyi ∈ Z. According to Lemma 3.11
the modulesM(i − t) ⊕ C andM(i − t) are evenly linked. Thus, choosingi appropriately
we get thatN andM as well asN andM(j) are linked in an odd number of steps. O
claim follows. �

The following construction is most commonly used for maximal modules. We kee
name in the general case, too.
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Definition 3.15. Let M be a non-freeR-module. LetF be a freeR-module and letπ :F →
M be a minimal epimorphism, i.e., an epimorphism that satisfies kerπ ⊂ m · F . Then we
call the module

M× := cokerHomR(π,R)

theAuslander dual of M. It is uniquely defined up to isomorphism.

This concept will be crucial in Section 6. Here, we just show that the Auslander
M× andM belong to the same module liaison class ifM is a maximal module.

Lemma 3.16. Let M be a non-free, unmixed maximal R-module. Then M× is in the
m-liaison class of M . More precisely, M can be linked to M× in an odd number of steps.

Proof. Consider the following exact commutative diagram

0 kerϕ ⊕ F ∗ F ⊕ F ∗ ϕ

γ

M

=

0

0 kerπ F
π

M 0

whereπ is a minimal epimorphism,F is free, andγ is the canonical projection. PutC :=
F ⊕ F ∗. Then dualizing with respect toR provides the exact commutative diagram

0 M∗

=

F ∗

γ ∗

M× 0

0 M∗ F ⊕ F ∗ imLC(ϕ) 0.

Now, the Snake lemma shows thatM is directly m-linked to imLC(ϕ) ∼= M× ⊕ F . Ap-
plying Lemma 3.11 successively we see thatM× ⊕ F andM× are evenly linked. This
completes the argument.�
Remark 3.17. Note that in the local case we could simply useF as linking module. This
shows that thenM andM× are even directly m-linked.

Before comparing our concept of module liaison with other versions of module lia
in the literature, we want to discuss some variations of our concept (cf. also Remark

For example, one could restrict the class of modules that are used for linkage
would lead to (potentially) smaller liaison classes. While the definition above is des
to generalize Gorenstein liaison of ideals, allowing as linking modules only strong K
modules might lead to a concept of module liaison which could be viewed as the p
generalization of complete intersection liaison of ideals. We do not pursue this here
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Another variation that seems worth mentioning is to restrict the focus to submodu
a given free module.

Definition 3.18. Let F be a freeR-module. Then submodulesM ′, N ′ of M are said to be
submodule linked, orsm-linked for short, by the submoduleC′ ⊂ F if F/M ′ andF/N ′ are
linked byF/C′. As above, this leads to equivalence classes of unmixed submodulesF .

In the very special caseF = R, submodule liaison is equivalent to Gorenstein liaison
ideals.

Lemma 3.19. Two ideals I , J of R are sm-linked by the ideal c ⊂ R if and only if c is a
Gorenstein ideal of R and

c : I = J and c : J = I,

in other words, I and J are Gorenstein linked by c.

Proof. If I, J of R are sm-linked by the idealc then we have by Proposition 3.4(a) t
exact sequence

0→ KR/J

(
1− r(R/c)

) → R/c → R/I → 0.

Thus, the isomorphismKR/J (1 − r(R/c)) ∼= c : J/c showsc : J = I . Similarly, we get
c : I = J , thusI andJ are Gorenstein linked. The reverse implication is clear. �

In spite of the last observation we view module and submodule liaison as extensi
Gorenstein liaison of ideals.

Remark 3.20. There are several concepts of module liaison in the literature that have bee
developed independently.

The first published proposal is due to Yoshino and Isogawa [37]. They work over a
Gorenstein ring and consider Cohen–Macaulay modules only. They say that the modulesM

andN are linked if there is a complete intersection idealc contained in AnnR M ∩AnnR N

such thatM is isomorphic to the Auslander dual ofN considered asR/c-module. Note
that we have rephrased their definition in a way that it makes sense also for non-C
Macaulay modules.

Martsinkovsky and Strooker [21] work ingreater generality though their main resu
are for modules over a local Gorenstein ring.In this case, their definition of linkage
similar to the one of Yoshino and Isogawa as given above. Note that this is a very s
case of our concept of linkage because the modulesM andN are linked in the sense o
the two papers mentioned above if and only if they are m-linked byF/c in the sense o
our Definition 3.7 whereF is the free module in a minimal epimorphismF → M andc is,
more generally as indicated above, some Gerenstein ideal contained in AnnR M ∩AnnR N .
In other words, we get the liaison concept of Martsinkovsky and Strooker by restr
drastically the modules we allow as linking modules. But this still leads to an extension
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the concept of Gorenstein liaison of ideals. However, a consequence of this restric
that the resulting liaison class of a cyclic moduleR/I contains only cyclic modules, thus
is essentially just the Gorenstein liaison class ofI when we identify a cyclic module with
its annihilator.

Martin’s approach [20] is very different. He uses generic modules in order to link
ing it difficult to find any module at all that is linked to a given one. This seems rathe
opposite of the wish for large equivalence classes.

In [8], Hartshorne, Casanellas, and Drozd consider an extension of Gorenstein liaison
ideals that is not yet fully generalized by Definition 3.12. Indeed, letI ⊂ J be homogenou
ideals in the polynomial ringR = K[x0, . . . , xn]. Then, they define theG-liaison class of
J in Proj(R/I) as the set of ideals inR that are sm-linked toJ (in the sense of Defini
tion 3.18) such that all the ideals involved in the various links containI . If A := R/I is
Gorenstein we can also consider the sm-liaison class of ideals inA that is generated b
J/I . Identifying every ideala ⊂ R in the G-liaison class ofJ in Proj(R/I) with a/I ⊂ A,
this G-liaison class is larger than the sm-liaison class ofJ consisting of ideals inA. The
reason is that, if the idealsa,b ⊂ R are sm-linked inR by c whereI ⊂ c, thena/I,b/I are
not sm-linked inA by c/I unlessc/I has finite projective dimension asA-module. This
motivates the following extension of the concepts above.

Definition 3.21. Let A be any graded quotient ring ofR = K[x0, . . . , xn], sayA := R/I .
Let M be a gradedR-module that is annihilated byI . Then we say that theR-moduleN is
in them-liaison class of M relative to I if M can be linked toN by using quasi-Gorenste
R-modulesC1, . . . ,Cs that are all annihilated byI .

If J ⊂ R is an ideal that containsI , then, identifying an cyclicR-module with its an-
nihilator, the m-liaison class ofR/J relative toI contains the G-liaison class ofJ in
Proj(R/I). In this sense, m-liaison relative toI generalizes G-liaison in Proj(R/I).

Furthermore, ifR/I is Gorenstein, then it is not too difficult to see that the m-liai
class ofM relative toI also contains the m-liaison class ofA-modules generated byM in
the sense of Definition 3.12.

Though it seems very interesting to investigate these relative m-liaison classes, w
this for future work and focus on studying m-liaison classes (cf. Definition 3.12) in th
paper.

4. Hilbert polynomials under liaison

In this section we begin to relate the properties of linked modules. The starting po
the following result which followsimmediately by Proposition 3.4(a).

Lemma 4.1. If the modules M and N are directly m-linked by the quasi-Gorenstein module
C then there is an exact sequence of R-modules

0 → KM(t) → C → N → 0

where t = 1− r(C) − a(C).
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As in the case of linked ideals, there is a relation among the associated prime id
linked modules.

Corollary 4.2. If the modules M and N are directly m-linked by C then we have

AssR M ∪ AssR N = AssR C.

Proof. Since linkage is symmetric we have the two exact sequences

0 → KM(t) → C → N → 0

and

0 → KN(t) → C → M → 0.

The claim follows because the associated primes of an unmixed module and its cano
module agree. �

Lemma 4.1 allows us to compare the Hilbert polynomials of linked modules.
Let M be a module of dimensiond . If d > 0 then its Hilbert polynomial can be writte

in the form

pM(j) = h0(M)

(
j

d − 1

)
+ h1(M)

(
j

d − 2

)
+ · · · + hd−1(M)

whereh0(M), . . . , hd−1(M) are integers andh0(M) > 0 is called the degree ofM. If
dimM = 0 then we set degM := length(M). By abuse of notation, the degree of an id
I is degI = h0(R/I). It is just the degree of the subscheme Proj(R/I). Now we can state

Proposition 4.3. Let M,N be graded R-modules that are directly linked by C. Put s :=
r(C) + a(C) − 1 and d := dimM . Then we have

(a) degN = degC − degM , and if in addition d � 2 then

h1(N) = s − d + 2

2
[degM − degN] + h1(M).

(b) If M is locally Cohen–Macaulay then

pN(j) = pC(j) + (−1)dpM(s − j).

(c) If M is Cohen–Macaulay then

hN(j) = hC(j) + (−1)d−1[hM(s − j) − pM(s − j)
]
.

For the proof we need a cohomological characterization of the property being unm
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Lemma 4.4. The R-module M is unmixed if and only if

dimR/AnnR

(
Hi

m(M)
)
< i for all i < dimM

where we define the dimension of the zero module to be −∞.

Proof. Let {f1, . . . , fd} be a regularR-sequence in the annihilator ofM whered :=
dimM. Then the claim follows by local duality and consideringM as module ove
R/(f1, . . . , fd) as in the proof of Lemma 4 in [27].�

Now we are ready for the proof of the proposition above.

Proof of Proposition 4.3. Again, we use the Riemann–Roch type formula

hM(j) − pM(j) =
d∑

i=0

(−1)i rankK
[
Hi

m(M)
]
j
.

Furthermore, we have by local duality

rankK
[
Hd

m(R/I )
]
j
= rankK [KM ]−j .

Now, we show claim (c). IfM is Cohen–Macaulay then the formulas above and Lemma
provide

hN(j) = hC(j) − rankK
[
Hi

m(M)
]
s−j

= hC(j) + (−1)d−1[hM(s − j) − pM(s − j)
]
.

Having shown (c) we may and will assume for the remainder of the proof thatd =
dimM � 2. Next, we show claim (a). According to Lemma 4.4, the degree of the Hi
polynomial ofHi

m(M) is at most max{0, i − 2}. Thus, using the formulas above we obta
for all j � 0

−pM(j) = (−1)d rankK
[
Hd

m(M)
]
j
+ o

(
jd−2)

= (−1)d rankK [KM ]−j + o
(
jd−2).

Combined with Lemma 4.1 this provides

pN(j) = pC(j) + (−1)dpM(s − j) + o
(
jd−2).

Comparing coefficients we get by a routine computation

degN = degC − degM,
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as claimed, and

h1(N) = (s − d + 2)degM + h1(M) + h1(C). (∗)

Since linkage is symmetric there is an analogous formula withM andN interchanged
Adding both equations provides

h1(C) = − s − d + 2

2
degC.

Plugging this into(∗) we get the second statement of claim (a).
If M is locally Cohen–Macaulay then[Hi

m(M)]j = 0 if i < d and j � 0. Thus, an
analogous (but easier) argument shows claim (b).�
Remark 4.5. (i) Proposition 4.3 generalizes Corollary 3.6 in [28].

(ii) Let us illustrate the result by considering a well-known special case. Con
two curvesC1 = Proj(R/I) and C2 = Proj(R/J ) in P

n that are linked by a complet
intersection cut out by hypersurfaces of degreed1, . . . , dn−1. Let us denote the arith
metic genus of the curves byg1 andg2, respectively. For the linking moduleC we have
r(C) = d1 + · · · + dn−1 − n (cf., e.g., [28, Lemma 2.3]). Thus, in this case Proposi
4.3(a) takes the familiar form (cf. [23, Corollary 4.2.11])

g1 − g2 = 1

2
(d1 + · · · + dn−1 − n − 1)[degC1 − degC2].

The next observation shows that it is easier to compare the Hilbert functions of mo
that are linked in two steps and not just one. We will discuss more results along th
later on.

Lemma 4.6. Suppose M , N , M ′ are graded modules such that M and N are linked by C

and N and M ′ are linked by C′. Put s := r(C) − r(C′) + a(C) − a(C′). Then we have for
all integers j :

hM ′ (j) = hM(j + s) + hC ′(j) − hC(j + s).

Proof. According to Lemma 4.1 we have the following exact sequences:

0 → KN

(
1− r(C) − a(C)

) → C → M → 0,

0 → KN

(
1− r(C′) − a(C′)

) → C′ → M ′ → 0.

The claim follows. �
In order to compare other properties and,in particular, the cohomology of linked mod

ules we need more tools. These will be developed in the following section.
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5. Resolutions of E-type and Q-type

The purpose of this section is to show the existence of mapsΦ andΨ from the set of
even liaison classes into the set of stable equivalence classes of certain reflexive m
This will be achieved by exploiting resolutions ofE-type andQ-type. These resolution
generalize the resolutions ofE-type andN -type of ideals (cf. Remark 5.2 below) whic
have been introduced in [22].

Definition 5.1. Let M be anR-module of codimensionc > 0. Then anE-type resolution
of M is an exact sequence of finitely generated gradedR-modules

0 → E → Fc−1 → ·· · → F0 → M → 0

where the modulesF0, . . . ,Fc−1 are free.
A Q-type resolution of M is an exact sequence of finitely generated gradedR-modules

0 → Gc → ·· · → G2 → Q → G0 → M → 0

whereG0,G2, . . . ,Gc are free andHi
m(Q) = 0 for all i with n+2− c � i � n. (Note, that

for a module of codimension one aQ-type resolution is the same as anE-type resolution.)
These resolutions ofM are said to beminimal if it is not possible to split off free direc

summands from any of the occurring modules besidesM.

Remark 5.2. A (minimal) E-type resolution ofM always exists because it is just the b
ginning of a (minimal) free resolution ofM. Thus, a minimalE-type resolution is uniquel
determined up to isomorphism of complexes. Moreover, it follows that

Hi
m(E) ∼= Hi−c

m (M) if i � n.

It requires some more work to show thatQ-type resolutions exist.

Lemma 5.3. Every module M of positive codimension admits a minimal Q-type resolution

0 → Gc → ·· · → G2 → Q → G0 → M → 0.

It is uniquely determined up to isomorphism of complexes. Furthermore, we have

Hi
m(Q) ∼=

{
Hi−1

m (M) if i � n + 1− c,

0 if n + 2− c � i � n.

Proof. We may assume that the codimensionc of M is at least two. Let

G1
ϕ−→ G0 → M → 0
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be a minimal presentation ofM. SetT := kerϕ. Now consider a so-called minimal(c−1)-
presentation ofT , i.e., an exact sequence of gradedR-modules

0 → P → Q → T → 0

such thatP has projective dimension� c − 2,

Hi
m(Q) = 0 for all i with n + 2− c � i � n,

and it is not possible to split off a non-trivial freeR-module being a direct summand ofP

andQ. Such a sequence exists and is uniquely determined by [29, Theorem 3.4] (c
[13] in the local case). Using [28, Lemma 2.9] we see that

Hi
m(Q) ∼=

{
Hi−1

m (M) if i � n + 1− c,

0 if n + 2− c � i � n,

as claimed, and thatP has projective dimensionc − 2 because

Hn+3−c
m (P ) ∼= Hn+2−c

m (T ) ∼= Hn+1−c
m (M) �= 0

if c � 3. Hence replacingP in the exact sequence

0 → P → Q → G0 → M → 0

by its minimal free resolution provides a minimalQ-type resolution ofM.
Conversely, anyQ-type resolution gives rise to a(c − 1)-presentation ofT . Thus, the

uniqueness of the minimalQ-type resolution follows from the uniqueness of the minim
(c − 1)-presentation ofT . �
Remark 5.4. (i) In [22] Martin-Deschamps and Perrin have introducedE- andN -type
resolutions of an ideal that are closely related toE- andQ-type resolutions as above.
fact,

0 → Gc → ·· · → G2 → Q → I → 0

is anN -type resolution of the idealI if and only if

0 → Gc → ·· · → G2 → Q → R → R/I → 0

is a Q-type resolution ofR/I . An analogous relation is true for theE-type resolutions
of I andR/I . In this sense, our Definition 5.1 extends the concepts ofE- andN -type
resolutions to modules with more than one generator.

(ii) As already indicated by the computation of cohomology modules above, some
erties ofM are directly related to properties of the modulesE andQ, respectively, in the
corresponding resolutions ofM. For example, it is easy to see thatE respectivelyQ is a
maximal Cohen–Macaulay module if and only ifM is Cohen–Macaulay. IfM has finite
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projective dimension thenM is Cohen–Macaulay if and only ifE respectivelyQ is a free
module.

If M is of pure codimensionc thenM is locally Cohen–Macaulay if and only if it ha
cohomology of finite length and this is true if and only ifE respectivelyQ has cohomology
of finite length. It follows that in caseM has in addition finite projective dimension,M is
(locally) Cohen–Macaulay if and only if̃E respectivelyQ̃ is a vector bundle on Proj(R).

A further relation between the modulesM, E, Q is stated in the following result. I
generalizes [28, Lemma 3.3].

Note that the moduleE in anE-type resolution of an arbitrary moduleM of codimen-
sionc is always ac-syzygy. IfM is unmixed then it is even(c+1)-syzygy. More precisely
we have.

Lemma 5.5. Let M be an R-module of codimension c > 0 having E- and Q-type resolution
as in Definition 5.1. Then the following conditions are equivalent:

(a) M is of pure codimension c.
(b) Q is reflexive.
(c) E is a (c + 1)-syzygy.

Proof. Since reflexivity and being a(c + 1)-syzygy can be cohomologically characteriz
(cf., e.g., [28, Proposition 2.5]), our claim follows by Lemma 4.4 and the computatio
cohomology in Remark 5.2 and Lemma 5.3.�

Now we are ready to show that resolutions ofE- andN -type are interchanged by dire
m-linkage. The result generalizes Proposition 3.8 in [28].

Proposition 5.6. Let M , N be R-modules of codimension c > 0 linked by the module C.
Suppose M has resolutions of E- and Q-type as in Definition 5.1. Let

0 → Dc → ·· · → D0 → C → 0

be a minimal free resolution of C. Put s = r(C) + a(C) − r(R). Then N has a Q-type
resolution

0 → D′
c ⊕ F ∗

1 (−s) → ·· · → D2 ⊕ F ∗
c−1(−s) → D1 ⊕ E∗(−s) → D0 → N → 0

where D′
C is a free R-module such that D′

c ⊕ F ∗
0

∼= Dc , and an E-type resolution

0 → D′′
c ⊕ Q∗(−s) → Dc−1 ⊕ G∗

2(−s) → ·· · → D1 ⊕ G∗
c (−s) → D0 → N → 0

where D′′
C is a free R-module such that D′′

c ⊕ G∗
0
∼= Dc .

Proof. The proof is similar to the one of [28, Proposition 3.8]. Thus we leave out s
details which are treated there. We proceedin several steps. We begin by showing t
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minimal.

(I) Dualizing the givenE-type resolution ofM provides the complex

0 → R → F ∗
1 → ·· · → F ∗

c−1 → E∗ → ExtcR(R/I,R) → 0

which is in fact an exact sequence.
Furthermore, we know by Lemma 2.3 that there are isomorphisms

C ∼= KC

(
1− r(C) − a(C)

) ∼= ExtcR(C,R)(−s).

Thus, the self-duality of the minimal free resolution ofC means in particular that

D∗
c−i

∼= Di(s) for all i = 0, . . . , c.

(II) Lifting the homomorphismϕ :C → M and using Lemma 4.1 we get a commutat
diagram with exact rows and column

0

KN(t)

0 Dc

ϕc

Dc−1

ϕc−1

· · · D0

ϕ0

C

ϕ

0

0 E Fc−1 · · · F0 M 0.

0

Since theE-type resolution ofM is minimal, the homomorphismϕ0 is surjective. Thus
its R-dualϕ∗

0 :F ∗
0 → D∗

0 is split-injective.
Now, dualizing the diagram above and using step (I) we get by Definition 3.1 the

mutative exact diagram

0

0 F ∗
0

ψ

· · · F ∗
c−1 E∗ ExtcR(M,R) 0

0 Dc(s) · · · D1(s) D0(s) C(s)

LC(ϕ)

0

N(s)

0
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whereψ is the composition ofϕ∗
0 and an isomorphism. Hence,ψ is split-injective, too.

This shows that the moduleF ∗
0 can be split off in the resulting mapping cone (cf. [2

Lemma 3.4]). Thus, we get the exact sequence

0 → D′
c ⊕ F ∗

1 (−s) → ·· · → D2 ⊕ F ∗
c−1(−s) → D1 ⊕ E∗(−s) → D0 → N → 0.

For it being aQ-type resolution, it remains to show thatHi
m(E∗) = 0 if n+ 2− c � i � n.

According to Lemma 5.5 we know thatE is a(c + 1)-syzygy. Hence local duality an
Lemma 3.2 provide

Hn+1−i
m

(
E∗)∨(

1− r(R)
) ∼= ExtiR

(
E∗,R

) = 0 if 1 � i � c − 1.

Thus, the argument for theQ-type resolution ofN is complete.
(III) The proof for theE-type resolution ofN is similar. We only sketch it. We ma

and will assume that the givenQ-type resolution ofM is minimal. Replacing theE-type
resolution ofM by theQ-type resolution in the first diagram above and then dualiz
provides the following exact commutative diagram

0

0 G∗
0

β

Q∗ G∗
2 · · · G∗

c ExtcR(M,R) 0

0 Dc(s) Dc−1(s) Dc−2 . . . D0(s) C(s)

Lc(ϕ)

0

N(s)

0

whereβ is split-injective. Thus, we can split offG∗
0 in the mapping cone giving us th

desiredE-type resolution ofN . �
In order to formulate some consequences of the last result we need more notatio
Let M be anR-module of pure codimensionc � 1. We have seen in Remark 5.2 a

Lemma 5.3 that the minimalE- andN -type resolution ofM are uniquely determined
Hence, there is a well-defined mapϕ from the set ofR-modules of pure codimensio
c � 1 into the set of isomorphism classes of finitely generatedR-modules whereϕ(M) is
the class of the last module in a minimalE-type resolution ofM.

Similarly, we get a well-defined mapψ from the set ofR-modules of pure codimensio
c � 1 into the set of isomorphism classes of finitely generatedR-modules by defining
ψ(M) = [Q] if M has the minimalQ-type resolution

0 → Gc → ·· · → G2 → Q → G0 → M → 0.
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Recall that two graded maximalR-modulesM andN are said to bestably equivalent if
there are freeR-modulesF,G and an integers such that

M ⊕ F ∼= N(s) ⊕ G.

It is clear that stable equivalence is an equivalence relation.
Now we are able to state the main result of this section.

Theorem 5.7. Let c be a positive integer. The map ϕ induces a well-defined map Φc from
the set Mc of even liaison classes of modules of pure codimension c into the set Mc

E

of stable equivalence classes of finitely generated (c + 1)-syzygies being locally free in
codimension c − 1.

The map ψ induces a well-defined map Ψc from Mc into the set Mc
Q of stable equiv-

alence classes of finitely generated, reflexive modules N that satisfy Hi
m(N) = 0 for all i

with n − c + 2 � i � n and are locally free in codimension c − 1.

Proof. Proposition 5.6 shows that the mapsΦc andΨc do not depend on the choice of
representative of the even liaison class. IfM is a module of pure codimensionc then the
localization of itsE-type resolution at a primep ⊂ R of codimension� c−1 splits. Hence
ϕ(M) is locally free in codimensionc − 1. By Proposition 5.6, the same is true forψ(M).
Thus, Lemmas 5.5 and 5.3 show that both mapsΦ andΨ are well defined. �

The result above extends the analogous result for even Gorenstein liaison cla
unmixed ideals [28, Theorem 3.10] to even module liaison classes.

Remark 5.8. If R is just a polynomial ring over the fieldK then the statement takes
somewhat simpler form because then every module inMc

Q andMc
E is automatically even

locally free in codimensionc + 1. This follows from the fact that over a regular local ri
(c + 1)-syzygies are locally free in codimensionc + 1.

Remark 5.9. Using the notation in Theorem 5.7 we have the following commutative
grams

Mc

Φc

α

Mc
E

β

Mc

Ψc Mc
Q

and

Mc

Ψc

α

Mc
Q

β

Mc

Φc Mc
E

whereα is induced by linkage andβ is induced by dualization with respect toR.

Amasaki’s main result in [1] implies.

Lemma 5.10. If R is a regular ring then the maps Φ and Ψ in Theorem 5.7are surjective.
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Remark 5.11. (i) The author expects that the preceding result is true without the assum
tion R being regular. However, this requires new arguments becauseAmasaki’s approach
heavily relies on the finiteness of free resolutions.

(ii) It remains a major challenge to decide whether the mapsΦ andΨ are injective since
an affirmative answer would provide a parametrization of even module liaison class
also Remark 6.11)

Theorem 5.7 implies, for example, that in caseϕ(M) andϕ(N) are not stably equivalen
the modulesM,N do not belong to the same even liaison class. This shows that th
an abundance of even liaison classes, but that there is also some control. This will
topic of the following section.

We want to end this section by discussing whether the module liaison class of a
moduleM contains a cyclic module. To this end we recall that following Bruns (cf. [5] and
[6]), a finitely generatedR-moduleM is said to beorientable if it has a rank, is locally
free in codimension one and there is a homomorphism

∧rankM
M → R whose image ha

codimension at least two. Note thatM is orientable if it is locally free in codimension on
and eitherR is factorial orM has finite projective dimension.

Theorem 5.7 has the following consequence.

Corollary 5.12. Let M be a module of pure codimension c � 2. If there is a cyclic module
in its even liaison class then M is orientable.

Proof. This follows by the behavior of properties of orientable modules in exact sequ
[6, Proposition 2.8]. Indeed, ifN is a cyclic module thenϕ(N) is orientable. LinkingN to
another cyclic module we see thatψ(N) is orientable, too. Now, Theorem 5.7 shows t
all modules in the liaison class ofM are orientable. �

The last result raises the question whetherM being orientable is not only a necessa
but also a sufficient condition for the liaison class ofM to contain a cyclic module.

6. Transfer of properties under liaison

The goal of this section is to illustrate how the existence of the mapsΦ andΨ can
be used to show that cohomological and structural properties are preserved within
m-liaison classes. In particular, we generalize various results of Gorenstein liaison
more general setting of module liaison.

We begin by discussing the local cohomology modules.

Corollary 6.1. Let M,N be modules of pure codimension c.

(a) If M and N are in the same even liaison class then there is an integer s such that

Hi
m(M) ∼= Hi

m(N)(s) for all i = 0, . . . , n − c.
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(b) If M is locally Cohen–Macaulay and if M and N are linked in an odd number of steps
then there is an integer s such that

Hi
m(M) ∼= Hn+1−c−i

m (N)∨(s) for all i = 1, . . . , n − c.

Moreover, if M and N are (directly) linked by the quasi-Gorenstein module C then
s = 1− r(C) − a(C).

Proof. Part (a) is a consequence of Theorem 5.7 and Remark 5.2. It remains to show t
second claim of (b). LetE be a representative of the isomorphism classϕ(M). Then, using
also Lemma 5.3, we get

Hi
m(E) ∼= Hi−c

m (M) if i � n

and

Hi
m

(
E∗)(r(R) − r(C) − a(C)

) ∼= Hi−1
m (N) if i � n − c + 1.

Thus the claim is a consequence of local duality which provides

Hi
m

(
E∗) ∼= Hn+2−i

m (E)∨
(
1− r(R)

)
if 2 � i � n. �

Remark 6.2. (i) The last result is an extension of the analogous result for Gorenstein li
classes of ideals [28, Corollary 3.13].

(ii) Part (b) of the corollary above is not true if the modules are not locally Coh
Macaulay. However, the intermediate cohomology modules of directly linked modules a
related though in general it seems difficult to make the relationship explicit. Chardin
has some partial results in this direction for directly linked varieties of small dimen
These results can be extended to module linkage.

Next, we consider the transfer of structural properties under module liaison.

Corollary 6.3. Let M,N be R-modules in the same module liaison class. Then we have:

(a) M is Cohen–Macaulay if and only if N is Cohen–Macaulay.
(b) M is locally Cohen–Macaulay if and only if N has this property.

Proof. Claims (a) and (b) are immediate consequences of Corollary 6.1 and the fact tM

is Cohen–Macaulay, respectively locallyCohen–Macaulay if and only if the cohomolo
modulesHi

m(M), i < dimM, all vanish, respectively all have finite length.�
A similar behavior is also true for Buchsbaum and surjective-Buchsbaum mod

These classes of modules properly contain the class of Cohen–Macaulay modules,
cannot be characterized by their local cohomology modules alone. For comprehen
formation about Buchsbaum modules, we refer to the monograph [35] by Stückra
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Vogel. Surjective-Buchsbaum modules have been introduced by Yamagishi [36]. H
served that often Buchsbaum modules are found by actually showing that they ar
surjective-Buchsbaum. Let us recall the definitions because we use them later on.

Following Yamagishi [36], theR-moduleM is calledsurjective-Buchsbaum if the nat-
ural homomorphismsϕi

M : ExtiR(K,M) → Hi
m(M), i < dimM, are all surjective. Here

the mapsϕi
M are induced by the embedding 0:M m → H 0

m(M). SinceH 0(m,M) ∼=
0 :M m this embedding also induces natural homomorphisms of derived functorsψi

M :
Hi(m;M) → Hi

m(M) whereHi(m,M) is theith Koszul cohomology module ofM with
respect tom. According to [35, Theorem I.2.15], the moduleM is Buchsbaum if and only
if ψi

M is surjective for alli < dimM.
The isomorphismH0(m;R) = R/m ∼= K lifts to a morphism of complexes from th

Koszul complexK•(m;R) to a minimal free resolution ofK. It induces natural homomo
phismsλi

M : ExtiR(K,M) → Hi(m;M). Summing up, we have the following commutati
diagram for all integersi

ExtiR(K,M)

λi
M

ϕi
M

H i
m(M).

H i(m;M)

ψi
M

The diagram immediately shows that a surjective-Buchsbaum module is Buchsbaum
that the converse is not true in general. However, ifR is regular thenK•(m;M) is a minimal
free resolution ofK, i.e.,

ExtiR(K,M) ∼= Hi(m;M).

Hence, ifR is regular then anR-module is surjective-Buchsbaum if and only if it is Buch
baum.

The homological characterization of these modules allows us to trace their prop
along exact sequences. As a preparation, we need.

Lemma 6.4. Let M be an R-module of codimension c > 0 and let E, Q be representatives
of ϕ(M) and ψ(M), respectively. Then, if one of the modules M , E, Q is Buchsbaum or
surjective-Buchsbaum then all of them have the corresponding property.

Proof. We consider the Buchsbaum property first. Let

0 → T → F → M → 0
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be an exact sequence ofR-modules whereF is free. It induces the following commutativ
diagram with exact rows

Hi(m,F )

ψi
F

H i(m,M)

ψi
M

H i+1(m, T )

ψi
T

H i+1(m,F )

ψi+1
F

H i
m(F ) H i

m(M) H i+1
m (T ) H i+1

m (F ).

Since the left-hand and the right-hand columns of this diagram vanish ifi + 1 < dimR =
n + 1 we get for every integerk � 0 that the mapψi

M is surjective for alli � k if and only
if ψi

T is surjective for alli � min{k + 1, n}.
Consider now theE-type resolution ofM

0 → E → Fc−1 → ·· · → F0 → M → 0.

Shopping it into short exact sequences the above observation shows thatM is Buchsbaum
if and only if E is.

Next, consider theQ-type resolution ofM

0 → Gc → ·· · → G2 → Q → G0 → M → 0

where we may assumec � 2. Reversing its construction in Lemma 5.3 we get the e
sequences

0 → P → Q → T → 0

and

0→ T → G0 → M → 0

whereP has projective dimensionc − 2, thus depthP = n + 3 − c. The first sequenc
induces the commutative diagram

Hi(m,P )

ψi
P

H i(m,Q)

ψi
Q

H i(m,M)

ψi
M

H i+1(m,P )

ψi+1
P

H i
m(P ) H i

m(E) H i
m(M) H i+1

m (P ).

Using the vanishing of the cohomology ofQ in Lemma 5.3 we always have thatψi
Q is

surjective whenevern + 2− c � i � n. By the depth sensitivity of the Koszul complex t
left-hand and the right-hand columns of the diagram vanish ifi � n + 1− c. We conclude
thatQ is Buchsbaum if and only ifψi

T is surjective for alli � n+ 1− c which, by the first
observation above, is equivalent toM being Buchsbaum. This completes the argumen
the Buchsbaum property.
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The proof for surjective-Buchsbaum modules is completely analogous. We just h
replace the mapψi

M by ϕi
M everywhere in the argument above.�

Now we want to use the Auslander dual in order to study Buchsbaumness and surj
Buchsbaumness under liaison. It allows us to simplify some arguments by avoiding t
of derived categories.

The following result is essentially due to Stückrad and Vogel.

Lemma 6.5. Let M be a maximal graded R-module with positive depth. Then:

(a) If M is a Buchsbaum module then M× is so.
(b) If M is a surjective-Buchsbaum module then M× is so.

Proof. Claim (a) is due to Stückrad and Vogel [35, Proposition III.1.28] as mentio
above. We sketch how the proof can be modified to prove (b).

We may assume thatK is infinite. Then a sufficiently general linear forml ∈ R will be
a non-zero divisor onR,M, andM×. Set

M := M/lM, R := R/lR

and denote byM× the Auslander dual ofM asR-module.
We will show the claim by induction onn+1 = dimM. If dimM � 1 thenM, thus also

M× is Cohen–Macaulay. If dimM = 2 thenM is surjective-Buchsbaum by (a) and [2
Lemma 4.2], because depthM× > 0.

Now let dimM � 3. Then there is an isomorphism ofR-modules (cf. [35, p. 173])

M× ∼= (
M×/lM×)/

H 0
m

(
M×/lM×)

where H 0
m(M×/lM×) is annihilated by the maximal idealm. SinceM is surjective-

Buchsbaum overR, M is surjective-Buchsbaum overR by [36, Theorem 3.2]. Hence, b
inductionM× is a surjective-Buchsbaum module overR. Sincem · H 0

m(M×/lM×) = 0,
the isomorphism above implies thatM×/lM× is a surjective-Buchsbaum module overR.
Using [36], Theorem 3.2 again we conclude thatM× is surjective-Buchsbaum overR. �

We also need the following observation.

Lemma 6.6. Let M and N be directly linked maximal modules. If M is not free then N and
M× are stably equivalent.

Proof. Let M andN be linked by the quasi-Gorenstein moduleC. ThenC must be free
and there is an integert such thatC ∼= C∗(t). Hence, there is a minimal epimorphis



264 U. Nagel / Journal of Algebra 284 (2005) 236–272

tive

d-
les
π : F → M, whereF is a free module, such that we get the following exact commuta
diagram

0

G

0 kerϕ C
ϕ

M

=
0

0 kerπ F
π

M 0

0

whereG is a free module, too. Then, dualizing with respect toR and shifting provide the
exact commutative diagram

0

0 M∗(t)
=

F ∗(t) M×(t) 0

0 M∗(t) C N 0.

G∗(t)

0

Thus, the Snake lemma impliesN ∼= M×(t) ⊕ G∗(t), completing the proof. �
Now we are ready to prove.

Proposition 6.7. Let M,N be modules in the same liaison class. Then we have:

(a) M is Buchsbaum if and only if N is so.
(b) M is surjective-Buchsbaum if and only if N is so.

Proof. We may assume thatM andN are directly linked by the quasi-Gorenstein mo
uleC. If M is a freeR-module then so isN . Thus, it suffices to consider non-free modu
M andN .
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(a) SupposeM is Buchsbaum. We distinguish two cases. First, assume thatM is a
maximal module. Then, by Lemma 6.6,N is stably equivalent toM×, thus Lemma 6.5
gives the claim.

In this case, the linking moduleC is a freeR-module. Thus, the exact sequence
Lemma 4.1 shows that theR-dualM∗ of M is a Buchsbaum module, too. We will use th
fact below.

Second, assume dimM < dimR. Let E be a representative ofϕ(M) and letQ be a
representative ofψ(N). Then Lemma 6.4 shows that withM alsoE is Buchsbaum, thu
E∗ is Buchsbaum by the argument above. But Proposition 5.6 provides thatE∗ andQ are
stably equivalent. Hence, using Lemma 6.4 again, we see thatN is Buchsbaum.

(b) By now it should be clear how this claim is proved analogously.�
Remark 6.8. Part (a) of Proposition 6.7 generalizes the corresponding result of Sch
[33] for Gorenstein liaison of ideals as well as the one of Martsinkovsky and Strooke
for their smaller module liaison classes.

UsingE-type resolutions, Theorem 5.7 implies.

Lemma 6.9. Let M,N be modules in the same even liaison class. Then M has finite pro-
jective dimension if and only if N does.

Furthermore, M and N have the same projective dimension if it is finite.

Note that the analogous result is not true for the whole liaison class ifR is not regular.
Abusing notation slightly, we say thatR/I is acomplete intersection if I is generated

by anR-regular sequence. Note that every complete intersection is linked to itself by Ex
ample 3.10(i). Thus, Corollary 6.3 and Lemma 6.9 imply.

Corollary 6.10. If M is mlicci, i.e., in the m-liaison class of a complete intersection, then
M is a perfect R-module.

Remark 6.11. The converse of the last result would follow immediately if we knew t
the mapsΦ andΨ in Theorem 5.7 were injective. However, we will show that the conv
is true if the codimension of the complete intersection is at most one (cf. Theorem 7

For modules of codimension zero, i.e., maximal modules, we can describe thei
liaison classes.

Proposition 6.12. Let M be an unmixed maximal R-module. Then the module N is in the
even m-liaison class of M if and only if M and N are stably equivalent.

Proof. Let N be a module in the even liaison class ofM. We want to show thatM andN

are stably equivalent. This is clear ifM is free. Thus, we may assume thatM is not free
and thatN is linked toM in two steps. LetP be a module that is directly linked toM
andN . Then, Lemma 6.6 shows that bothM andN are stably equivalent toP×, henceM
andN are stably equivalent, as claimed.
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For showing the reverse implication, letN be a module that is stably equivalent toM.
Applying Lemma 3.11 withD = R and also Lemma 3.14 successively, we see thatN is in
the even liaison class ofM. �

Using Example 3.13, we get in caseM = R.

Corollary 6.13. The module N is in the m-liaison class of R if and only if it is free.

In particular, over a fieldK there is just one liaison class ofK-modules.

7. Liaison in codimension one

The goal of this section is to show that the perfect modules of codimension one
the m-liaison class of the quotient ring ofR by a principal ideal.

Theorem 7.1. Let R be an integral domain and let a �= 0 be an element of R which is not
a unit. Then an R-module M belongs to the m-liaison class of R/aR if and only if M is a
perfect R-module of codimension one.

Note that over an integral domain a module is perfect of codimension one if and
if it has a square presentation matrix with non-trivial determinant. Thus we will deal
square matrices in the course of the proof.

We need some preparation and a bit of notation. Letϕ :F → G be a (graded) homomo
phism between free modules represented by the homogeneous matrixA. Then we define
cokerA := cokerϕ.

The starting point is a special case of the result about the exchange ofE- andQ-type
resolutions.

Lemma 7.2. Let F,G be (graded) free R-modules of the same rank and let ψ :G∗(s) → F ,
ϕ :F → G be (graded) homomorphisms which are not isomorphisms. Choose bases for F

and G and let A, B be the matrices representing ϕ and ψ , respectively. If A ·B is equivalent
to a (homogeneous) symmetric matrix whose determinant is a non-zero divisor of R, then
cokerϕ and cokerψ∗(s) are m-linked by cokerAB .

Proof. Put S = A · B, C = cokerS andM = cokerA. Since detAB = detA · detB is a
non-zero divisor ofR there is a commutative diagram with exact rows

0 G∗(s) S

B

G C

γ

0

0 F
A

G M 0.
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Dualizing with respect toR provides the exact commutative diagram

0 G∗ At

F ∗

Bt

Ext1R(M,R) 0

0 G∗ St

G(−s) Ext1R(C,R) 0.

Ext1R(kerγ,R)

0

By assumption,S is equivalent to a symmetric matrix. HenceC is a quasi-Gorenstein mod
ule and Ext1R(C,R)(s) ∼= C. Thus, we getLC(M)(−s) ∼= Ext1R(kerγ,R) by the definition
of the linking map. Therefore, the Snake lemma implies cokerψ∗(s) ∼= LC(M) completing
the proof. �

This lemma suggests to introduce the notion of linked square matrices. Here the r
tion to Gorenstein rings is not necessary. Thus, we are working in greater generality
dealing with matrices.

Definition 7.3. Let R be an arbitrary ring. Then we denote the set ofn × n matrices with
entries inR by Rn,n and the transpose of a matrixA by At . We say that two matrice
A,B ∈ Rn,n are linked in one step ifA · Bt is equivalent to a symmetric matrix who
determinant is a non-zero divisor ofR. We callA,B linked matrices if there are matrices
A = A0,A1, . . . ,Av = B such thatAi is linked in one step toAi+1 for all i = 0,1, . . . ,

v − 1. If R is a graded ring then we require additionally that all the matricesA0, . . . ,Av

are homogeneous.

It is obvious from the definition that being linked is an equivalence relation am
(homogeneous) square matrices of fixed size.

We will see that Theorem 7.1 will essentially follow from a result about linked matr
which we prove for more general rings than Gorenstein rings. Roughly speaking, the
idea is to show that over an integral domain a square matrix with non-vanishing de
nant is linked to a diagonal block matrix with non-vanishing determinant. In order to
out this program we need two more preparatory results.

Lemma 7.4. Let R be an arbitrary integral domain. Furthermore, in case R = ⊕
i�0[R]i

is a graded ring assume that [R]1 is non-trivial. Let A ∈ Rn,n (n � 2) be a square matrix
with non-vanishing determinant which is homogeneous if R is graded. Then there is a
matrix A := (

a b

c A′
) ∈ Rn,n where a ∈ R and A′ ∈ Rn−1,n−1 such that b, c,detA are non-

trivial and cokerA ∼= cokerA. Furthermore, A can be taken as a homogeneous matrix if R

is graded and A is homogeneous.
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Proof. We have to show the existence of invertible matricesP,Q ∈ Rn,n such that
A = PAQ has the required properties. Performing suitable elementary row and co
operations onA, this is clear, at least ifR is not graded. It is a little more tricky ifR is
graded because we have less elementary row and column operations atour disposal. But
for example, an induction onn will work. We omit the details. �
Lemma 7.5. Let R be a ring as in Lemma 7.4. Let v,w ∈ Rn be non-trivial column vec-
tors. Then there are a symmetric matrix S ∈ Rn,n and an element λ ∈ R such that λ �= 0,
detS �= 0 and Sv = λw.

Furthermore, if R is graded and v = (v1, . . . , vn)
t , w = (w1, . . . ,wn)

t are homoge-
neous such that d := degvi + degwi for all i = 1, . . . , n then there are homogeneous S

and λ with the properties above.

Proof. We restrict ourselves to the more difficult graded case. Then, by assumption,R con-
tains a linear formL �= 0. Replacing all powers ofL by the identity provides the argume
in the non-graded case.

We begin with an observation which allows us to reduce the proof to the most co
cated case.

Suppose, for given vectorsv,w ∈ Rn we have foundλ andS as in the statement. Con
sider the vectors

v′ =
(

v0
v

)
,w′ =

(
w0
w

)
∈ Rn+1.

In case that bothv0 andw0 are non-trivial, we get the desired conclusion forv′,w′ because
putting

S′ =
(

λw0 0
0 Sv0

)
∈ Rn+1,n+1

we obtain

S′v′ = (λv0)w
′

where detS′, λv0 �= 0.
Assume now that we havev0 = w0 = 0. Multiplication byS induces a homomorphism

G → G∗(s) whereG is a graded freeR-module of rankn ands ∈ Z. Sincev0 = w0 = 0 we
may choosed0 := degv0 such thats − 2d0 ∈ {0,1}. Then the conclusion of the stateme
follows for v′,w′ becauseS′v′ = λw′ whereS′ is the homogenous matrix

S′ =
(

Ls−2d0 0
0 S

)
∈ Rn+1,n+1.

Using the observation above (and possibly reordering the rows) we see that it s
to show the statement for vectors

v = (0, . . . ,0, vk+1, . . . , vn)
t , w = (w1, . . . ,wk,0, . . . ,0)t
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wherek is an integer with 1� k < n and all entriesvk+1, . . . , vn,w1, . . . ,wk are non-
trivial. In this situation, we can always adjust the degrees of the entries ofv,w such that
the degree assumption is satisfied and, in particular, we can choosed sufficiently large.

Now we distinguish two cases.

Case 1. Assumek � n
2 .

Putλ = vk+1 · · · · · vn. The corresponding product where one factorvj is omitted will
be abbreviated byλ

vj
∈ R. Consider the following matrices

A =



λ
vk+1

w1

. . . 0
λ

vn−1
wn−k−1

λ
vn

wn−k

λ
vn

wn−k+1

0
...

λ
vn

wk


∈ Rk,n−k

and

S =


0 0

A

0 D

At 0

 ∈ Rn,n

whereD denotes the diagonal(2k − n) × (2k − n) matrix whosej th entry on the main
diagonal isL to the powerd + degλ − 2 degvn−k+j . Here, we chosed large enough suc
that all the powers ofL have a non-negative exponent. It is easy to check thatS is a
homogeneous matrix,

Sv = λw,

and

detS = ±
(

n−k∏
i=1

λ

vk+i

wi

)
· det

(
0 D

At

)
= ±

(
n−k∏
i=1

λ

vk+i

wi

)2

· Le �= 0

for somee ∈ Z, whence the claim.

Case 2. Assumek � n .
2
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Applying Case 1 we find a matrixS andλ ∈ R such that detS, λ �= 0 andSw = λv.
Multiplying the last equation by the adjoint matrix ofS we obtain

detS · w = λ · adjS · v

which proves the claim because adjS is symmetric ifS is a symmetric matrix. �
Now we are ready for the announced result about linked matrices.

Lemma 7.6. Let R be a ring as in Lemma 7.4. Let A = (
a b

c A′
) ∈ Rn,n be a square matrix

where a ∈ R, c,bt ∈ Rn−1, A′ ∈ Rn−1,n−1. If detA, detA′, b, and c are non-trivial then A

is linked to a square matrix
(

b 0
0 B ′

)
.

Furthermore,
(

b 0
0 B ′

)
can be taken as a homogeneous matrix if R is graded and A is

homogeneous.

Proof. Put b̃ = b · adjA′ where adjA′ denotes the adjoint matrix ofA′. Then b̃ is non-
trivial because otherwise we would get

0 = b̃ · A′ = b · adjA′ · A = b · detA′

which is a contradiction sinceb and detA′ are non-trivial by assumption.
Thus we can apply Lemma 7.5 and conclude that there are a symmetric matrixS̃ ∈ Rn,n

and an elementλ ∈ R such thatλ �= 0, det̃S �= 0 andb̃S̃ = λct .
Now we define the matricesB ∈ Rn,n andB ′ ∈ Rn−1,n−1 by

B ′ := adjA′ · S̃ and Bt :=
(

λ 0
0 B ′

)
.

It follows that

S := A · Bt =
(

aλ b · B ′

λc A′ · B ′

)
which is a symmetric matrix because

A′ · B ′ = A′ · adjA′ · S̃ = detA′ · S̃

is symmetric and

λct = b̃S̃ = b · adjA′ · S̃ = b · B ′

due to our choice of̃S. Furthermore,S has non-trivial determinant since

detS = detA · λ · det
(
adjA′) · det̃S
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and each factor on the right-hand side is non-trivial. Therefore, the matricesA andB are
linked and we are done.�

Now we are in a position to show the main result of this section.

Proof of Theorem 7.1. One direction is clear by Corollary 6.10.
In order to show the converse, letA ∈ Rn,n be a presentation matrix ofM. If n = 1 there

is nothing to show. Letn � 2. According to Lemma 7.4 we may assume thatA = (
a b

c A′
)

has the property thatb, c and detA′ are non-trivial. Lemma 7.6 shows that there is a ma
B = (

b 0
0 B ′

)
which is linked toA. In spite of Lemma 7.2 we obtain that the modulesM and

cokerB are linked. By Lemma 3.11, it follows that cokerB and cokerB ′ are evenly linked
Altogether we obtain thatM = cokerA is in the same m-liaison class as cokerB ′. Thus we
conclude by induction onn thatM is in the m-liaison class of(R/cR)(j) for somej ∈ Z

and somec �= 0. The module(R/cR)(j) is linked to (R/aR)(j) by (R/acR)(j). Now,
(R/aR)(j) andR/aR are in the same even liaison class by Lemma 3.14. This comp
the argument. �
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