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Abstract

We propose a concept of module liaison that extends Gorenstein liaison of ideals and provides an
equivalence relation among unmixed modules over a commutative Gorenstein ring. Analyzing the
resulting equivalence classes we show that several results known for Gorenstein liaison are still true
in the more general case of module liaison. In particular, we construct two maps from the set of even
liaison classes of modules of fixed codimension into stable equivalence classes of certain reflexive
modules. As a consequence, we show that the intermediate cohomology modules and properties like
being perfect, Cohen—Macaulay, Buchsbaum, or surjective-Buchsbaum are preserved in even module
liaison classes. Furthermore, we prove that the module liaison class of a complete intersection of
codimension one consists of precisely all perfect modules of codimension one.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

So far liaison theory can mainly be considered as an equivalence relation among equidi-
mensional subschemes. It started with the idea to gain information on a given curve by
embedding it into a well understood curve, a linking curve, such that there is a residual
curve that is easier to study. The idea nmmkense in any dimension and traditionally,
complete intersections were used as linking objects. This leads to the theory of complete
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intersection liaison. It has reached a vertigactory stage for Cohen—Macaulay ideals
[18] and for subschemes of codimension two (cf. [3,22,28,31,32)).

However, it is impossible to extend all the nice results about codimension two sub-
schemes to higher codimension. Recentlpuanber of papers (most notably [19]) have
shown that a more convincing theory emerges if one allows as linking schemes instead
of complete intersections, more generally, arithmetically Gorenstein schemes. This the-
ory is called Gorenstein liaison. For an extensive introduction, we refer to [23] or [25].
The results in [19] suggest to think of Gorenstein liaison theory as a theory of divisors on
arithmetically Cohen—Macaulay subschemes.dxample, it is shown in [19] that any two
linearly equivalent divisors on a smoothitametically Cohen—Macaulay subscheme are
Gorenstein linked in two steps. An application of the new theory to simplicial polytopes
can be found in [26]. One can interpret thisceess as a consequence of enlarging the
smaller complete intersection liaison s$&s to the larger Gorenstein liaison classes.

However, despite recent efforts and many partial results (cf., e.g., [8-11,15-17,24,30]),
Gorenstein liaison classes are not yet well understood. In this paper, we propose to obtain
a better understanding of Gorenstein liaison and to extend the range of applications of
liaison theory by further enlarging Gorenstein liaison classes. To this end we introduce a
new concept of module liaison.

There are other reasons that motivate the quest for a liaison theory of modules. Ideals or
subschemes are often studied by means of associated modules/sheaves such as the canon-
ical module. New insight can be expected when modules and ideals can be treated on an
equal footing.

Module liaison will provide a new tool fostudying modules. Recently, Casanellas,
Drozd, and Hartshorne [8] showed that liaison classes of codimension two ideals in a
normal Gorenstein algebrR are related to special maximal Cohen—Macaulay modules
over R. Module liaison could be helpful in investigating such modules more directly.

The need for a liaison theory of modules is also reflected by the fact that so far four
different proposals of module linkage (including this one) have been developed indepen-
dently [20,21,37]. However, while the other proposals do generalize complete intersection
liaison, only the concept proposed here provides an extension of Gorenstein liaison. For a
more detailed comparison we refer to Remark 3.20.

Let us now describe the structure of the paper. In Section 2 we introduce the modules
that will be used to link. We require that these modules have a finite self-dual resolution.
Modules with this property are called quasti@nstein because they generalize quotients
of Gorenstein rings by Gorenstein ideals, but they are Gorenstein modules only if they
are maximal modules. We provide severalsskes of examples in order to illustrate the
abundance of quasi-Gorenstein modules.

Our concept of module liaison is introduced in Section 3. We consider unmixed mod-
ules over a local Gorenstein ring and graded unmixed modules over a graded Gorenstein
K -algebra where is a field. Throughout the paper we focus on the graded case because
there additional difficulties occur. Nevhsless, we show for every unmixed modue
each integey, and every quasi-Gorenstein moddlevith the same dimension &g that
the moduleg, M (j), andM & C all belong to the same even liaison class (Lemmas 3.11,
3.14). We also discuss several examples and the relation to the other notions of module
linkage. Furthermore, we describe some specializations of our module liaison. For exam-
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ple, the concept of submodule liaison arises if we restrict the class of considered modules
to submodules of a given free modute In the special case whefé= R is a Gorenstein
ring, submodule liaison is the same as Gorenstein liaison of ideals.

Then we begin our investigation of the properties of linked modules. In Section 4 we
discuss the Hilbert polynomials of linked modules. In particular, we show that

degC = degM + degN

if the modulesM, N are directly linked by the modul€.

In order to trace structural properties under liaison we introduce so-called resolutions
of E-type andQ-type in Section 5. Proposition 5.6 shows how fixtype andQ-type res-
olutions of directly linked modules are related. It allows us to define dapad¥ from
the even liaison classes of modules of fixed codimension into the set of stable equivalence
classes of certain reflexive modules (Theorem 5.7). The existence of these maps immedi-
ately produces necessary conditions for two modules being in the same even liaison class.
It remains a major problem to decide whetherse maps are injective since an affirmative
answer would give a parametrization of the even liaison classes of modules.

Much progress in liaison theory has been driven by the question which properties are
transferred under liaison. In Section 6 we use the n@apsmd¥ to extend various results
in [21,28,33]. For example, we show that the projective dimension as well as (up to degree
shift) the intermediate local cohomology modules are preserved in an even module liaison
class. The same kind of preservation isetfior the properties being Cohen—Macaulay,
locally Cohen—Macaulay, Buchsbaum, and sative-Buchsbaum, but even in the whole
liaison class.

The final Section 7 is devoted to the description of a whole module liaison class. Its
main result, Theorem 7.1, says thidtis in the liaison class oR/a R wherea # 0 is any
element of the Gorenstein domanif and only if M is a perfect module of codimension
one. Note that this result would follow immediately if we knew that the mapsnd ¥
were injective.

Our concept of module liaison could easily be extended to a non-commutative setting.
The resulting theory should certainly be istigated. We leave this for future work.

2. Quasi-Gorenstein modules

In this section we introduce the modules we will use for linkage.

Throughout the papeR denotes a local Gorenstein ring with maximal ideabr a
standard graded Gorenstekralgebra over the fieldR]p = K. In the latter casen =
;- o[R]; denotes the irrelevant maximal ideal ®f Usually we focus on the graded case
in order to keep track of occurring degree shifggoring degree shift all definitions and
results hold analogously in the local case.

Since the ringR will be fixed we often refer taR-modules just as modules. Moreover,
all modules will be finitely generated unless specified otherwise.
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We denote théth local cohomology module of the moduté by H/. (M). We will use
two duals ofM, the R-dual M* := Homg (M, R) and the Matlis dualV. Note that the
latter is the graded module HgniM, K) if M is graded.

The Hilbert function rank[M]; of a noetherian or artinian grade®tmodule M is
denoted byh, (7). The Hilbert polynomialpy (¢) is the polynomial such that,, (j) =
pum (j) for all sufficiently largej. Theindex of regularity of M is

r(M):=infli € Z| hy(j) = pu(j) forall j > i}.

The shifted modulé/ (), j € Z, has the same module structureMs but its grading is
given by[M (j)]; :=[M]i+;.
Let M be anR-module where: + 1 =dimR andd = dimM. Then

Ky =Exty (M, R)(r(R) — 1) = Exty 4 (M, Kg)

is said to be thecanonical module of M. It is the R-module representing the functor
HI(M ®g__)V.

Recall that a perfect module is a Cohen—Macawtamodule with finite projective di-
mension.

Definition 2.1. A quasi-Gorenstein R-module M is a finitely generated, perfe&-module
such that there is an integeand a (graded) isomorphisi = Ku ().

Remark 2.2. (i) Following Sharp [34],M is a GorensteirR-module if its completiorﬁ
is isomorphic to a direct sum of copies &f;. In particular, it is a maximaR-module.
Hence, a quasi-Gorenstein module is Goreimst and only if it is maximal because in this
case it is simply a finitely generated, fremodule.

(i) Let M = R/I be a cyclic module. Then the following conditions are equivalent (cf.,
e.g., [7, Theorem 3.3.7]):

(@) R/I is a quasi-GorensteiR-module.
(b) R/I is a Gorenstein ring antlis a perfect ideal.
(c) I is a Gorenstein ideal.
We denote byM* the R-dual Homg(M, R) of an R-module M. The number
codimM :=dimR — dim M is called thecodimension of M.
Let M be a perfect module of codimensionvith minimal free resolution

0— FC&Fc,l—»uﬂ)Fo—)Mao.

We call this resolutioself-dual if there is an integes such that the dual resolution

0— FE(s) 2 Fi(s) = -+ 25 FX(s) — EXC(M, R)(s) — 0

is (as exact sequence) isomorphic to the minimal free resolutias. of
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We denote the initial degree of a graded moduldy
a(M):=inf{i e Z | [M]; #0}.
Lemma 2.3. Let M be a perfect module. Then we have:

(@) M isaquasi-Gorenstein moduleif and only if its minimal free resolution is self-dual.
by fM=Ky@) thent=1—r(M) —a(M).

Proof. (a) If M has a self-dual minimal free resolution then we have in particM&E
Extr (M, R)(t) for some integer. Thus,M is a quasi-Gorenstein module. The converse
follows from the uniqueness properties of minimal free resolutions.

(b) The Hilbert functiomzy, and the Hilbert polynomiap,, of M can be compared by
means of the following Riemann—Roch type formula

d
() = pu(j) = Y (=1)" rankg [Hy, ()]

i=0
whered =dimM. SinceM = Ky, (t) is Cohen—Macaulay we obtain

hi (i) — pu (i) = rankg [Hg (M)], = rankg [Ku]-; = hy (=i —1).
Using the definitions ofi(M) andr(M) we deduce(M)=1—a(M) —t. O

There is an abundance of quasi-Gorenstein modules though one has to be more careful
in the graded case than in the local case.

Remark 2.4. While over a local ring the direct sum of quasi-Gorenstein modules is again
guasi-Gorenstein, this is not always true for graded modules. In fatisif graded quasi-
Gorenstein module then, for exampi& & C (1) is not quasi-Gorenstein because there is
no integer;j such thatC2 @ C(1) = (C2 @ C(—1))(j).

However,C* andC @ C () are always quasi-Gorenstein.

There are plenty of quasi-Gorenstein modules that are not a direct sum of proper quasi-
Gorenstein submodules.

Example2.5. (i) Let ¢ > 3, u > 1 be integers and consider a sufficiently general homomor-
phismg: R(—1)*+t<~1 — R* Then its cokernel will have the expected codimension
Denote byC the symmetric power of coker of orderc;zl. Its resolution is given by
an Eagon—Northcott complex which is easily seen to be self-dual. HEnsea quasi-
Gorenstein submodule of codimensian

(i) In [14] Grassi defines a strong Koszul module as a module that has a free resolution
which is analogous to the Koszul complex. Such a module is in particular quasi-Gorenstein.
For a specific example, take two (graded) symmetric homomorphismas F(—j) — F
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whereF is a freeR-module of finite rank such thato v =¥ o ¢ and{detyp, dety'} is a
regular sequence. Then the moddlevith the free resolution

-¥
0— F(—2j)M> Fo R )L rocso
is a quasi-Gorenstein module of codimension two.
Note, that Grassi [14] and Bohning [4] have obtained some structure theorems for quasi-
GorensteinR-modules of codimension at most two that also admit a ring structure.
(iif) Every perfectR-module of codimensioagives rise to a quasi-Gorenstein modules.
In fact, if j is any integer the & K (j) is a quasi-Gorenstein module because

EXt(M & Ky (j). Kr) =Ky @ Kk (=) EM(—j)® Ky = (M & Kn(j))(— ).

3. Modulelinkage: definition, examples, and specializations

The goal of this section is to introduce our concept of module liaison and to discuss
some of its variations. Finally, we will compare it with other notions of module liaison that
exist in the literature.

Let C be anR-module. We denote by E@’) the set ofR-module homomorphisms
¢:C — M whereM is an R-module and inp has the same dimension @s Given a ho-
momorphismsg € Epi(C) we want to construct a new homomorphigm(e). Ultimately,
we will see that this construction gives a map &pi— Epi(C) U {0}.

Definition 3.1. Let C be a quasi-Gorenstein module of codimengi@mnd lety € Epi(C).
Lets be the integer such that EXiC, R)(s) = C. Consider the exact sequence

0— kerp - C —img — 0.

It induces the long exact sequence

0— Ext5(img, R)(s) — EX%(C, R)(s) N Ext;, (kerg, R)(s)

— Extythime, R)(s) — - --.

By assumption there is an isomorphiemC — Ext%(C, R)(s). Thus we obtain the homo-
morphismy := ¢ o o : C — Extj (kerg, R)(s) which we denote by.c(¢). (Its depen-
dence onx is not made explicit in the notation.)

Note thatL ¢ (¢) is the zero map if € Epi(C) is injective.

In order to analyze this construction in more detail we need two preliminary results.
The first is a version of results of Auslander and Bridger [2] and Evans and Griffith [13],
respectively. Itis stated as Proposition 2.528]. We denote the cohastogical annihilator
Anng HL (M) by a;(M).
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Lemma 3.2. Let R bea Gorenstein ring and let M be afinitely generated R-module. Then
the following conditions are equivalent:

(a) M isak-syzygy.
(b) dimR/a;(M) <i—kforali <dimR.

Moreover, if k >3 then conditions (a) and (b) are equivalent to the condition that M is
reflexive and Exty, (M*, R) =0if 1 <i <k —2.

Recall that there is a canonical mdp— Kg,,. It is an isomorphism i/ is Cohen—
Macaulay, but is neither injective nor surjective, in general.

We say thatM is an unmixed module if all its associated prime ideals have the same
height.

Lemma 3.3. Let M be an R-module. Then we have:

(a) Itscanonical module K »; is unmixed.
(b) If M isunmixed then the canonical homomorphism M — K,, isinjective.

Proof. Claim (a) is well known. We sketch its proof because we will use also the method
for showing (b). Let: denote the codimension 8. Then we choose homogeneous forms
f1, ..., fc € AnnM such that the ideal := (f1, ..., fc) C R is a complete intersection.
Thus, the ringS := R/ is Gorenstein and/ is a maximalS-module. Now, we will use the
fact thatM is an unmixedR-module if and only ifM is torsion-free as af-module. In-
deed, this follows by comparing the cohomological characterizations of the corresponding
properties (cf., for example, Lemma 3.2 and [28, Lemma 2.11]).

Moreover, there is an isomorphism

Ky =Homg(M, S).
It implies claim (a) because thdual of a module is a reflexiv&-module.
Claim (b) follows similarly. Indeed, the assumption provides thats a torsion-free
S-module. Thus the canonical mag — Homg(Homg (M, S), S) is injective. Using the
isomorphism above we are donex

Now we are ready to describe propertiedef(e).

Proposition 3.4. Let C be a quasi-Gorenstein module and let ¢ € Epi(C) be a homomor-
phismwhich is not injective. Then we have:

(a) Thereisan exact sequence
0— Kimy(t) > C—>imLc(p)— 0

wheret =1—r(C) —a(C).
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(b) Lc(p) € Epi(C).
(c) Theimageim L¢ (¢) isan unmixed R-module.
(d) Ifim g isunmixed then thereis an isomorphismim L¢(Lc(p)) Eim .

Proof. Letc denote the codimension 1.

(a) According to our assumption keris a non-trivial submodule of the quasi-
Gorenstein modul€'. SinceC is an unmixed module and Ad®ry) C AssC we conclude
that dimkerg) = dimC. By the definition ofyy = L¢ (¢) we know that there is an exact
sequence

0— Ext(img, R)(s) — C — Ext;, (kerg, R)(s) — Ext5 L (imp, R)(s) — 0

wheres =t —r(R) +1=r(C) — r(R) — a(C) because of Lemma 2.3. Claim (a) follows.
According to Lemma 3.3 the canonical mod#lger, is an unmixed module of dimen-
sion dimC. On the other hand we have dim gf&(im @, R) <dimim(p) =dimC. Hence
im ¢ is an unmixed module of dimension dithwhich proves claims (b) and (c).
(d) We use the technique of the previous lemma.LetAnn(kerg) be a complete in-
tersection of codimensian PutS = R/I. SinceC is Cohen—Macaulay the exact sequence

0— kerp > C —imgp—0
induces isomorphisms
Exty (kerp, R) = Exty(img, R) foralli > c.
By our assumption, im is torsion-free ag-module. It provides that dim E}g(kew, R) <
dimR —i — 2 for all i > ¢ where we use the convention that the trivial module has di-
mension—oo. It follows that ke is a reflexiveS-module. Hence the canonical map
kerp — Kkyer, = Homg(Homg (kerg, S), S) is an isomorphism.
Now we consider the exact sequence

0— IMy — Kierg (1) — Exti 1 (img, R)(r) — 0.

We already know that di(rExtﬁjl(im ¢, R)) <dimC — 2. Hence the last sequence induces
an isomorphism

K Kier, (—1) = Kimy..
Therefore the exact sequence
0— Kimy(t) = Kc(t) = imy — 0
provides the exact sequence

0— Kimy — Kk (—1) = Kk, (—1) = Extg™(imy, R) — 0.
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Using the last isomorphism above we get the following commutative diagram with exact
rows

Y

0—— KKkerw KKC KKimw —_— EXtﬁjl(im 1//, R)([) —0
0 kery C img 0

where the vertical maps are the corresponding canonical homomorphisms. Since the two
leftmost vertical maps are isomorphisms and the third one is injective we conclude that
there is an isomorphism

imy =Zime.
But imy is isomorphic to iniL¢ (L (¢))) which proves claim (d). O

The preceding result allows us to define.

Definition 3.5. Let C be a quasi-Gorenstein module with the isomorphisnC —>
Kc (). Then the mag.¢ : Epi(C) — Epi(C) U {0}, ¢ — Lc(¢), is called thdinking map
with respect taC (andw). Here O denotes the trivial homomorphigh— Og.

Remark 3.6. The linking map respects isomorphisms in the following sense:gl, e’
be two homomorphisms in E@’). Following the description of the linking map it is not
difficult to see that inp = im¢’ implies imL¢(p) = im Le(¢’). Moreover, part (d) of
the previous result shows that the converse is true providedamd img’ are unmixed
modules.

Definition 3.7. We say that twoR-modulesM, N are module linked in one step by the
quasi-Gorenstein modulg if there are homomorphisms ¢ € Epi(C) such that

(i) M=img, N=imy and
(i) M=imLc), N=imLc(g).

Most of the time we abbreviate module linkage by m-linkage.

Remark 3.8. (i) Modules that are module linked in one step will also be cafledctly
m-linked modules.

(ii) If M andN are directly m-linked byC then, by the definition of the linking maf¢
and the previous lemma, we have that difr= dimN = dimC and M, N are unmixed
R-modules.

(iii) Module linkage is shift invariant in the following sense. The modulés N are
directly linked byC if and only if the modulesV/(j), N(j) are directly linked byC(j)
wherej is any integer.
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The following observation allows us to construct plenty of modules that are linked to a
given module.

Remark 3.9. (i) If M is anR-module such that there is an epimorphignC — M andM
has the same dimension@sut is not isomorphic t@, then the moduled’ :=im L¢(¢)
andM are m-linked becaus® = im L¢(Lc(¢)) by Proposition 3.4.

By abuse of notation we sometimes write (M) instead of imL ¢ (¢). Then two mod-
ulesM and N are m-linked in one step if and only if there is a suitable quasi-Gorenstein
moduleC such thatV = L (M), or equivalentlyM = L (N).

(i) A simple way to produce an epimorphispras above in order to link a given module
M is the following. Choose a freR-moduleF such that there is an epimorphigm F —

M and take a complete intersection ideabf codimensionc = codimM in Anng M.
Thenvy induces an epimorphisti/cF — M. Thus, the maw: F/cF & Kr/cr — M
whereKr,.r maps onto zero satisfies the requirements becAusE @ Kr,.r is quasi-
Gorenstein by Example 2.5(iii). The lasept i.e., adding the canonical module, can be
omitted if F/cF is already a quasi-Gorenstein module.

The following examples illustrate theeftibility of our concept of module liaison.

Example 3.10. (i) Every perfect modulé/ is linked to itself as a consequence of the exact
sequence

O—-Ky—->M®Ky—>M-—DO0.

This is very much in contrast to the situation of linkage of ideals where self-linked ideals
are rather rare.

(i) Every free moduleF of rankr > 1 is directly m-linked to a free module of smaller
rank.

In fact, write F = R(j) ® G and setC := R(j) ® G ® G*(—2j). ThenC* = C(-2j),
thus the exact sequence

0—-G*2j)>C—-F—0
shows thatF = R(j) & G is directly m-linked toG.
Allowing one more link, we can extend the last example to non-free modules.

Lemma 3.11. Let D be a quasi-Gorenstein module and let M be any unmixed module such
that M and D have the same dimension. Then M @ D can be linked to M in two steps.

Proof. By assumption orD, there is an integer such thatk p = D(—s).

As in Remark 3.9, we choose a fré&&module F and a complete intersection ideal
such thatM e Epi(F/cF). Then Example 2.5(iii) shows that := F/cF @ Kr/cr(s) IS
guasi-Gorenstein. Thus, we can use this module toMinto a moduleN.
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By our choice of the twists in the definition of C, the moduleD & C is quasi-
Gorenstein, too. It follows that the modul&® M and N are linked byD & C proving
our claim. O

By its definition, module linkage is symmetric. Thus, it generates an equivalence rela-
tion.

Definition 3.12. Module liaison or simply liaison is the equivalence relation generated
by direct module linkage. Its equivalence classes are cattedue) liaison classes or
mliaison classes. Thus, two moduled/ and M’ belong to the same liaison class if there
are modulesVg = M, N1, ..., Ny_1, Ny = M’ such thatV; and N;,1 are directly linked
foralli =0,...,s — 1. Inthis case, we say thaf andM’ arelinked in s steps. If s is even
thenM andM’ are said to bevenly linked.
Even linkage also generates an equivalence relation. Its equivalence classes are called
even (module) liaison classes.

Example 3.13. SinceR is linked to itself byR?, the even liaison class and the liaison class
of R agree. It contains all non-trivial freR-modules of finite rank. Indeed, Example 3.10
show that every free module is in the liaison class of a free module of rank one. But the
modulesR(j) (j € Z) andR are directly linked byR @ R(j).

We will see in Corollary 6.13 that the finitely generated, fReenodules form the whole
liaison class ofr.

Since the module structure of a module is not changed by shifting, the following prop-
erty of module liaison is certainly desirable.

Lemma 3.14. Let M be an unmixed module and let j be any integer. Then M and M (j)
belong to the same even m-liaison class.

Proof. Let N be any module that is directly linked t& by the quasi-Gorenstein mod-
ule C. Such modules exist by Remark 3.9. Assume fiat= C(—t). ThenC & K¢ (i) is
quasi-Gorenstein for alle Z and we have the exact sequence

O— Ky(t)®Kc(i) >C®Kc(i) > N— 0.

Hence,N is directly linked toM (i — t) & C for everyi € Z. According to Lemma 3.11,
the moduleMf (i — 1) ® C andM (i —t) are evenly linked. Thus, choosingppropriately
we get thatv and M as well asN and M (j) are linked in an odd number of steps. Our
claim follows. O

The following construction is most commonly used for maximal modules. We keep its
name in the general case, too.
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Definition 3.15. Let M be a non-fre&k-module. LetF be a freeR-module and letr : FF —
M be a minimal epimorphism, i.e., an epimorphism that satisfies kem - F. Then we
call the module

M := cokerHonx (7, R)

the Audander dual of M. It is uniquely defined up to isomorphism.

This concept will be crucial in Section 6. Here, we just show that the Auslander dual
M* andM belong to the same module liaison clasafifis a maximal module.

Lemma 3.16. Let M be a non-free, unmixed maximal R-module. Then M* is in the
mtliaison class of M. More precisely, M can belinked to M > in an odd humber of steps.

Proof. Consider the following exact commutative diagram
0——kerp® F* —— F@F*LMHO

! L

0 kerm F M 0

wherern is a minimal epimorphism# is free, andy is the canonical projection. Pat:=
F & F*. Then dualizing with respect tB provides the exact ecomutative diagram

0 M* F* M* 0

-

0——= M*— F@F* ——imLc(p) —— 0.

Now, the Snake lemma shows th#t is directly m-linked to imL¢(¢) = M>* & F. Ap-
plying Lemma 3.11 successively we see that @& F and M* are evenly linked. This
completes the argumentO

Remark 3.17. Note that in the local case we could simply uses linking module. This
shows that theds and M * are even directly m-linked.

Before comparing our concept of module liaison with other versions of module liaison
in the literature, we want to discuss some variations of our concept (cf. also Remark 3.20).

For example, one could restrict the class of modules that are used for linkage. This
would lead to (potentially) smaller liaison classes. While the definition above is designed
to generalize Gorenstein liaison of ideals, allowing as linking modules only strong Koszul
modules might lead to a concept of module liaison which could be viewed as the proper
generalization of complete intersection liaison of ideals. We do not pursue this here.
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Another variation that seems worth mentioning is to restrict the focus to submodules of
a given free module.

Definition 3.18. Let F be a freeR-module. Then submoduléd’, N’ of M are said to be
submodule linked, asm+-linked for short, by the submodule’ c F if F/M’ andF/N’ are
linked by F/C’. As above, this leads to equivalence classes of unmixed submodufes of

In the very special casé = R, submodule liaison is equivalent to Gorenstein liaison of
ideals.

Lemma 3.19. Two ideals I, J of R are sm-linked by theideal ¢ C R if and only if cisa
Gorenstein ideal of R and

¢c:I=J and c¢:J=1I,
in other words, 7 and J are Gorenstein linked by c.

Proof. If I, J of R are sm-linked by the ideal then we have by Proposition 3.4(a) the
exact sequence

0— Kg/s(1=r(R/c)) > R/c— R/I — 0.

Thus, the isomorphisnkg,s(1 — r(R/c)) = c: J/c showsc: J = I. Similarly, we get
c: I =J,thusl andJ are Gorenstein linked. The rexse implication is clear. O

In spite of the last observation we view module and submodule liaison as extensions of
Gorenstein liaison of ideals.

Remark 3.20. There are several concepts of moduléskam in the literature that have been
developed independently.

The first published proposal is due to Yoshino and Isogawa [37]. They work over a local
Gorenstein ring and consider Cohen—Mdagumodules only. They say that the moduls
andN are linked if there is a complete intersection ideebntained in Ang M NAnng N
such thatM is isomorphic to the Auslander dual &f considered a®/c-module. Note
that we have rephrased their definition in a way that it makes sense also for non-Cohen—
Macaulay modules.

Martsinkovsky and Strooker [21] work igreater generality though their main results
are for modules over a local Gorenstein riig.this case, their definition of linkage is
similar to the one of Yoshino and Isogawa as given above. Note that this is a very special
case of our concept of linkage because the modudesnd N are linked in the sense of
the two papers mentioned above if and only if they are m-linked"py in the sense of
our Definition 3.7 wheré is the free module in a minimal epimorphisi— M andc is,
more generally as indicated above, so@erenstein ideal contained in At NAnng N.

In other words, we get the liaison concept of Martsinkovsky and Strooker by restricting
drastically the modules we allow as linkingoatules. But this still leads to an extension of
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the concept of Gorenstein liaison of ideals. However, a consequence of this restriction is
that the resulting liaison class of a cyclic mod&gl contains only cyclic modules, thus it
is essentially just the Gorenstein liaison clasg efhen we identify a cyclic module with
its annihilator.

Martin’s approach [20] is very different. He uses generic modules in order to link mak-
ing it difficult to find any module at all that is linked to a given one. This seems rather the
opposite of the wish for large equivalence classes.

In [8], Hartshorne, Casanellas, and Drommhsider an extension of Gorenstein liaison of
ideals that is not yet fully generalized by Definition 3.12. Indeed; letJ be homogenous
ideals in the polynomial rin@R = K[xo, .. ., x,]. Then, they define thé-liaison class of
J in Proj(R/I) as the set of ideals iR that are sm-linked td/ (in the sense of Defini-
tion 3.18) such that all the ideals involved in the various links confaili A := R/I is
Gorenstein we can also consider the sm-liaison class of idealstirat is generated by
J /1. Identifying every ideah C R in the G-liaison class af in Proj(R/I) witha/I C A,
this G-liaison class is larger than the sm-liaison clasg ebnsisting of ideals imA. The
reason is that, if the ideats b C R are sm-linked inR by ¢ wherel C ¢, thena/I,b/I are
not sm-linked inA by ¢/I unlessc/1 has finite projective dimension asmodule. This
motivates the following extension of the concepts above.

Definition 3.21. Let A be any graded quotient ring & = K[xo, ..., x,], SayA := R/I.
Let M be a grade®-module that is annihilated bl Then we say that th®-moduleN is

in them-liaison classof M relativeto I if M can be linked taV by using quasi-Gorenstein
R-modulesCy, ..., C, that are all annihilated by.

If J C R is an ideal that containk, then, identifying an cyclidR-module with its an-
nihilator, the m-liaison class oR/J relative to/ contains the G-liaison class of in
Proj(R/I). In this sense, m-liaison relative fogeneralizes G-liaison in Pr@t/1).

Furthermore, ifR/I is Gorenstein, then it is not too difficult to see that the m-liaison
class ofM relative tol also contains the m-liaison class4fmodules generated by in
the sense of Definition 3.12.

Though it seems very interesting to investigate these relative m-liaison classes, we leave
this for future work and focus on studying laison classes (cf. Definition 3.12) in this
paper.

4. Hilbert polynomialsunder liaison

In this section we begin to relate the properties of linked modules. The starting point is
the following result which followsmmediately by Proposition 3.4(a).

Lemma4.1. If themodules M and N aredirectly m-linked by the quasi-Gorenstein module
C then there is an exact sequence of R-modules

O—- Ky@t) -C— N-—=O0

wheret =1 —r(C) — a(C).
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As in the case of linked ideals, there is a relation among the associated prime ideals of
linked modules.

Corollary 4.2. If themodules M and N are directly m-linked by C then we have
Assg M UAssg N = Assg C.

Proof. Since linkage is symmetric we have the two exact sequences
O—->Ky@t)-C—->N-—-O0

and
O0— Ky@t)—C—>M—0.

The claim follows because ¢hassociated primes of an unmixed module and its canonical
module agree. O

Lemma 4.1 allows us to compare the Hilbert polynomials of linked modules.
Let M be a module of dimensiad. If d > 0 then its Hilbert polynomial can be written
in the form

Py ) =ho(M)<dil> +h1(M>(di2) oo ha_a(M)

whereho(M), ..., hg—1(M) are integers ando(M) > 0 is called the degree of/. If

dimM = 0 then we set delf := length(M). By abuse of notation, the degree of an ideal
I isdegl = ho(R/I). Itis just the degree of the subscheme PRgjl). Now we can state.

Proposition 4.3. Let M, N be graded R-modules that are directly linked by C. Put s :=
r(C)+a(C)—1andd :=dimM. Then we have

(a) degV =degC — degM, andif in addition d > 2 then

—d+2
hi(N) = %[degM — degN] + ha(M).

(b) If M islocally Cohen—-Macaulay then
pn() =pc()+ (=D pu(s — j).
(c) If M is Cohen—Macaulay then
hn () =he () + (D hu(s = ) — pus = ).

For the proof we need a cohomological characterization of the property being unmixed.
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Lemma4.4. The R-module M isunmixed if and only if
dimR/Anng (H.,(M)) <i forall i <dimM
where we define the dimension of the zero module to be —oo.
Proof. Let {f1,..., f4} be a regularR-sequence in the annihilator @ whered :=
dimM. Then the claim follows by local duality and consideridg as module over
R/(f1,..., fa) asinthe proof of Lemma 4 in [27].O
Now we are ready for the proof of the proposition above.
Proof of Proposition 4.3. Again, we use the Riemann—Roch type formula
d . .
h(j) = pu () = ) (=1)' ranke[Hi, (M)] .
i=0
Furthermore, we have by local duality

rankK[Hfl(R/I)]j =rankg[K p]-;.

Now, we show claim (c). IM is Cohen—Macaulay then the formulas above and Lemma 4.1
provide

hn(j) = he(j) —rankg [Hg, (M)]
=hc()+ (=D hu(s — j) = pu(s — )]
Having shown (c) we may and will assume for the remainder of the proofdhat
dimM > 2. Next, we show claim (a). According to Lemma 4.4, the degree of the Hilbert

polynomial of H! (M) is at most maf0, i — 2}. Thus, using the formulas above we obtain
forall j <O

—pu(j) = (=) ranke [Hi (M)]; +0(j7)
= (1) rankc [K 1 + 0(j*7?).
Combined with Lemma 4.1 this provides
pn () = pc() + (=D pu(s — ) +0(j*7?).
Comparing coefficients we get by a routine computation

degN = degC — degM,
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as claimed, and
hi(N)=(s —d +2)degM + h1(M) + h1(C). (*)

Since linkage is symmetric there is an analogous formula witland N interchanged.
Adding both equations provides

s—d+2

h(0) = ——

degC.
Plugging this into(x) we get the second statement of claim (a).

If M is locally Cohen—Macaulay thejf; (M)]; =0 if i <d and j « 0. Thus, an
analogous (but easier) argument shows claim (lo).

Remark 4.5. (i) Proposition 4.3 generalizes Corollary 3.6 in [28].

(i) Let us illustrate the result by considering a well-known special case. Consider
two curvesC1 = Proj(R/I) and C2 = Proj(R/J) in P" that are linked by a complete
intersection cut out by hypersurfaces of degtke...,d,—1. Let us denote the arith-
metic genus of the curves tyt andg, respectively. For the linking modulé we have
r(C)=dy+---+dy—1—n (cf, e.g., [28, Lemma 2.3]). Thus, in this case Proposition
4.3(a) takes the familiar form (cf. [23, Corollary 4.2.11])

1
81— 82= E(dl + - +dy—1—n—1)[degCy — degC>].

The next observation shows that it is easier to compare the Hilbert functions of modules
that are linked in two steps and not just one. We will discuss more results along this line
later on.

Lemma 4.6. Suppose M, N, M’ are graded modules such that M and N are linked by C
and N and M’ arelinked by C’. Put s :=r(C) — r(C’) +a(C) — a(C’). Then we have for
all integers j:
hyw () =hm(G+s)+he(j) —he(j+5).
Proof. According to Lemma 4.1 we have the following exact sequences:
0— Ky(1—r(C)—a(C)) > C— M —0,
0— KN(l— r(C —a(C’)) —-C' - M —=0.

The claim follows. O

In order to compare other properties amdparticular, the cohomology of linked mod-
ules we need more tools. These will be developed in the following section.
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5. Resolutionsof E-typeand Q-type

The purpose of this section is to show the existence of dapad¥ from the set of
even liaison classes into the set of stable equivalence classes of certain reflexive modules.
This will be achieved by exploiting resolutions aftype andQ-type. These resolutions
generalize the resolutions @&f-type andN-type of ideals (cf. Remark 5.2 below) which
have been introduced in [22].

Definition 5.1. Let M be anR-module of codimension > 0. Then ank-type resolution
of M is an exact sequence of finitely generated grakledodules

O—-E—>F. 1> ---—>F—>M-—>0

where the modulesy, ..., F._1 are free.
A QO-typeresolution of M is an exact sequence of finitely generated grakledodules

0—-G.—»+—>G2—-0—->Gyp—>M—>0
whereGo, Go, ..., G. are free andir"n(Q) =O0foralli withn+2—c <i < n.(Note, that
for a module of codimension one@type resolution is the same as Brtype resolution.)

These resolutions o¥f are said to beninimal if it is not possible to split off free direct
summands from any of the occurring modules besides

Remark 5.2. A (minimal) E-type resolution of\f always exists because it is just the be-
ginning of a (minimal) free resolution @f. Thus, a minimakE -type resolution is uniquely
determined up to isomorphism of complexes. Moreover, it follows that

HL(E)=H.-(M) ifi<n.
It requires some more work to show th@ttype resolutions exist.
Lemma 5.3. Every module M of positive codimension admitsa minimal Q-type resolution
0->G,—>-+—>G2—>Q0—>Gog—M~—N0.
It is uniquely determined up to isomorphism of complexes. Furthermore, we have

HiZY(M) ifi<n+1—c,

H! ~
m(Q) {O ifn+2—c<i<n.

Proof. We may assume that the codimensioof M is at least two. Let

G1i>G0—>M—>0
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be a minimal presentation 8f. SetT := kerg. Now consider a so-called minimal — 1)-
presentation of’, i.e., an exact sequence of gradeanodules

0O—-P—-Q0—>T-—0
such thatP has projective dimensioq ¢ — 2,
H(Q)=0 foralliwithn+2—c<i<n,

and it is not possible to split off a non-trivial fre&module being a direct summand Bf
and Q. Such a sequence exists and is uniquely determined by [29, Theorem 3.4] (cf. also
[13]in the local case). Using [28, Lemma 2.9] we see that

HiZYM) ifi<n+1l-c,

Hi (Q)s{
m 0 fn+2—c<i<n,

as claimed, and that has projective dimensian— 2 because
H$+3—C(P) ~ H:1+2—C(T) ~ H$+1—C(M) £0
if ¢ > 3. Hence replacin@ in the exact sequence
O—-P—-Q0—>Gop—>M—0

by its minimal free resolution provides a minim@ttype resolution of\1.

Conversely, anyQ-type resolution gives rise to @ — 1)-presentation of". Thus, the
unigueness of the minima)-type resolution follows from the uniqueness of the minimal
(¢ — 1)-presentationof’. O

Remark 5.4. (i) In [22] Martin-Deschamps and Perrin have introdudédand N-type
resolutions of an ideal that are closely relatedttoand Q-type resolutions as above. In
fact,

0—-G.,—»---—G2—0—>1—-0
is anN-type resolution of the idedl if and only if
0->G.,—»+-+—>G2—->Q0—>R—->R/I—->0

is a Q-type resolution ofR/I. An analogous relation is true for th&-type resolutions
of I andR/I. In this sense, our Definition 5.1 extends the concept&-odnd N-type
resolutions to modules with more than one generator.

(ii) As already indicated by the computation of cohomology modules above, some prop-
erties of M are directly related to properties of the modulesnd Q, respectively, in the
corresponding resolutions @f. For example, it is easy to see thatrespectivelyQ is a
maximal Cohen—-Macawamodule if and only ifM is Cohen—Macaulay. IM has finite
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projective dimension the is Cohen—Macaulay if and only i respectivelyQ is a free
module.

If M is of pure codimension then M is locally Cohen—Macaulay if and only if it has
cohomology of finite length and this is true if and onlyFifrespectivelyQ has cohomology
of finite length. It follows that in cas#/ has in addition finite projective dimensiod, is
(locally) Cohen—Macaulay if and onlyﬁ respectivelyé is a vector bundle on Pr@g).

A further relation between the modul@$, E, Q is stated in the following result. It
generalizes [28, Lemma 3.3].

Note that the modul& in an E-type resolution of an arbitrary modulé of codimen-
sionc is always a-syzygy. If M is unmixed then it is ever + 1)-syzygy. More precisely,
we have.

Lemmab5.5. Let M bean R-module of codimension ¢ > 0 having E- and Q-typeresolution
asin Definition 5.1. Then the following conditions are equivalent:

(a) M isof purecodimension c.

(b) Q isreflexive.

(c) Eisa(c+ 1)-syzygy.

Proof. Since reflexivity and being & + 1)-syzygy can be cohomologically characterized
(cf., e.g., [28, Proposition 2.5]), our claim follows by Lemma 4.4 and the computation of
cohomology in Remark 5.2 and Lemma 5.3

Now we are ready to show that resolutiongfand N -type are interchanged by direct
m-linkage. The result generalizes Proposition 3.8 in [28].

Proposition 5.6. Let M, N be R-modules of codimension ¢ > O linked by the module C.
Suppose M hasresolutionsof E- and Q-type asin Definition 5.1 Let

O—- D~ ---—>Dyg—C—0

be a minimal free resolution of C. Put s = r(C) 4+ a(C) — r(R). Then N has a Q-type
resolution

O0— D.®Ff(—s)—> > D2®F* ;(—s) > D1® E*(—s) > Dp— N - 0
where D’C isafree R-module such that D & Fj = D., and an E-type resolution

0— D! ® Q*(—s) > De—1® G5(—s) —> -+ —> D1 ® Gi(—s) > Dg— N — 0
where D/. isafree R-module such that D @ G = D..

Proof. The proof is similar to the one of [28, Proposition 3.8]. Thus we leave out some
details which are treated there. We procéedeveral steps. We begin by showing the
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first claim starting with arfE-type resolution of¥ which we may and will assume to be

minimal.
(I) Dualizing the givenE-type resolution oM provides the complex

O-R—>F —---—F',— E"—EXtx(R/I,R)—>0

which is in fact an exact sequence.
Furthermore, we know by Lemma 2.3 that there are isomorphisms

C=ZKc(1-r(C) —a(C)) ZEXt(C, R)(—s).
Thus, the self-duality of the minimal free resolution®imeans in particular that
D} ;= D;(s) foralli=0,...,c.

(I1) Lifting the homomorphisny : C — M and using Lemma 4.1 we get a commutative
diagram with exact rows and column

0
|
Ky (1)
!
0 D, D.-1 Do C 0
\L Pc \L Pe—-1 \L %0 \L 4
0 E Fea Fo M 0.
!
0

Since theE-type resolution of\f is minimal, the homomorphismg is surjective. Thus,
its R-dualgg : Fy — Dy is split-injective.

Now, dualizing the diagram above and using step (l) we get by Definition 3.1 the com-
mutative exact diagram

0

i

0 F Fr, E* EXt4y(M,R) — 0

W ¢ i i

00— D.(s) —— -+ ——= D1(s) — Do(s) C(s) 0
| zew
N(s)

!

0
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wherey is the composition of; and an isomorphism. Hencé, is split-injective, too.
This shows that the modulgy can be split off in the resulting mapping cone (cf. [28,
Lemma 3.4]). Thus, we get the exact sequence

0— D.&®F(—s)—> = Do®F} 1(—s) > D1® E*(—s) > Do— N — 0.

For it being aQ-type resolution, it remains to show thH];(E*) =0ifn+2—c<i<n.
According to Lemma 5.5 we know that is a (c + 1)-syzygy. Hence local duality and
Lemma 3.2 provide

HIPY(E) (1—r(R)) ZExtp (E*, R) =0 if1<i<c—1.

Thus, the argument for th@-type resolution ofV is complete.

(1l1) The proof for the E-type resolution ofN is similar. We only sketch it. We may
and will assume that the give-type resolution of\f is minimal. Replacing the& -type
resolution of M by the Q-type resolution in the first diagram above and then dualizing
provides the following exact commutative diagram

0
0 G} o* G} G* EXt,(M,R) —= 0
b l l
0 — D¢(s) —> D¢-1(s) —> D¢ —> -+ — Do(s) C(s) 0
Le(9)
N(s)
0

where g is split-injective. Thus, we can split offi; in the mapping cone giving us the
desiredE-type resolution ofV. O

In order to formulate some consequences of the last result we need more notation.

Let M be anR-module of pure codimensian> 1. We have seen in Remark 5.2 and
Lemma 5.3 that the minimakt- and N-type resolution ofM are uniquely determined.
Hence, there is a well-defined mgpfrom the set ofR-modules of pure codimension
¢ > 1l into the set of isomorphism classes of finitely generdtedodules where (M) is
the class of the last module in a minim@&itype resolution of\/.

Similarly, we get a well-defined map from the set ofR-modules of pure codimension
¢ > 1 into the set of isomorphism classes of finitely generateshodules by defining
v (M) =[Q]if M has the minimalD-type resolution

0-Ge—>+-—>G2—> Q00— Go—~> M—0.
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Recall that two graded maxim&-modulesM andN are said to batably equivalent if
there are fre&R-modulesF, G and an integes such that

M®F=N(s)®G.

Itis clear that stable equivalence is an equivalence relation.
Now we are able to state the main result of this section.

Theorem 5.7. Let ¢ be a positive integer. The map ¢ induces a well-defined map @, from
the set M. of even liaison classes of modules of pure codimension ¢ into the set M¢;
of stable equivalence classes of finitely generated (¢ + 1)-syzygies being locally free in
codimension ¢ — 1.

The map v induces a well-defined map ¥, from M. into the set M“Q of stable equiv-
alence classes of finitely generated, reflexive modules N that satisfy Hi (N) = 0 for all i
withn —c+2<i <n andarelocally free in codimension ¢ — 1.

Proof. Proposition 5.6 shows that the magps and¥, do not depend on the choice of a
representative of the even liaison classMfis a module of pure codimensianthen the
localization of itsE-type resolution at a primg C R of codimensior ¢ — 1 splits. Hence
@(M) is locally free in codimension — 1. By Proposition 5.6, the same is true fb(M).
Thus, Lemmas 5.5 and 5.3 show that both m&pendy¥ are well defined. O

The result above extends the analogous result for even Gorenstein liaison classes of
unmixed ideals [28, Theorem 3.10] to even module liaison classes.

Remark 5.8. If R is just a polynomial ring over the fiel& then the statement takes a
somewhat simpler form because then every modu.l’e{f'a andM¢, is automatically even
locally free in codimension + 1. This follows from the fact that over a regular local ring
(c + 1)-syzygies are locally free in codimension- 1.

Remark 5.9. Using the notation in Theorem 5.7 we have the following commutative dia-
grams

D, v, -

M, —— M% My —— MCQ
ia lﬁ and la \Lﬁ
(pC ~ c -

whereqx is induced by linkage anfd is induced by dualization with respect b
Amasaki’s main result in [1] implies.

Lemma5.10. If R isaregular ring then the maps @ and ¥ in Theorem 5.7 are surjective.
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Remark 5.11. (i) The author expects that the pregggiresult is true without the assump-
tion R being regular. However, this requiresw arguments becaugenasaki's approach
heavily relies on the finiteness of free resolutions.

(i) It remains a major challenge to decide whether the n@&psid¥ are injective since
an affirmative answer would provide a parametrization of even module liaison classes (cf.
also Remark 6.11)

Theorem 5.7 implies, for example, that in cggd/) andy (N) are not stably equivalent
the modules\, N do not belong to the same even liaison class. This shows that there is
an abundance of even liaison classes, but that there is also some control. This will be the
topic of the following section.

We want to end this section by discussing whether the module liaison class of a given
moduleM contains a cyclic module. To this end wexall that following Bruns (cf. [5] and
[6]), a finitely generatedk-module M is said to beorientable if it has a rank, is locally
free in codimension one and there is a homomorplﬁg’ﬁ‘i‘kM M — R whose image has
codimension at least two. Note th#t is orientable if it is locally free in codimension one
and eitherR is factorial orM has finite projective dimension.

Theorem 5.7 has the following consequence.

Corollary 5.12. Let M be a module of pure codimension ¢ > 2. If thereis a cyclic module
inits even liaison classthen M isorientable.

Proof. This follows by the behavior of properties of orientable modules in exact sequences
[6, Proposition 2.8]. Indeed, ¥ is a cyclic module thew(N) is orientable. LinkingV to
another cyclic module we see thatN) is orientable, too. Now, Theorem 5.7 shows that
all modules in the liaison class & are orientable. O

The last result raises the question wheth&being orientable is not only a necessary,
but also a sufficient condition for the liaison classMfto contain a cyclic module.
6. Transfer of propertiesunder liaison

The goal of this section is to illustrate how the existence of the n@a@sd ¥ can
be used to show that cohomological and structural properties are preserved within (even)
m-liaison classes. In particular, we generalize various results of Gorenstein liaison to our
more general setting of module liaison.

We begin by discussing the local cohomology modules.
Corollary 6.1. Let M, N be modules of pure codimension c.

(@) If M and N arein the same even liaison class then thereis an integer s such that

HL (M)=HL (N)(s) foralli=0,...,n—c.
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(b) If M islocally Cohen—Macaulay and if M and N are linked in an odd number of steps
then thereis an integer s such that

HL(M)= H'M =7 I(N)Y(s) foralli=1,...,n—c.

Moreover, if M and N are (directly) linked by the quasi-Gorenstein module C then
s=1—r(C)—a(C).

Proof. Part (a) is a consequence of Theoren &d Remark 5.2. It remains to show the
second claim of (b). LeE be a representative of the isomorphism clag¥/). Then, using
also Lemma 5.3, we get

HL(E)=H. (M) ifi<n
and
HEL(E*)(r(R) —r(C) —a(C)) = HITHN) ifi<n—c+1.
Thus the claim is a consequence of local duality which provides
HL(E*) = HMPPU(E)Y (1-r(R) f2<i<n. O

Remark 6.2. (i) The last resultis an extension of the analogous result for Gorenstein liaison
classes of ideals [28, Corollary 3.13].

(i) Part (b) of the corollary above is not true if the modules are not locally Cohen-—
Macaulay. However, the intermediate colalogy modules of directly linked modules are
related though in general it seems difficult to make the relationship explicit. Chardin [12]
has some partial results in this direction for directly linked varieties of small dimension.
These results can be extended to module linkage.

Next, we consider the transfer of structural properties under module liaison.
Corollary 6.3. Let M, N be R-modulesin the same module liaison class. Then we have;

(a) M isCohen—-Macaulay if and only if N is Cohen—Macaulay.
(b) M islocally Cohen—Macaulay if and only if N hasthis property.

Proof. Claims (a) and (b) are immediate consequences of Corollary 6.1 and the fauft that
is Cohen—Macaulay, respectively localBphen—Macaulay if and only if the cohomology
modulesH}, (M), i <dimM, all vanish, respectively all have finite lengtho

A similar behavior is also true for Buchsbaum and surjective-Buchsbaum modules.
These classes of modules properly comttiie class of Cohen—Macaulay modules, but
cannot be characterized by their local cohomology modules alone. For comprehensive in-
formation about Buchsbaum modules, we refer to the monograph [35] by Stuickrad and
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Vogel. Surjective-Buchsbaum modules have been introduced by Yamagishi [36]. He ob-
served that often Buchsbaum modules are found by actually showing that they are even
surjective-Buchsbaum. Let us recall the definitions because we use them later on.

Following Yamagishi [36], theR-moduleM is calledsurjective-Buchsbaum if the nat-
ural homomorphisms, : Exti, (K, M) — Hi (M), i <dimM, are all surjective. Here
the mapsy!, are induced by the embedding:Q m — HQ(M). Since Ho(m, M) =
0 :y m this embedding also induces natural homomorphisms of derived fumﬁgrs
H'(m; M) — H; (M) whereH'(m, M) is theith Koszul cohomology module a7 with
respect tan. According to [35, Theorem 1.2.15], the module is Buchsbaum if and only
if i, is surjective for ali < dimM.

The isomorphisnHp(m; R) = R/m = K lifts to a morphism of complexes from the
Koszul complexk ®*(m; R) to a minimal free resolution of . It induces natural homomor-
phisms}J}W : Ext’k(l(, M) — H'(m; M). Summing up, we have the following commutative
diagram for all integers

Ext, (K, M)
P
A Hi (M).
/Ilf}h
Hi(m; M)

The diagram immediately shows that a surjective-Buchsbaum module is Buchsbaum. Note
that the converse is not true in general. HoweveR, i regular therk, (m; M) is a minimal
free resolution o, i.e.,

Exte(K, M) = H' (m; M).

Hence, ifR is regular then a®-module is surjective-Buchsbaum if and only if it is Buchs-
baum.

The homological characterization of these modules allows us to trace their properties
along exact sequences. As a preparation, we need.

Lemma 6.4. Let M bean R-module of codimension ¢ > 0 and let E, Q be representatives
of p(M) and v (M), respectively. Then, if one of the modules M, E, Q is Buchsbaum or
surjective-Buchsbaumthen all of them have the corresponding property.

Proof. We consider the Buchsbaum property first. Let

O-T—F—->M-—0
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be an exact sequence Bfmodules where is free. It induces the following commutative
diagram with exact rows

H'm, F) — H(m,M) — H™Ym,T) — H'"(m, F)

lw; W l v l s

H (F) —— H. (M) —— H!TW(T) ——— HITY(F).
Since the left-hand and the right-hand columns of this diagram vanish if < dim R =
n + 1 we get for every integer > 0 that the map/), is surjective for all < k if and only

if l/f} is surjective for ali < min{k + 1, n}.
Consider now thez-type resolution o

O—-E—>F,_1—>---—Fp—M-—0.

Shopping it into short exact sequences the above observation shows th&uchsbaum
if and only if E is.
Next, consider the-type resolution o

0-G.—»---—>G2—>0—>Gyg—>M—->0

where we may assume> 2. Reversing its construction in Lemma 5.3 we get the exact
sequences

O—-P—-Q0—>T—0
and
0—-T—-Gop—>M—0

where P has projective dimension— 2, thus deptl? = n + 3 — ¢. The first sequence
induces the commutative diagram

Hi(m, P) — Hi(m, Q) — Hi(m, M) — HTl(m, P)

b e e

Hl(P) — H(E) — HL (M) — HLi(P).

Using the vanishing of the cohomology ¢f in Lemma 5.3 we always have thét, is
surjective whenever + 2 — ¢ < i < n. By the depth sensitivity of the Koszul complex the
left-hand and the right-hand columns of the diagram vaniskdf + 1 — c. We conclude
that Q is Buchsbaum if and only iz% is surjective for alk < n + 1— ¢ which, by the first
observation above, is equivalenti being Buchsbaum. This completes the argument for
the Buchsbaum property.
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The proof for surjective-Buchsbaum modules is completely analogous. We just have to
replace the mag;, by ¢, everywhere in the argument abover

Now we want to use the Auslander dual in order to study Buchsbaumness and surjective-
Buchsbaumness under liaison. It allows us to simplify some arguments by avoiding the use
of derived categories.

The following result is essentially due to Stiickrad and Vogel.

Lemma 6.5. Let M be a maximal graded R-module with positive depth. Then:

(a) If M isaBuchsbaum modulethen M* isso.
(b) If M isa surjective-Buchsbaum module then M * is so.

Proof. Claim (a) is due to Stuckrad and Vogel [35, Proposition 111.1.28] as mentioned
above. We sketch how the proof can be modified to prove (b).

We may assume tha& is infinite. Then a sufficiently general linear forine R will be
a non-zero divisor olR, M, andM*. Set

M:=M/IM, R:=R/IR

and denote by < the Auslander dual o#/ as R-module.

We will show the claim by induction on+ 1 = dim M. If dim M < 1 thenM, thus also
M* is Cohen—Macaulay. If dif = 2 thenM is surjective-Buchsbaum by (a) and [29,
Lemma 4.2], because depth* > 0.

Now let dimM > 3. Then there is an isomorphism Bfmodules (cf. [35, p. 173])

M*= (M1 JHS (M ) 1M™)

where Hg(MX/lMX_) is annihilated by the maximal ideat. Since M is surjective-
Buchsbaum oveRr, M is surjective-Buchsbaum ové¥ by [36, Theorem 3.2]. Hence, by
inductionM * is a surjective-Buchsbaum module over Sincem - H]%(MX/ZMX) =0,

the isomorphism above implies that> /IM > is a surjective-Buchsbaum module over
Using [36], Theorem 3.2 again we conclude that is surjective-Buchsbaum ové&. 0O

We also need the following observation.

Lemma6.6. Let M and N bedirectly linked maximal modules. If M isnot freethen N and
M* are stably equivalent.

Proof. Let M and N be linked by the quasi-Gorenstein moddleThenC must be free
and there is an integersuch thatC = C*(¢). Hence, there is a minimal epimorphism
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7 : F — M, whereF is a free module, such that we get the following exact commutative
diagram

0
|
G
»
0 —— kerg C M 0
| Lo
0 —— kerm F M 0
|
0

whereG is a free module, too. Then, dualizing with respecitand shifting provide the
exact commutative diagram

O

0 —— M*(¢) F*(t) M*(t) ——=0
00— M*(t) N 0.

-~ QO <=—

*

G*(1)

o <—

Thus, the Snake lemma implidé= M * () & G*(¢), completing the proof. O
Now we are ready to prove.

Proposition 6.7. Let M, N be modulesin the same liaison class. Then we have:

(&) M isBuchsbaumif andonlyif N isso.
(b) M issurjective-Buchsbaumif and only if N is so.

Proof. We may assume thaf and N are directly linked by the quasi-Gorenstein mod-
uleC. If M is afreeR-module then so i®V. Thus, it suffices to consider non-free modules
M andN.
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(a) SupposeV is Buchsbaum. We distinguish two cases. First, assumeMhé a
maximal module. Then, by Lemma 6.8, is stably equivalent ta/ >, thus Lemma 6.5
gives the claim.

In this case, the linking modul€ is a free R-module. Thus, the exact sequence in
Lemma 4.1 shows that thR-dual M* of M is a Buchsbaum module, too. We will use this
fact below.

Second, assume didM < dimR. Let E be a representative @f(M) and letQ be a
representative ofy(N). Then Lemma 6.4 shows that witll also E is Buchsbaum, thus
E* is Buchsbaum by the argument above. But Proposition 5.6 provide&thend Q are
stably equivalent. Hence, using Lemma 6.4 again, we seétlimBuchsbaum.

(b) By now it should be clear how this claim is proved analogousty.

Remark 6.8. Part (a) of Proposition 6.7 generalizes the corresponding result of Schenzel
[33] for Gorenstein liaison of ideals as well as the one of Martsinkovsky and Strooker [21]
for their smaller module liaison classes.

Using E-type resolutions, Theorem 5.7 implies.

Lemma 6.9. Let M, N be modulesin the same even liaison class. Then M hasfinite pro-
jectivedimension if and only if N does.
Furthermore, M and N have the same projective dimension if it isfinite.

Note that the analogous result is not true for the whole liaison clagssfnot regular.

Abusing notation slightly, we say th&/I is acomplete intersection if 1 is generated
by an R-regular sequence. Note that every complatersection is linked to itself by Ex-
ample 3.10(i). Thus, Corollary 6.3 and Lemma 6.9 imply.

Corollary 6.10. If M ismlicci, i.e., in the m-liaison class of a complete intersection, then
M isa perfect R-module.

Remark 6.11. The converse of the last result would follow immediately if we knew that
the mapspP and¥ in Theorem 5.7 were injective. However, we will show that the converse
is true if the codimension of the complete intersection is at most one (cf. Theorem 7.1).

For modules of codimension zero, i.e., maximal modules, we can describe their even
liaison classes.

Proposition 6.12. Let M be an unmixed maximal R-module. Then the module N isin the
even m-liaison classof M if and only if M and N are stably equivalent.

Proof. Let N be a module in the even liaison classMf We want to show that/ and N
are stably equivalent. This is clearM is free. Thus, we may assume thdtis not free
and thath is linked to M in two steps. LetP be a module that is directly linked &
andN. Then, Lemma 6.6 shows that bathand N are stably equivalent t&8*, henceM
andN are stably equivalent, as claimed.
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For showing the reverse implication, I8t be a module that is stably equivalentit
Applying Lemma 3.11 withD = R and also Lemma 3.14 successively, we seeshiin
the even liaison class aff. O

Using Example 3.13, we get in case= R.
Corollary 6.13. The module N isin the m-liaison class of R if and only if it isfree.

In particular, over a fieldk there is just one liaison class &f-modules.

7. Liaison in codimension one

The goal of this section is to show that the perfect modules of codimension one form
the m-liaison class of the quotient ring Bfby a principal ideal.

Theorem 7.1. Let R be an integral domain and let a # 0 be an element of R which is not
a unit. Then an R-module M belongsto the m-liaison classof R/aR if and only if M isa
perfect R-module of codimension one.

Note that over an integral domain a module is perfect of codimension one if and only
if it has a square presentation matrix with non-trivial determinant. Thus we will deal with
square matrices in the course of the proof.

We need some preparation and a bit of notationg.ef — G be a (graded) homomor-
phism between free modules represented by the homogeneous malien we define
cokerA := cokerg.

The starting point is a special case of the result about the exchangearfd Q-type
resolutions.

Lemma7.2.Let F, G be(graded) free R-modulesof the samerankandlet v : G*(s) — F,
¢ : F — G be (graded) homomor phisms which are not isomor phisms. Choose basesfor F
and G andlet A, B bethematricesrepresenting ¢ and v, respectively. If A - B isequivalent
to a (homogeneous) symmetric matrix whose determinant is a non-zero divisor of R, then
cokerp and cokery*(s) are m-linked by cokerAB.

Proof. PutS = A - B, C = cokerS and M = cokerA. Since de#d B = detA - detB is a
non-zero divisor ofR there is a commutative diagram with exact rows

s
0——= G*(s) G C 0
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Dualizing with respect tak provides the exact eomutative diagram

t

0 G* —— F* Exth(M,R) — 0
»

| i

00— G* — G(—s) — Extk(C,R) — 0.

i

Extk (kery, R)

|

0

By assumptions is equivalent to a symmetric matrix. Hen€és a quasi-Gorenstein mod-
ule and Ex}e(C, R)(s) =C. Thus,we geLc(M)(—s) = Ext}e(kery, R) by the definition
of the linking map. Therefore, the Snake lemma implies cgkes) = L (M) completing
the proof. O

This lemma suggests to introduce the notion of linked square matrices. Here the restric-
tion to Gorenstein rings is not necessary. Thus, we are working in greater generality while
dealing with matrices.

Definition 7.3. Let R be an arbitrary ring. Then we denote the set of n matrices with
entries inR by R™" and the transpose of a matrix by A’. We say that two matrices
A, B € R™" are linked in one step ift - B' is equivalent to a symmetric matrix whose
determinant is a non-zero divisor & We call A, B linked matrices if there are matrices
A = Ag, A1,..., A, = B such that4; is linked in one step tal; 1 foralli =0,1, ...,

v — 1. If R is a graded ring then we require additionally that all the matrikgs. ., A,
are homogeneous.

It is obvious from the definition that being linked is an equivalence relation among
(homogeneous) square matrices of fixed size.

We will see that Theorem 7.1 will essentially follow from a result about linked matrices
which we prove for more general rings than Gorenstein rings. Roughly speaking, the basic
idea is to show that over an integral domain a square matrix with non-vanishing determi-
nantis linked to a diagonal block matrix with non-vanishing determinant. In order to carry
out this program we need two more preparatory results.

Lemma 7.4. Let R be an arbitrary integral domain. Furthermore, in case R = @i>O[R],~
isagraded ring assume that [R]1 isnon-trivial. Let A € R™" (n > 2) be a square matrix
with non-vanishing determinant which is homogeneous if R is graded. Then there is a
matrix A := (‘j j/) € R™" wherea € R and A’ € R" 11 such that b, ¢, detA are non-
trivial and cokerA = cokerA. Furthermore, A can be taken as a homogeneous matrix if R
isgraded and A is homogeneous.
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Proof. We have to show the existence of invertible matridgdsQ € R*" such that

A = PAQ has the required properties. Performing suitable elementary row and column
operations ord, this is clear, at least iR is not graded. It is a little more tricky iR is
graded because we have less elementary rmivcalumn operations aiur disposal. But,

for example, an induction om will work. We omit the details. O

Lemma 7.5. Let R bearing asin Lemma 7.4. Let v, w € R" be non-trivial column vec-
tors. Then there are a symmetric matrix S € R™" and an element A € R such that A # 0,
detS #0and Sv = Aw.

Furthermore, if R is graded and v = (v1,...,v,)", w = (w1, ..., w,)" are homoge-
neous such that d := degu; + degw; for all i =1, ..., n then there are homogeneous S
and X with the properties above.

Proof. We restrict ourselves to the more difficult graded case. Then, by assumption;
tains a linear fornL £ 0. Replacing all powers df by the identity provides the argument
in the non-graded case.
We begin with an observation which allows us to reduce the proof to the most compli-
cated case.
Suppose, for given vectois w € R" we have found. andS as in the statement. Con-

sider the vectors
v = (UO) ’w/: (U)O) c Rn+l.
v w

In case that bothg andwg are non-trivial, we get the desired conclusiondarw’ because
putting

Awg O Ln+l
S = < ) € R
0 Sw

we obtain
S'v' = (Avg)w’

where def’, Avg # 0.

Assume now that we hawg = wo = 0. Multiplication by S induces a homomorphism
G — G*(s) whereG is agraded fre®-module of rank: ands € Z. Sincevg = wg = 0 we
may chooselp := degug such thats — 2dp € {0, 1}. Then the conclusion of the statement
follows for v/, w’ becauses’v’ = Aw’ wheresS’ is the homogenous matrix

LS—ZdO 0
/_ n+1ln+1
S = < 0 S> €R .

Using the observation above (and possibly reordering the rows) we see that it suffices
to show the statement for vectors

v=(0,...,0,v641,...,v), w=(wqg,..., wr,0,...,0)
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wherek is an integer with X k < n and all entriesvg1, ..., vy, w1, ..., wg are non-

trivial. In this situation, we can always adjust the degrees of the entriesuwofsuch that

the degree assumption is satisfied and, in particular, we can clicaggciently large.
Now we distinguish two cases.

Case 1. Assumek > %.

Puti = vgq1- -+ - vy The corresponding product where one faatpis omitted will
be abbreviated b)bt_ € R. Consider the following matrices
J

A

Uk+1 w1
0
A
vn_g Wn—k-1
— A k,n—k
A = v—"wnfk € R
A
v_"wn—k+1
0
A
Un k
and
0 0

where D denotes the diagon&k — n) x (2k — n) matrix whosejth entry on the main
diagonal isL to the powew + degh — 2degu,—i4 ;. Here, we chosé large enough such
that all the powers of. have a non-negative exponent. It is easy to check shat a
homogeneous matrix,

Sv=Aw,

and

n—k n—k 2
0 D
detS::I:(l | * wi)-det<7A, )::i:(l | . w,'> -L°#0

ioq Uk i=q Uk
for somee € Z, whence the claim.

Case 2. Assumek < %.
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Applying Case 1 we find a matrif andi € R such that def, A # 0 andSw = Av.
Multiplying the last equation by the adjoint matrix §fwe obtain

detS-w=2x-adjS-v
which proves the claim because &dg symmetric ifS is a symmetric matrix. O
Now we are ready for the announced result about linked matrices.

Lemma 7.6. Let R bearingasinLemma 7.4 Let A= (¢ !) € R™" be a square matrix

wherea € R, ¢, b’ € R 1, A’ ¢ R"~17-1 |f detA, detd’, b, and ¢ are non-trivial then A
islinked to a square matrix (2 9).

08
Furthermore, (’6 g,) can be taken as a homogeneous matrix if R is graded and A is
homogeneous.

Proof. Putb = b - adjA’ where adjA’ denotes the adjoint matrix of’. Thenb is non-
trivial because otherwise we would get

0=b-A'=b-adjA’- A=b-detA’
which is a contradiction sinceand detd” are non-trivial by assumption. ~
Thus we can apply Lemma 7.5 and conclude that there are a symmetric fhhatRx""

and an elemerit € R such that. # 0, detS = 0 andbS = Ac'.
Now we define the matriceB € R"" andB’ € R*~17~1 py

. ~ A0
B :=adjA’-S and B’::(O B/)’

It follows that

S A Bt_(ak b'B’>

rc A B
which is a symmetric matrix because
A"-B' =A-adjA’-S=detA’- S
is symmetric and
Al =bS=b-adjA’-S=b-B
due to our choice of. Furthermore$ has non-trivial determinant since

detS = detA - 1 - def{adjA’) - detS
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and each factor on the right-hand sidenbn-trivial. Therefore, the matricesand B are
linked and we are done.O

Now we are in a position to show the main result of this section.

Proof of Theorem 7.1. One direction is clear by Corollary 6.10.

In order to show the converse, léte R"" be a presentation matrix 8f. If n = 1 there
is nothing to show. Lek > 2. According to Lemma 7.4 we may assume that (‘; :)
has the property that ¢ and detd” are non-trivial. Lemma 7.6 shows that there is a matrix
B =(} 0) whichis linked toA. In spite of Lemma 7.2 we obtain that the modulésand
cokerB are linked. By Lemma 3.11, it follows that cokRrand cokeB’ are evenly linked.
Altogether we obtain thaZ = cokerA is in the same m-liaison class as coBérThus we
conclude by induction on that M is in the m-liaison class afR/cR)(j) for somej € Z
and some: # 0. The module(R/cR)(j) is linked to (R/aR)(j) by (R/acR)(j). Now,
(R/aR)(j) andR/aR are in the same even liaison class by Lemma 3.14. This completes
the argument. O
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