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The effective vaccines developed against a variety of infectious agents, including polio, measles, and hepa-
titis B, represent major achievements in medicine. These vaccines, usually composed of microbial antigens,
are often associated with an adjuvant that activates dendritic cells (DCs). Many infectious diseases are still in
need of an effective vaccine including HIV, malaria, hepatitis C, and tuberculosis. In some cases, the induc-
tion of cellular rather than humoral responsesmay bemore important because the goal is to control and elim-
inate the existing infection rather than to prevent it. Our increased understanding of the mechanisms of
antigen presentation, particularly with the description of DC subsets with distinct functions, as well as their
plasticity in responding to extrinsic signals, represent opportunities to develop novel vaccines. In addition,
we foresee that this increased knowledge will permit us to design vaccines that will reprogram the immune
system to intervene therapeutically in cancer, allergy, and autoimmunity.
Introduction
Vaccines can be preventive or therapeutic. The word vaccination

was first used by Edward Jenner in 1796 to describe the injection

of smallpox derived from cows (L. vaccae, cow). Louis Pasteur

discovered that animals and people could be protected against

disease after exposure to attenuated microbes. Most, if not all,

preventive vaccines are designed to initiate protective humoral

immune responses. However, many pathogens, for which no

efficient vaccines are available, are still affecting mankind with

diseases such as human immunodeficiency virus (HIV)-induced

acquired immune deficiency syndrome, plasmodium-induced

malaria, virus-induced hepatitis C, andMycobacterium-induced

tuberculosis. Most of these appear to be chronic diseases for

which it is thought that strong cellular immunity, in particular

cytotoxic T cells, is necessary to eliminate the cells that are

infected with the causative agent. Thus, therapeutic vaccines

are needed to eliminate existing disease as much as prophy-

lactic vaccines that might block the initial infection. Vaccines

have yet to be developed in noninfectious settings, where they

have the potential to prevent and treat cancer, allergy, and

chronic inflammation.

A more detailed understanding of the mechanisms leading

to strong cellular immunity is necessary to enable rational

approaches to vaccine design. Two recent conceptual break-

throughs in this regard have been (1) our understanding that

dendritic cells (DCs) play a pivotal role in initiating the immune

response to foreign antigens (Figure 1) and (2) the realization

that adjuvants act primarily because they are DC activators.

Preventive vaccines are based on the concept of transitioning

from no immunity to immunity by generating new CD4+ or

CD8+ T effector cells by ‘‘priming’’ a new immune response.

Therapeutic vaccines in chronic infections (or cancer) have two

objectives: one is priming whereas the other is the modulation
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or reprogramming of memory cells, i.e., to transition from one

type of immunity to another (e.g., regulatory to cytotoxic). These

two types of vaccination might necessitate distinct approaches,

facilitated by exploiting the diversity of DCs including their

different subsets and functional plasticity.

The Challenge of Eliciting the Right Immune Response
The efficacy of vaccination is directly linked to the type and the

quality of immune responses elicited by a particular vaccine.

Indeed, generating the right class of immune response can be

a matter of life and death, perhaps best illustrated by leprosy

where the indolent tuberculoid form of the disease is character-

ized by a protective type 1 T cell (Th1 cell) response, whereas the

lepromatous form induces an often lethal type 2 (Th2 cell)

response.

The quality of CD4+ T cell immunity is essential for the quality

of effector cells such as antibody-secreting plasma cells and

cytotoxic CD8+ T cells. CD4+ T cells also appear necessary for

the efficient generation of memory CD8+ T cells (Janssen et al.,

2003; Shedlock and Shen, 2003; Sun and Bevan, 2003). CD4+

T cells display a broad spectrum of phenotypes, which is prob-

ably due to the priming by antigen-presenting cells (APCs),

most often DCs (Figure 2; reviewed in Bluestone et al., 2009).

Thus, in response to intracellular microbes, such as viruses

and certain bacteria, CD4+ T helper cells differentiate into Th1

cells, which secrete interferon-g (IFN-g). In contrast, extracellular

pathogens induce the development of Th2 cells, whose cyto-

kines (interleukin-4 [IL-4], IL-5, IL-10, and IL-13) direct immuno-

globulin E- and eosinophil-mediated destruction of the patho-

gens (Mosmann et al., 1986).

DCs regulate CD4+ T cell differentiation through a variety of

molecules that belong to three major families: IL-12, TNF, and

B7. The IL-12 family includes IL-12p70, which controls Th1 cell
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Figure 1. Dendritic Cells
DCs reside in the tissue where they are poised to
capture antigens, be it microbes or vaccines.
DCs recognize microbes (vaccines) and secrete
cytokines (e.g., IFN-a) directly through pattern
recognition receptors or indirectly through stromal
cells that sense microbes (vaccines). Cytokines
secreted by DCs in turn activate effector cells of
innate immunity such as eosinophils, macro-
phages, and NK cells. Activation triggers DC
migration toward secondary lymphoid organs
and simultaneous activation (maturation). These
migratory DCs display antigens in the context of
classical MHC class I and class II or nonclassical
CD1 molecules, which allow selection of rare
antigen-specific T lymphocytes. Activated T cells
drive DCs toward their terminal maturation, which
induces further expansion and differentiation of
lymphocytes. Activated T lymphocytes traverse in-
flamed epithelia and reach the injured tissue,
where they eliminate microbes and/or microbe-in-
fected cells. B cells, activated by DCs and T cells,
differentiate into plasma cells that produce anti-
bodies against the initial pathogen. Antigen can
also drain into lymph nodes without involvement
of peripheral tissue DCs and be captured and pre-
sented by lymph node-resident DCs. Antigen
capture by interstitial DCs (intDCs; orange) will
preferentially lead to generation of humoral immu-
nity, whereas antigen capture by Langerhans cells
(LCs; green) will preferentially lead to generation of
cellular immunity.
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responses (Macatonia et al., 1995); IL-23, which controls inflam-

matory CD4+ T cells secreting IL-17 (Th17 cells) (Weaver et al.,

2007); and IL-27, which appears to control IL-10 (Kastelein

et al., 2007). Depending on the nature and time course of activa-

tion (maturation) by different agonists, DCs can express different

molecules from the B7 family: CD80 (B7-1), CD86 (B7-2), ICOS-

ligand, PD-L1 (B7-H1), PD-L2 (B7-DC), B7-H3, and B7-H4

(Chen, 2004; Greenwald et al., 2005). The B7 family includes

members that can stimulate immune responses and others

that can inhibit them (Chen, 2004). For instance, CD80 and

CD86 bind to both CD28 and CTLA-4. Whereas CD28 delivers

signals for T cells to become effector cells, CTLA-4 delivers

inhibitory signals that suppress their functions (Krummel and

Allison, 1995). Furthermore, through its mode of action, one

molecule might promote both the effector and the regulatory

response, as exemplified by the ICOS ligand. Indeed, ICOS:

ICOS ligand interaction helps the generation of regulatory T

(Treg) cells (Ito et al., 2007) but also appears important in the

stimulation of effector T cells and T cell-dependent B cell

responses (Hutloff et al., 1999). A member of the TNF family,

OX40L (which binds to OX40), shuts down the generation of

IL-10-producing CD4+ type 1 regulatory T (Tr1) cells by DCs

(Ito et al., 2006) but induces the differentiation of proinflamma-

tory Th2 cells secreting TNF and IL-13. As we will discuss later,

DCs and IL-12 are also essential regulators of another type of

helper T cells, so-called T follicular helper (Tfh) cells, which in

turn regulate humoral immunity (Schmitt et al., 2009).

A key cell population involved in the regulation of immune

responses and homeostasis are Treg cells, which include two

major subsets: thymus-derived naturally occurring Treg cells

and periphery-induced Treg cells (Sakaguchi et al., 2010).

Peripherally induced Treg cells are thought to be derived from

naive CD4+ T cells and include Tr1 cells, which mainly produce
IL-10 (Roncarolo et al., 2001a), and Th3 cells, which mainly

produce TGF-b (Fukaura et al., 1996). In turn, TGF-b1 synergizes

with IL-21 to generate IgA-plasmablasts, thereby playing a

critical role in the development of mucosal immunity (Dullaers

et al., 2009). The functional specialization of DC subsets in gov-

erning the differentiation of distinct types of Treg cells is currently

a subject of active investigation. Peripheral Treg cells are gener-

ated by DCs that exist at the steady state, i.e., DCs that have not

been activated by microbial stimuli or inflammatory mediators

(Roncarolo et al., 2001b; Yamazaki et al., 2006). These DCs

may not simply be unstimulated or immature. Activation of the

Wnt and b-catenin signaling pathway in DCs has been shown

to promote induced Treg cell production, at least in the mouse

(Jiang et al., 2007). Similarly, in the thymus, production of thymic

stroma lymphopoietin (TSLP) is essential for selection of natu-

rally occurring CD4+CD25hi Treg cells (Watanabe et al., 2005).

Licensing Dendritic Cell Function: A Word on DC
‘‘Maturation’’
DCs exist in distinct functional states including resting and acti-

vated, also known as immature and mature. This is a key feature

of DC biology and relates to the process of DC ‘‘maturation,’’

classically described as the morphological and functional alter-

ations associated with the activation of DCs by microbial stimuli

(e.g., via Toll-like receptor [TLR] agonists) (Trombetta and Mell-

man, 2005). Under steady-state conditions, DCs in peripheral

tissues are most often described as being ‘‘immature,’’ a pheno-

type characterized by the localization of MHC class II molecules

to the late endosome-lysosomal compartment, a low surface

expression of costimulatory molecules, low expression of che-

mokine receptors that trigger migration (e.g., CCR7), and

an inability to release T cell-directed immunostimulatory cyto-

kines (Trombetta and Mellman, 2005). Particularly adept at
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Figure 2. Distinct DC Subsets Generate Distinct Types of T Cell
Immunity
DC system has two cardinal features: (1) subsets and (2) plasticity. This yields
distinct types of immunity, thereby allowing DCs to cope with protection
against a variety of microbes and maintenance of tolerance to self. Under-
standing these two features is fundamental to develop vaccines that elicit
the desired type of immune responses.
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endocytosis, immature DCs are often associated with antigen

uptake and sequestration, but not with antigen processing, the

stable accumulation of peptide-MHC complexes, or their effi-

cient presentation to T cells (Trombetta and Mellman, 2005).

Maturation, as triggered by TLR agonists, upregulates surface

MHC class II and costimulatory molecules on the DCs (Trom-

betta and Mellman, 2005) as well as promoting their migration

to draining lymph nodes. It also enhances the ability of the

DCs to interact with antigen-specific T cells, more efficient

antigen processing and presentation, and cytokine release

(Lanzavecchia and Sallusto, 2001). Thus, it is DC maturation,

triggered by adjuvants, that links the innate and antigen-specific

arms of the immune response and thus allows the adaptive

immunity to launch the response against a specific antigen

(Steinman et al., 2003). Because agonist receptors, such as

TLRs, are differentially expressed by different DC subsets and

because different receptors may trigger qualitatively distinct

forms of maturation (e.g., different patterns of cytokine release),

understanding and accounting for DC maturation will be a key

component of any attempt at rational vaccine design because

it will determine the adjuvant used.

Maturation is a simple concept rendered complex by the likeli-

hood that not all mature (or activated) DCs are equivalently

immunogenic (Figure 3). For example, under steady-state condi-

tions, particularly in lymphoid tissue, one can find DC popula-

tions that display at least some of the features of mature DCs

(e.g., elevated surface costimulatory molecules) despite the

absence of overt inflammation or infection. The functional signif-
466 Immunity 33, October 29, 2010 ª2010 Elsevier Inc.
icance of these cells is unknown but it is not unreasonable to

suspect that tolerogenic DCs may have to acquire the antigen

presentation, migratory, and T cell interaction capacity of mature

DCs in order to induce antigen-specific Treg cells or induce

anergy or T cell apoptosis at high efficiency. As mentioned

above, the priming of Treg cells either in the thymus or in the

periphery may require activation by endogenous mediators

such as TSLP or Wnt, respectively (Watanabe et al., 2005; Man-

icassamy et al., 2010). Whether thesemediators inducemorpho-

logically recognizable maturation in vivo is likely but not known.

However, it is clear that resting or immature DCs can or must be

‘‘activated’’ in some way to induce T cell tolerance; hence, it is

inaccurate to assume that the relevant steady-state DCs are

‘‘immature’’ or resting.

Virtually all DC subsets identified thus far, and discussed

below, are capable of some form of activation, even if not all of

them exhibit the dramatic cellular reorganizations observed for

myeloid and monocyte-derived DCs. Plasmacytoid DCs, for

example, do not dramatically relocalize their MHC class II mole-

cules from lysosomes to the plasma membrane, but respond

functionally (e.g., by interferon secretion) to a range of TLR

agonists to facilitate immunity (Siegal et al., 1999). Because

‘‘mature’’ is usually associated with DCs that have undergone

a morphological transition, we will use the more general term

‘‘activated’’ to describe the responses of DC subsets to adju-

vants or endogenous activators when their phenotypic status

(particularly in vivo) is unclear.

Human Dendritic Cell Subsets
Although activation or maturation is a key factor determining DC

function, the increasing number of distinct DC subsets being

recognized indicates that the distribution of labor among DC

subtypes is likely to be an equally important aspect of how

DCs regulate T cell priming. We will concentrate on DC subsets

that are associated with immunity; however, even in peripheral

tolerance induction, some subsets may be more effective than

others (Siddiqui et al., 2010). Other subsets, notably DCs in B

cell follicular regions, may be most adept at interacting with B

cells, inducing humoral immunity to unprocessed soluble

antigen trapped by these DCs (Wykes et al., 1998).

DC Subsets in Human Blood

The evolution of knowledge of DC subsets has followed parallel

tracks in mice and humans, and understanding them has

become a major focus for many investigators over the past

15 years. Humans andmice display twomajor DC types:myeloid

DCs (mDCs, also called conventional or classical DCs [cDCs])

and plasmacytoid DCs (pDCs). In mice, splenic mDCs were orig-

inally shown to comprise two major mDC subsets with marked

differences in biological function: CD8a+CD11b� ‘‘lymphoid’’

DCs and CD8a�CD11b+ ‘‘myeloid’’ DCs. CD8a+ DCs are able

to produce large amounts of IL-12 and polarize naive CD4+

T cells toward the Th1 cell phenotype, whereas CD8a�DCs pref-

erentially induce Th2 cell responses (Maldonado-López et al.,

1999). Although the study of mouse DC subsets can make

important contributions, it is crucial to do such studies with

human cells because subtle but highly relevant differences exist

between the human and mouse immune systems (Mestas and

Hughes, 2004). Thus, to successfully generate human vaccines,

we need to understand the diversity and biology of human DC
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subsets. DC subsets in the human blood can be distinguished by

differential expression of three surface molecules: BDCA-1

(CD1c), BDCA-2 (CD303), and BDCA-3 (CD141) (Dzionek et al.,

2000).

BDCA-2+ pDCs are considered the front line in antiviral immu-

nity owing to their capacity to rapidly produce high amounts of

type I interferon in response to viruses (Siegal et al., 1999).

They also express high amounts of IL-3Ra chain (CD123) and

ILT-7 (Cao et al., 2006). pDCs are composed of at least two

subsets with different functional properties (Matsui et al.,

2009). They recognize viral components and self nucleic acids

through TLR7 and TLR9, and possibly other as-yet-unidentified

receptors. In their resting state, pDCs might play an important

role in tolerance, including oral tolerance (Liu, 2005). The pDC

presents three remarkable cell biological features to counteract

viral infection: an extensive ER compartment that facilitates

high-capacity secretion of antiviral factors, including type I inter-

ferons; an early endosomal compartment containingMHCclass I

molecules that appears to permit direct vesicular MHC class I

loading for immediate activation of memory cytotoxic CD8+

T cells (Di Pucchio et al., 2008); and a late endosomal compart-

ment containing MHC class II molecules, similar to that found in

mDCs, which facilitates viral antigen presentation to CD4+

T cells. Thus, in both the MHC class I and class II pathways,

pDCs may permit a rapid initial response to viral infections by

utilizing presynthesized stores of MHC class I and II. In addition

to their specialized role in the innate immune response to viruses

(e.g., type I IFN release), pDCs are uniquely capable of rapidly

expanding viral antigen-specific CD8+ T effector cells (Di Puc-

chio et al., 2008). Thus, pDCs are poised to control the progress

of a virus infection through nonspecific blockade of viral replica-

tion by type I IFN and the specific stimulation of adaptive antiviral

responses via cytotoxic CD8+ T cells. pDCs are also critical for

the generation of plasma cells and antibody responses (Jego

et al., 2003). There, two mechanisms are employed to amplify

B cell responses: (1) type I IFN and IL-6 upon viral stimulation

(Jego et al., 2003) and (2) type I IFN-independent mechanism

that is based on their stable expression of CD70 upon CpG acti-

vation (Shaw et al., 2010). Finally, by virtue of their special

capacity for secreting type I IFN, stimulating pDCs may provide

an endogenous adjuvant that could promote the immunogenic

maturation of other DC populations. Thus, strategies designed
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to prime pDCs may form the basis of a

next generation of antiviral vaccines.

In human blood there are two types of

mDCs distinguished by reciprocal ex-

pression of BDCA-1 (CD1c) and BCDA-3

(CD141). Human CD141+ DCs represent

the human counterpart of mouse CD8+

DCs. Indeed, they share with mouse
CD8+ DCs the high capacity to capture exogenous antigens for

presentation on HLA class I molecules (‘‘cross-presentation’’),

typically reserved for the presentation of peptides from endoge-

nous antigens. CD141+ DCs also share the expression of che-

mokine receptor XCR1 and of adhesion molecule Necl2. Both

human CD141+ DCs and mouse CD8+ DCs utilize XCR1 to

migrate in response to the specific ligand XCL1, which is pro-

duced by NK cells and activated CD8+ T cells (Bachem et al.,

2010; Crozat et al., 2010). Necl2 binds to class I-restricted

T cell-associated molecule (CRTAM), a cell surface protein

primarily expressed by NK cells, NK-T cells, and activated

CD8+ T cells. Thus, mouse CD8+ DCs and human CD141+ DCs

appear well equipped for generation of CD8+ T cell immunity.

In the mouse, gene ablation studies have also shown that the

CD8+ subset plays a disproportionately important role in cross-

presentation (Shortman and Heath, 2010).

The identification of the human counterpart of mouse CD8+

DCs opens the possibility to translate into humans the knowl-

edge generated in the mouse. One should, however, trans-

late mouse data into clinical applications with a critical mind,

because 65 million years of independent evolution have brought

in many nuances that distinguish the human and the mouse

immune systems (Mestas and Hughes, 2004). For example,

other human DCs such as epidermal LCs (Klechevsky et al.,

2008) can also cross-present antigens. Thus, it remains to be

determined whether and how CD141+ blood mDCs are related

to cutaneous mDCs subsets and how all those mDC subsets

cooperate in shaping the adaptive immunity. Blood CD1c+

DCs also display a capacity to cross-present antigens and

to secrete IL-12 (Jongbloed et al., 2010; Poulin et al., 2010).

Also, even if CD141+ DCs are far more adept at cross-presenta-

tion than other DC subsets, ‘‘mass action’’ is a consideration

because CD141+ DCs represent only a small fraction (�2%) of

all DCs, at least in the blood. Thus, how these distinct blood

mDC subsets contribute to shaping immunity remains to be

established.

DC Subsets in Human Skin

In human skin, at least two different mDC subsets have been

characterized: epidermal Langerhans cells (LCs) and dermal

interstitial DCs (dermal DCs) (Valladeau and Saeland, 2005).

Over the years, dermal DCs were further subdivided into at least

two subsets: CD1a+ DCs and CD14+ DCs (Valladeau and
October 29, 2010 ª2010 Elsevier Inc. 467
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Saeland, 2005). The presence of two dermal DC subsets was

also reported in mice that display a Langerin (CD207) subset in

the dermis (Merad et al., 2008). Epidermal LCs and dermal

CD14+ DCs express different sets of molecules. In particular,

CD14+ DCs express a large number of surface C-type lectins

including DC-SIGN, DEC-205, LOX-1, CLEC-6, Dectin-1, and

DCIR. In contrast, LCs express the lectins Langerin and DCIR.

Furthermore, whereas dermal CD14+ DCs express, at RNA level,

a wide range of TLRs, including TLR-2, 4, 5, 6, 8, and 10 (Kle-

chevsky et al., 2009; van der Aar et al., 2007), LCs exhibit a

more restricted TLR expression including TLR-1, 3, 6, and 10.

Studies suggest that human CD14+ DCs induce naive T cells

to differentiate into cells with properties of Tfh cells (Klechevsky

et al., 2008). Thus, CD4+ T cells primed by CD14+ DCs are able to

induce naive B cells to produce larger amounts of IgM than those

primed with LCs. Remarkably, only CD4+ T cells primed by

CD14+ DCs induce naive B cells to switch isotypes toward IgG

and IgA. Furthermore, CD4+ T cells primed by CD14+ DCs

secrete the chemokine CXCL13, a typical chemokine secreted

by Tfh cells. Taken together, these data suggest that human

dermal CD14+ DCs are specialized for the development of

humoral responses (Klechevsky et al., 2008; Ueno et al., 2007).

Along these lines, human monocyte-derived DCs activated

with ligands of TLR-4, 5, and 7-8, heat-inactivated bacteria, or

CD40 ligand efficiently induce naive CD4+ T cells to become

IL-21 producers, which in turn induce B cells to produce Ig, in

the process mediated predominantly by IL-12 (Schmitt et al.,

2009).

LCs induce more robust proliferation of naive allogeneic CD4+

and CD8+ T cells when compared to CD14+ DCs (Klechevsky

et al., 2008). LCs are also more efficient in cross-presenting

peptides from protein antigens to CD8+ T cells and prime

CD8+ T cells of high avidity when compared to CD14+ DCs.

CD8+ T cells primed by LCs acquire more potent cytotoxicity

than those primed by CD14+ DCs and are able to efficiently kill

target cells, including tumor cell lines that express peptide-

HLA complex only at low amounts (Klechevsky et al., 2008).

Dermal CD14+ DCs showed a poor ability to induce differentia-

tion of CTL effectors. This is not due to the inability to generate

peptide-MHC class I complexes, but rather the inability to induce

the expression of the cytotoxic effector molecules (granzymes A

and B and perforin) on the differentiating T cells. The limited

ability of CD14+ DCs to cross-present proteins such as influenza

matrix protein is not due to a lower ability to process proteins in

general; these cells are indeed more potent at processing MHC

class II-restricted peptides from tetanus toxoid. Themechanistic

basis for why some DCs are more efficient at cross-presentation

remains an important unknown. One possibility is that the

increased concentrations of proteolytic enzymes found within

the endocytic compartments of monocyte-derived DCs destroy

internalized antigens before they have the chance to egress into

the cytosol (McCurley and Mellman, 2010). In general, an atten-

uated capacity for proteolysis is a key feature in enhancing

antigen processing and presentation by DCs, in both the MHC

class I and class II pathways (Delamarre et al., 2005; Trombetta

and Mellman, 2005).

Although CD14+ DCs educate naive CD4+ T cells to become

Tfh-like cells, LCs polarize naive CD4+ T cells into cells secreting

Th2 cell-type cytokines such as IL-4, IL-5, and IL-13. This is
468 Immunity 33, October 29, 2010 ª2010 Elsevier Inc.
consistent withmouse studies showing the preferential induction

of Th2 cell responses upon delivery of an antigen to the LC-rich

epidermis (Alvarez et al., 2005).

For many years, LCs have been viewed as a paradigm popu-

lation in DC biology. Induction of potent CTL response by LCs

is observed in mouse studies by subcutaneous injections of

peptide-loaded epidermal LCs (Celluzzi and Falo, 1997). Mouse

LCs can actually cross-present antigens to CD8+ T cells in vivo

(Stoitzner et al., 2006). In contrast, several mouse studies, for

example models using herpes simplex virus (HSV), have ques-

tioned the contribution of LCs to the induction of antigen-specific

responses in vivo. These studies attribute the HSV-specific

immunity to CD8a+ DCs, rather than to LCs (Allan et al., 2003).

Further ex vivo studies showed that dermal CD103+ DCs but

not dermal CD11b+ nor LCs were able to present antigens to

naive TCR-transgenic CD8+ T cells ex vivo (Bedoui et al., 2009).

In contrast, all DCs were able to present viral antigens to CD4+

T cells (Bedoui et al., 2009). These results suggest that although

the three cutaneous DC populations acquired viral antigens,

only CD103+ DCs were able to present viral antigens to CD8+

T cells. However, it remains to be determined whether these

differences with regard to the function of LCs between mice

and humans derive from the differences in their immune

systems. One further unknown is the susceptibility of these DC

subsets to virus infection, which may substantially modulate

antigen-presenting function.

Humoral versus Cellular Immunity Regulated by Two

mDC Subsets

Collectively, we hypothesize that two different components

of adaptive immunity, i.e., humoral and cellular, are preferentially

regulated by different mDC subsets, at least in the skin. Thus,

although humoral immunity is preferentially regulated by CD14+

dermal DCs, cellular immunity is preferentially regulated by LCs

(Figure 4). This idea is also supported by mouse studies showing

that dermal DCs upon activation migrate into the outer paracor-

tex just beneath the B cell follicles, whereas LCs migrate into the

T cell-rich inner paracortex (Kissenpfennig et al., 2005). Another

human skin DC subset, dermal CD1a+ DCs, are functionally

intermediate between LCs and CD14+ DCs in our hands.

Whether this DC subset shows a unique asset in the regulation

of immune responses remains to be addressed. It will also be

important to understand whether this paradigm applies to DCs

localized to other peripheral and lymphoid tissues in humans.

Plasticity of DCs and Their Precursors as Key
Determinants of Immunity
In addition to subsets with functional specialization, DCs and

their precursors (monocytes) are endowed with functional plas-

ticity (Figures 2 and 3). DC plasticity needs to be considered at

three levels: (1) response to microbial signals, (2) sensing of

tissue-derived factors, and (3) reciprocal interaction with other

immune cells.

Upon microbial invasion, DCs undergo an initial activation and

maturation process that includes (1) direct signaling by microbial

products and (2) microenvironmental signals delivered by sur-

rounding cells responding to the microbes (Reis e Sousa,

2006; Trombetta and Mellman, 2005). Pathogen-derived signals

transform resting or immature DCs into activated or mature cells

able to launch adaptive immunity. Microbial products can deliver
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signals via several molecules, PPRs, belonging to four major

families: (1) C-type lectins, (2) TLRs, (3) NOD-like receptors,

and (4) RIG-I-like receptors. These signals can differentially

modulate DC function, consequently yielding distinct immune

responses (Manicassamy and Pulendran, 2009; Takeuchi and

Akira, 2010). For example, some C-type lectins have signaling

motifs in their cytoplasmic regions and deliver activation or

suppression signals (Reis e Sousa, 2006). Similar to TLR expres-

sion, CLR expression differs between human and mouse

(Flornes et al., 2004). CLRs are also receptors for endogenous

ligands. For example, Mincle and Clec9a (DNGR-1) recognize

damaged cells, Mincle by detecting small nuclear ribonucleopro-

tein (Brown, 2008), which is released from damaged cells, and

Clec9a by detecting as yet unidentified preformed ligand(s)

exposed on necrotic cells (Sancho et al., 2009).

Similarly, different TLRs deliver different activation signals to

DCs (Manicassamy and Pulendran, 2009). Thus, Escherichia

coli lipopolysaccharide (LPS) stimulates DCs through TLR4,

inducing a Th1 cell response by IL-12 secretion, whereas Por-

phyromonas gingivalis LPS activates DCs through TLR2, induc-

ing DCs to secrete IL-10, and eventually resulting in Th2 cell

development (Manicassamy and Pulendran, 2009).

Cytoplasmic sensors include RIG-I-like receptors (the intra-

cellular receptors for RNA viruses) and NOD-like receptors

(NLRs), which are thought to recognize microbial components

(Takeuchi and Akira, 2010). NLRs, such as NALP1, NALP3,

IPAF, and NAIP5, are components of a molecular complex

called the inflammasome (Schroder and Tschopp, 2010). The

inflammasome cleaves substrates, such as pro-IL-1b and

pro-IL-18, to produce mature proteins. NOD1/2 are expressed

in the cytosol of macrophages and DCs, and NALP1 is absent

in germinal center and interstitial DCs while it is highly ex-

pressed in LCs within mucosal surfaces and skin (Schroder

and Tschopp, 2010).
The concept of plasticity or flexibility of the DC system is

further exemplified by monocytes and their response to environ-

mental signals. Thus, different cytokines skew the in vitro differ-

entiation of monocytes into DCs with different phenotypes and

function. This might in fact reflect the inflammatory pathway of

DC recruitment and generation in vivo (Domı́nguez and Ardavı́n,

2010; Geissmann et al., 2010). For example, when activated (for

example by GM-CSF) monocytes encounter IL-4, they will yield

IL-4-DCs (Romani et al., 1994). By contrast, after encounter with

IFN-a, TNF, or IL-15, activated monocytes will differentiate into

IFN-DCs (Paquette et al., 1998), TNF-DCs, or IL-15-DCs (Moha-

madzadeh et al., 2001), respectively. This spectrum of DCs

represents immunostimulatory DCs although their in vivo coun-

terparts and precise identities are unknown. Furthermore, it

has been argued that cytokine-driven DCs might not be as

potent in the generation of adaptive immunity as are the DCs trig-

gered directly via microbial signals through PRRs (Joffre et al.,

2009).

Similarly, there is a whole repertoire of DCs that have been

produced in vitro that exhibit immunoregulatory or tolerogenic

functions, for example DCs generated by culturing monocytes

with IL-10 (Levings et al., 2005) or DCs generated in the presence

of vitamin A (Zapata-Gonzalez et al., 2007) or vitamin D3 (Penna

and Adorini, 2000), or DCs activated by E-cadherin-mediated

signaling (Jiang et al., 2007). Should such diversity exist in vivo,

these DC populations might well be important in the context of

DCs’ role in maintaining peripheral tolerance. Tissue-localized

mDCs are also polarized by other cells and their products,

including IFN-a from pDCs, IFN-g from gd T cells and NK cells,

IL-4 and TNF frommast cells, IL-15 and TSLP from stromal cells,

IL-10 from lymphocytes, and Wnt ligands from various cellular

sources (reviewed in Cheng et al., 2010; Ueno et al., 2010). In

principle, these distinct DCs will induce distinct types of T cell

immunity or tolerance.
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Such plasticity is associated with distinct signaling pathways

as shown by a recent study (Arima et al., 2010). There, TSLP

via activation of NF-kB leads DCs to express OX40L, allowing

the induction of Th2 cell differentiation, whereas the activation

of signal transducer and activator of transcription 6 (STAT6) trig-

gered DCs to secrete chemokines necessary for the recruitment

of Th2 cells. In addition, TSLP signaling limited the activation of

STAT4 and interferon regulatory factor 8 (IRF-8), which are

essential factors for the production of the Th1 cell-polarizing

cytokine IL-12. This Th1 cell-inducing pathway was instead acti-

vated by TLRs and CD40 ligand. Thus, the functional plasticity of

DCs relies on elaborate signal codes that are generated by

different stimuli. As alluded to above, the DC activation or matu-

ration process is more sophisticated than just licensing DCs for

T cell stimulation; it enables DCs to sense their environment and

to assume an activated phenotype that carefully instructs the

qualitative nature of the T cell responses induced.

DCs also have a reciprocal interaction with innate immune

cells. The interaction of DCs with NK, NKT, and gd T cells can

occur in the periphery and the secondary lymphoid organs

(reviewed in Münz et al., 2005). A recent mouse study suggested

that the activation of NK cells is totally dependent on the interac-

tion with DCs at the secondary lymphoid organs (Lucas et al.,

2007). Activated NK cells enhance their cytotoxicity and capacity

to secrete IFN-g, which render DCs to induce type 1 responses

(Münz et al., 2005). Mature DCs also activate NKT and gd T cells,

inducing the secretion of IFN-g and IL-4 from NKT cells (Her-

mans et al., 2003) and IFN-g and TNF-a from gd T cells (Leslie

et al., 2002). In particular, activated NKT cells acquire the

capacity to kill tumor cells (Smyth et al., 2002). In return,

CD40L expressed on NKT cells induces the strong activation

of DCs (Münz et al., 2005).

Thus, subsets and plasticity allow DCs to cope with the chal-

lenges of their environment. These two features also dictate the

quality of the response to vaccine adjuvants and can be har-

nessed for improved vaccination.

Targeting of Dendritic Cell Subsets to Improve Vaccines
Translating the accumulating knowledge on DC subsets and

their unique functional attributes into the design of novel

vaccines is becoming an exciting topic in human immunology.

Active immunization has long been a successful strategy for

the prevention of infectious diseases. The question now is how

to capitalize on our new understanding of DCs to improve

vaccines to the point where they can now also be used more

effectively as therapeutic strategies.

Antigens can be delivered directly to DCs in vivo by using

various types of fusion proteins including cytokines (for example

GM-CSF), chemokines, and toxins, or more specifically anti-

bodies against specific DC surface receptor(s). Studies in mice

demonstrate that the specific targeting of antigen to DCs

in vivo results in considerable potentiation of antigen-specific

CD4+ and CD8+ T cell immunity. The induction of immunity is

observed only when a DCmaturation signal was provided (Boni-

faz et al., 2002; Hawiger et al., 2001); otherwise, tolerance

ensued (Hawiger et al., 2001). Furthermore, in vivo targeting of

murine DC subsets revealed intrinsic differences in antigen pro-

cessing and presentation of different populations (Dudziak et al.,

2007). As discussed earlier, the CD8+CD205+ population was
470 Immunity 33, October 29, 2010 ª2010 Elsevier Inc.
found to be more adept at cross-presentation of exogenous

antigen on MHC class I than the CD8–33D1+ DC population,

which was somewhat more efficient at MHC class II presenta-

tion. Would targeting antigens to the CD205+ DCs be more effi-

cient at generating CD8+ T cell responses? How do the mouse

studies relate to the human immune system?

Targeting LCs for antigen delivery may be an optimal strategy

for the induction of potent antigen-specific CTL responses.

LC-specific molecule, such as Langerin, can be used as a target

DC receptor (Idoyaga et al., 2008). Dermal CD14+ DCs might

represent the appropriate target for the induction of potent

humoral responses (Figure 4). Selection of an appropriate adju-

vant is also a critical parameter for the induction of the immunity

of the desired type. For example, although TLR-ligands are

widely considered to promote protective immunity against

infectious agents, selecting the appropriate ligand will be critical.

For instance, TLR2 ligation, which promotes the induction of

Treg cells rather than Th1 or Th17 cells (Manicassamy et al.,

2009), does not appear to be a preferred option for cancer

vaccines. Thus, the challenge is tomatch themolecular target on

DCs with the desired immune outcome, mimicking in many ways

the natural role of these DC receptors to fine tune responses

appropriate to the infection. Another strategy to target DCs is

the usage of probiotic lactic acid bacteria to target mucosal

DCs in the gut upon oral administration. Genetic manipulation

of such bacteria could allow coupling of antigen expression

and adjuvant effect of microbial products (Mohamadzadeh

et al., 2008).

DCs originating from a specific tissue have the capacity to

instruct T cells to home back to that tissue (Mora et al.,

2003), and different DC subsets might provide even more

detailed instructions. Furthermore, DCs activated by different

adjuvants could induce T cells with entirely different migration

properties. Addressing this aspect is critical for the design

of vaccines, where optimal sites for T cell migration may vary

in different disease states. For example, whereas vaccines

against melanoma are expected to induce T cells that migrate

into tumor sites including skin, vaccines against influenza virus

are desired to induce T cells to migrate into airway mucosal

surfaces. Therefore, multiple parameters need to be considered

for the development of DC targeting vaccines. These include:

(1) biological function of target DC subsets (induction of

humoral versus cellular immunity), (2) the tissue distribution

and receptors expressed by the target population to ensure

antigen delivery, and (3) the activation receptors expressed

by a given DC subset so as to guide the choice of adjuvant.

Thus, a more complete understanding of the human DC subset

biology will be necessary for the next generation of efficient

DC-based vaccines. Other essential components of a success-

ful vaccine are the selection of antigen and its formulation.

These issues will be discussed below in the context of thera-

peutic cancer vaccines.

Therapeutic Vaccines in Cancer
The prospect of DC-targeted vaccines for the treatment of infec-

tious disease seems promising. Recently, active immunization

against an infectious agent hasbeen shown tohold great promise

in cancer, namely the prevention of HPV-positive cervical cancer

by vaccinating with a recombinant viral capsid protein (Harper
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et al., 2006).Unfortunately, the vastmajority of humancancers do

not have an obvious etiologic agent, so vaccine approaches in

oncology would have to be therapeutic. In cancer, however,

this task comes with a number of special challenges. First and

foremost, most cancer antigens are nonmutated self-proteins

and thus the repertoire is depleted of high-avidity clones through

negative selection (Finn, 2003). As a result, tolerance must be

overcome, and overcome in the context of patients whose

tumors often induce a tolerogenic milieu.

Numerous approaches for the therapeutic vaccination of

humans with cancer have been developed including autologous

and allogeneic tumor cells (which are often modified to express

various cytokines), peptides, proteins, and DNA vaccines (Fig-

ure 5; reviewed in Dougan and Dranoff, 2009). The observed

results have been variable, yet in many cases, a tumor-specific

immune response could be measured. The clinical efficacy of

therapeutic vaccination in cancer has been questioned (Rosen-

berg et al., 2004) because of the limited rate of objective tumor

regressions observed in clinical trials. At least two issues need

to be considered: (1) the quality of immune responses that these

early cancer vaccines were capable of eliciting and (2) definitions

of clinical endpoints allowing assessment of efficacy.

Concerning the first point, the vast majority of early attempts

at cancer vaccines were performed in the absence of any firm

understanding of DCs or their role in immunization. The targeting

ofuntargetedpeptides,often inweakor ineffective adjuvants,was

(and still is, even in some large ongoing clinical trials) common-

place. It should be clear that such approaches should have had,

a priori, a low likelihood of even generating a robust immune

response, much less one that is therapeutically protective.

Concerning the second point, defining clinical endpoints, the

use of conventional RECIST (response evaluation criteria in solid

tumors) measures to judge efficacy has been challenged by

recent clinical trials testing anti-CTLA4 (ipilumimab) in patients

with stage IV melanoma. There, in a randomized phase III clinical

trial, a 2-fold improved overall survival in patients who received

anti-CTLA4 was observed, but without early indications of tumor

shrinkage (Hodi et al., 2010). In another indication an active
immunotherapy product, sipuleucel-T (APC8015), based on the

PBMCs activated with a fusion protein of prostate cancer

antigen such as prostatic acid phosphatase PAP with GM-

CSF, resulted in approximately 4 month-prolonged median

survival in phase III trials in patients with prostate cancer (Higano

et al., 2009). In both studies, the analysis of survival curves

shows the separation only after 4–6months, suggesting a certain

delay in the treatment effect, just as one would expect if efficacy

could occur only after the induction or redirection of antitumor

immunity. Many questions remain concerning the therapeutic

mechanisms underlying the results obtained in these trials. Yet,

these studies will help define the basic principles of active immu-

notherapy that set this treatment modality apart from chemo-

therapy, radiotherapy, targeted therapies, and even adoptive

T cell transfer.

Unlike what happens when conventional cytotoxic therapies

are used, the time in which it takes to build tumor immunity

tumors might progress before they actually regress, and tumors

might appear clinically enlarged because of inflammation asso-

ciatedwith active immune responses and lymphocyte infiltration.

Thus, the clinical oncologist’s and drug developer’s expectation

of instantaneous tumor ‘‘melting’’ may have to be managed, as

may also be the case even for many ultimately effective non-

immune-based targeted therapies. Although it may be tempting

to conclude that overall survival may be the only true parameter

of clinical efficacy, such a situation would greatly impede prog-

ress and patient access to new therapies because survival-

based trials can be exceedingly long and costly. The need for

modernized objective, quantifiable response criteria cannot be

overemphasized. In this context, a number of studies demon-

strated in small groups of patients with cancer that a success

or failure of therapeutic vaccination is correlated with the expan-

sion of antigen-specific effector T cells (Paczesny et al., 2004;

Welters et al., 2010). Patients who fail are those in whomantigen-

specific CD4+CD25+Foxp3+ regulatory T cells outnumber the

antigen-specific effector T cells (Welters et al., 2010). Thus,

antigen-specific immune responses should remain among the

key parameters of efficacy. A better understanding of how
Immunity 33, October 29, 2010 ª2010 Elsevier Inc. 471
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effective vaccines, for example influenza vaccine or yellow fever

vaccine, stimulate protective immune responses (Gaucher et al.,

2008; Querec et al., 2009) might contribute to a better under-

standing of immune parameters of vaccine efficacy in cancer

and chronic infections. Indeed, engineering vaccines to precisely

target pathogens and cancer cells requires establishing the laws

of immunity (Yewdell, 2010).

Cell-Based Vaccines

Ex vivo-generated DCs have been used as therapeutic vaccines

in patients with metastatic cancer for more than a decade and

early studies have been reviewed elsewhere (Palucka et al.,

2007). Importantly, a number of clinical studies have shown

that DCs can expand T cells specific for nonmutated self

proteins that are overexpressed in cancer. The analysis of immu-

nological and clinical responses yields three patient groups: (1)

one with no response, (2) one with immunological response

but no clinical responses, and (3) one with both immunological

and clinical responses. This third group is currently the smallest

one but these patients are essential and they need to be studied

in-depth because they will eventually permit us to understand

the immune mechanisms that need to be established to control

tumor growth and eliminate established tumors.

From the analysis of vaccinated patients, four parameters

emerge as critical to understanding whether a vaccine-induced

immune response can be protective: (1) the quality of elicited

CTLs, (2) the quality of induced CD4+ helper T cells, (3) the elim-

ination and/or nonactivation of Treg cells, and (4) the breakdown

of the immunosuppressive tumor microenvironment. Indeed,

CD8+ T cells play important roles in clearance of tumor cells

and infected cells and are the actual drug elicited by vaccines.

The immune responses elicited by the first-generation DC

vaccines might not be of the quality required to allow the rejec-

tion of bulky tumors. For example, the induced CD8+ T cells

might not migrate into the tumor lesions (Appay et al., 2008;

Harlin et al., 2009). Furthermore, low-avidity CD8+ T cells might

not be able to recognize peptide-MHC class I complexes on

tumor cells and/or to kill them (Appay et al., 2008). Finally, the

tumor microenvironment might inhibit effector CD8+ T cell func-

tions, for example, through myeloid-derived suppressor cells

and Treg cells (for review see Gabrilovich and Nagaraj, 2009).

In this context, the quality of CD4+ T cells also represents

a parameter essential for the outcome of immune response.

CD4+ T cells can contribute to antitumor immunity (Pardoll and

Topalian, 1998) through different mechanisms including (1)

provision of help in the expansion of tumor antigen-specific

CTLs (Antony et al., 2005), (2) activation of macrophages at

tumor sites (Corthay et al., 2005), (3) active killing of tumor cells

(Quezada et al., 2010), and (4) the induction of long-termmemory

CD8+ T cells (Sun and Bevan, 2003). However, CD4+ T cells can

also be detrimental, be it in the form of Treg cells that might

dampen elicited CD8+ T cell responses (Roncarolo et al.,

2001a) or protumor type 2 cytokine-secreting CD4+ T cells that

counteract antitumor immunity by promoting tumor develop-

ment (Aspord et al., 2007) and/or by polarizing tumor-associated

macrophages (DeNardo et al., 2009).

The recent progress in immunomonitoring of specific immune

responses in the blood (Palucka et al., 2006) and at the tumor site

should help us address these questions. Modern approaches

including polychromatic flow cytometry rather than the analysis
472 Immunity 33, October 29, 2010 ª2010 Elsevier Inc.
of a single cytokine (e.g., IFN-g ELISPOT) and/or frequency of

tetramer-positive cells will contribute to a better assessment of

the quality of the immune responses elicited in the patients

(Seder et al., 2008). Indeed, several studies, mostly performed

in the context of HIV vaccines, have led to the conclusion that

a mere measurement of the frequency of IFN-g-secreting CD8+

T cells is insufficient to evaluate the quality of vaccine-elicited

immunity (Appay et al., 2008).

Antibody-Based Vaccines

The experimental success of using DC-specific antibodies to

target antigens to individual DC subsets in conjunction with

appropriately chosen adjuvants has appealing potential for

the design of anticancer vaccines. Combined with a powerful

adjuvant, vaccinating with one or multiple tumor-derived anti-

gens coupled to DC-specific antibodies may amplify existing

responses or break tolerance, enabling the generation of protec-

tive responses. Because such responses would have to beMHC

class I restricted, the approach might be more efficient if

directed at DC populations adapted for cross-presentation,

together with adjuvants that will activate their particular TLRs.

Studies to date demonstrate the targeting of tumor antigens to

DCs and LCs (Flacher et al., 2009) and the generation of thera-

peutic antitumor immunity (Sancho et al., 2008) in animal

models. The BDCA3+ subpopulation of myeloid DCs, as the

likely human homolog of the CD8a+ DC subpopulation, may

be of special interest with respect to their potential for priming

CD8+ T cell responses.

Furthermore, targeting both tumor and control antigens to

human DCs ex vivo can lead to efficient antigen presentation

and generation of CD4+ T cell (Birkholz et al., 2010) and CD8+

T cell (Bozzacco et al., 2007; Klechevsky et al., 2010) responses.

Importantly, certain lectins, including Dectin-1, LOX-1, and DC-

SIGN, as well as other DC surface molecules (e.g., CD40), also

provide activation signals (Brown, 2006; Delneste et al., 2002;

Figdor et al., 2002; Geijtenbeek et al., 2004). They can thus be

exploited for both antigen delivery and activation pathway in

a single targeted vaccine. The therapeutic success of these

vaccines will build on the recent knowledge and progresses in

our understanding of the biology of human DC subsets, cuta-

neous mDCs in particular.

A major challenge of this approach will be achieving not just

T cell responses, but T cell responses that are sufficiently robust

and long lasting so as to be clinically active. In the case of

cancer, however, it will be possible to treat patients repeatedly

and with more aggressive adjuvant combinations than is tradi-

tionally the case when developing prophylactic vaccines for

infectious agents. In addition, it will almost certainly be beneficial

to combine any such vaccination approaches with other agents,

both immune and nonimmune, as discussed below.

Other antigen delivery systems are also under active investiga-

tion, particularly viral vector based. However, less is known

regarding how such vectors enable antigen and adjuvant

delivery to DCs.

The Problem of Antigen Selection

Another major challenge remains the selection of antigen. The

problem is relatively straight forward for prophylactic vaccines,

assuming one understands which epitopes are neutralizing,

expressed during human infection, and immunogenic. In the

case of cancer antigens, the choice is less clear.
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Candidate tumor antigens include (1) unique (mutated) anti-

gens and (2) shared self-antigens (Parmiani et al., 2007). The

choice between these types of antigens for vaccination could

be viewed as choice between inducing immunity (mutated anti-

gens, antigens not expressed during negative selection in the

thymus) or breaking tolerance and inducing autoimmunity (over-

expressed antigen, differentiation antigens). The debate about

which type of antigen will be most effective is still open and will

probably remain open until optimized delivery vehicles and adju-

vants are developed for use in humans. The presumed advan-

tages of mutated antigens are based on their potential to be

recognized as non-self by the immune system and their potential

resistance to negative selection in case the mutated protein is

essential for cell survival, such as the B-Raf V600E epitope in

melanoma (Parmiani et al., 2007). Furthermore, mutated anti-

gens may select T cell receptors of higher affinity than shared

antigens (resulting from the absence of thymic-negative selec-

tion) and minimize the prevalence of antigen-specific Treg cells

(unless the tumor has already induced self-tolerance in the

periphery) (Parmiani et al., 2007).

An example of a very potent antitumor and autoreactive

response against self-antigen is provided by studies on paraneo-

plastic diseases and onconeuronal antigens (Darnell, 1994).

Onconeural antigens that are normally expressed in immune

privileged sites, such as neurons, can also be expressed in

some cases of breast and ovarian cancer. In these patients a

strong antigen-specific CD8+ T cell response is generated

(Albert et al., 1998), which provides effective tumor control but

also autoreactive neurologic disease, paraneoplastic cerebellar

degeneration. It is also the case that in melanoma patients, the

existence of robust T cell responses to tumor-associated anti-

gens (even shared antigens) is common (Nagorsen et al., 2003).

Thus, immunity has occurred, it is just not protective, because of

either T cell anergy or Treg cell prevalence. The example proves,

however, that it is possible to generate T cell responses, even

endogenously, to tumor antigens. Indeed, recent results have

demonstrated that antigen-specific T cells accumulate within

tumor beds in melanoma patients (Rosenberg and Dudley,

2009). A vaccine would try to amplify or redirect these responses

to therapeutic efficacy.

Various groups have attempted to rank the potential of the

numerous cancer-associated antigens that have been described

to date (Cheever et al., 2009). In the absence of objective data in

humans, it is difficult to make such assessments, so another

approach has been to score either the expression of genes giving

rise to tumor antigens or the physical presence of individual

peptide-MHC class I complexes expressed at the surface of

tumor cells. To obtain optimal coverage, even for a tumor in an

individual patient, it may be necessary to immunize with several

antigens simultaneously, although a single strong response

may be sufficient. It is also possible that the best antigens will

not be abundant as peptides at the tumor cell surface, and

therefore not detectable by biochemical approaches. Absent

approaches that enable the DC targeting of complex mixtures

of tumor antigens, it seems most reasonable to begin this effort

by using those antigens that can be objectively identified in the

hope that improved delivery approaches and adjuvants will yield

positive, protective immune responses. Focused preclinical and

clinical studies should be employed to test this hypothesis.
Thus far, most focus has been placed on protein antigens

whose peptides can be presented on the cell surface in

complexes with classical MHC molecules (Townsend et al.,

1985). However, tumors also express altered lipids and sugars

that are presented by CD1 molecules (Hava et al., 2005). These

can also be harnessed for improved vaccination, for example

NKT cells that are thought to recognize lipid antigens can

generate protective response with IFN-g secretion (Fujii et al.,

2002). Accordingly, injection of cancer patients with DCs loaded

with NKT cell ligand alpha-galactosyl-ceramide leads to sus-

tained expansion of antigen-specific T cells (Chang et al., 2005).

A potentially interesting approach in the selection of antigen

targets is suggested by the possibility that tumors are main-

tained by specialized subpopulations of ‘‘cancer stem cells’’

(Lobo et al., 2007). Although the definition and identity of these

cells remains highly controversial, tumor cells that routinely

survive conventional chemotherapy or targeted therapies are

the ones that are responsible for tumor relapse and death.

If these cells have special properties, or even if not, combining

vaccine approaches with nonlymphoablative front line therapies

may provide an optimal setting for generating protective immune

responses.

Antigen Formulation

An additional important problem is the form of antigen that

should be delivered in the context of a vaccine, either preventa-

tive or therapeutic. Although peptides have often been used for

immunization, as free entities, peptides have poor pharmacoki-

netic properties and are rapidly cleared. Coupling them to

carriers helps somewhat, but chemical or genetic coupling to

DC-targeted antibodies would appear the most efficient

approach to get them to their required destinations. The use of

peptides, of course, may presuppose the identification of rele-

vant T cell epitopes, so conceivably the use of proteins may be

preferable, or protein-peptide mixtures contained within an anti-

body-targeted carrier device (e.g., nanoparticle), which would

enable the use of multiple potential antigens. In this context,

recent studies indicate improved immunogenicity when viral

antigens from HPV (Kenter et al., 2009) or HIV (Pialoux et al.,

2001) are delivered in the form of long peptides together with

adjuvants.

A further consideration is antigen stability. DCs exhibit a

remarkably attenuated capacity for protein degradation, which

serves to extend the longevity of internalized antigens, enabling

a constant supply of endogenously produced peptides for

loading on to bothMHC class I and class II molecules (Delamarre

et al., 2005). The simple rule, then, is that antigens (even endog-

enous ones) that are long lived are generally better than antigens

that are more rapidly degraded (Delamarre et al., 2006). The

extracellular and intracellular fates of antigens therefore will

matter, and attention needs to be paid toward providing admin-

istered antigens in a form that maximizes half life.

Are DCs Enough?
In view of the remarkable diversity of suppressive pathways

present in patients with metastatic cancer, any durable clinical

response elicited by vaccination is already an achievement.

However, to improve the outcomes, DC vaccines need to be

combined, in particular for patients at advanced stages, with

other therapies that offset the suppressive tumor environment
Immunity 33, October 29, 2010 ª2010 Elsevier Inc. 473
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(Dougan and Dranoff, 2009; Melief, 2008). Such combination

regimens will involve several intervention strategies that target

different pathways. In particular, blocking antibodies or soluble

receptors can be exploited for the blockade of suppressive cyto-

kines in the tumor microenvironment, for example IL-10 (Moore

et al., 2001), IL-13 (Terabe et al., 2000), or TGF-b (Li et al.,

2006). Tumor cells can often express surface molecules that

inherently suppress T cell activity, notably PD-L1, which comes

up especially in tumors that express oncogenic mutations in the

PI3-kinase pathway. Antibodies to PD-1 on activated T cells, or

to PD-L1, might thus reverse T cell exhaustion or anergy (Pilon-

Thomas et al., 2010), and in early clinical studies, treatment with

anti-PD1 exerts some beneficial clinical effect (Brahmer et al.,

2010). It is a common observation in melanoma (and other

cancers) that patients exhibit pre-existing T cell responses

without a vaccine ever having been purposefully administered.

These T cells are not protective, or at least not sufficiently

protective, despite the fact that they can often be recovered

from tumor beds (Rosenberg and Dudley, 2009), suggesting

that reactivation strategies may be useful on their own.

These examples emphasize that DCs may not be enough, and

in some cases, may not even be strictly necessary, at least from

the treating physician’s point of view. An endogenous vaccine

may be created by necrotic or apoptotic death of tumor cells

after chemotherapy or targeted therapy, where tumor antigens

released in conjunction with ‘‘danger signals’’ from the dying

cells are internalized by infiltrating DCs and then presented to

T cells. A further therapeutic vaccine may help amplify these

responses, or perhaps retool them to bemore immunoprotective

than immunoregulatory, but a more effective approach in such

instances might be to target the T cells themselves. This is the

goal of anti-CTLA4-based therapies (Peggs et al., 2009).

Conceivably, antibodies to PD1-PDL1 might also achieve this

goal, and in a fashion with less autoimmune toxicity, because

only those T cells encountering their cognate antigen in the

context of PD1-PDL1 interactions would be stimulated.

Just as different tumors are currently treated with different

combinations of cytostatic drugs and targeted therapies, we

foresee the development of clinical protocols combining DC

vaccines with individualized adjunct therapies, most probably

those involving nonlymphoablative cytotoxic or targeted thera-

pies (Figure 5). In melanoma, the recent demonstration of

dramatic but transient responses in patients expressing the

V600E oncogenic mutation with a specific B-Raf inhibitor (Boni

et al., 2010) creates a remarkable opportunity to implement

just such combination therapies. For such complex therapies

to be designed rationally, however, careful attention will have

to be paid to profiling the immunological status of individual

patients and their tumors before, during, and after therapy.

Patient selection and immunological markers attesting to the

effects of a given therapeutic attempt will be key to under-

standing why an approach does or does not work.

We Have a Dream
Studies performed in the last decade have highlighted the

commonalities and uniqueness of the various DC subsets. This

new knowledge represents a fertile ground to work on to design

better strategies for intervening in numerous clinical situations.

The capacity of LCs and CD14+ DCs to preferentially prime
474 Immunity 33, October 29, 2010 ª2010 Elsevier Inc.
cellular immunity and humoral immunity, respectively, has signif-

icant implications, most particularly in the context of novel

human vaccines. Thus, targeting LCs will be important for the

design of vaccines that aim at eliciting strong cellular immunity.

Such vaccines might be particularly useful at preventing,

and perhaps even treating, chronic diseases including viral

(HIV, hepatitis C virus), bacterial (mycobacteria), and parasitic

(malaria) diseases, as well as cancer. Themost efficient vaccines

might actually be those that will target both CD14+ DCs and LCs,

thereby allowing the maximal stimulation of both humoral and

cellular immune responses. In this regard it is intriguing to con-

sider that one of the most effective vaccines, smallpox vaccine,

acts through a combination of strong cellular and humoral

immunity and requires scarification of the skin, a procedure

that injures both epidermis and dermis and that is likely to mobi-

lize and activate LCs as well as dermal DCs. Likewise, one of the

most potent vaccines ever generated against yellow fever

(YF17D) activates multiple DC subsets (Querec et al., 2006)

and leads to integrated immune response that includes both

humoral and cellular immunity (Gaucher et al., 2008).

We foresee that the improved vaccines that target DCs will

permit us to treat and prevent many chronic diseases, and like-

wise, manipulation of DCs will also permit us to dampen overly

enhanced immune responses as occurs in allergy and autoim-

munity possibly by turning on regulatory mechanisms.
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N., Tripp, C.H., Douillard, P., Leserman, L., Kaiserlian, D., et al. (2005).
Dynamics and function of Langerhans cells in vivo: Dermal dendritic cells colo-
nize lymph node areas distinct from slower migrating Langerhans cells. Immu-
nity 22, 643–654.

Klechevsky, E., Morita, R., Liu, M., Cao, Y., Coquery, S., Thompson-Snipes, L.,
Briere, F., Chaussabel, D., Zurawski, G., Palucka, A.K., et al. (2008). Functional
specializations of human epidermal Langerhans cells and CD14+ dermal
dendritic cells. Immunity 29, 497–510.

Klechevsky, E., Liu, M., Morita, R., Banchereau, R., Thompson-Snipes, L.,
Palucka, A.K., Ueno, H., and Banchereau, J. (2009). Understanding human
myeloid dendritic cell subsets for the rational design of novel vaccines.
Hum. Immunol. 70, 281–288.

Klechevsky, E., Flamar, A.L., Cao, Y., Blanck, J.P., Liu, M., O’Bar, A., Agouna-
Deciat, O., Klucar, P., Thompson-Snipes, L., Zurawski, S., et al. (2010). Cross-
priming CD8+ T cells by targeting antigens to human dendritic cells through
DCIR. Blood 116, 1685–1697.

Krummel, M.F., and Allison, J.P. (1995). CD28 and CTLA-4 have opposing
effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–465.

Lanzavecchia, A., and Sallusto, F. (2001). Regulation of T cell immunity by
dendritic cells. Cell 106, 263–266.

Leslie, D.S., Vincent, M.S., Spada, F.M., Das, H., Sugita, M., Morita, C.T., and
Brenner, M.B. (2002). CD1-mediated g/d T cell maturation of dendritic cells.
J. Exp. Med. 196, 1575–1584.

Levings, M.K., Gregori, S., Tresoldi, E., Cazzaniga, S., Bonini, C., and Roncar-
olo,M.G. (2005). Differentiation of Tr1 cells by immature dendritic cells requires
IL-10 but not CD25+CD4+ Tr cells. Blood 105, 1162–1169.

Li, M.O., Wan, Y.Y., Sanjabi, S., Robertson, A.K., and Flavell, R.A. (2006).
Transforming growth factor-beta regulation of immune responses. Annu.
Rev. Immunol. 24, 99–146.

Liu, Y.J. (2005). IPC: Professional type 1 interferon-producing cells and plas-
macytoid dendritic cell precursors. Annu. Rev. Immunol. 23, 275–306.

Lobo, N.A., Shimono, Y., Qian, D., and Clarke, M.F. (2007). The biology of
cancer stem cells. Annu. Rev. Cell Dev. Biol. 23, 675–699.

Lucas, M., Schachterle, W., Oberle, K., Aichele, P., and Diefenbach, A. (2007).
Dendritic cells prime natural killer cells by trans-presenting interleukin 15.
Immunity 26, 503–517.

Macatonia, S.E., Hosken, N.A., Litton, M., Vieira, P., Hsieh, C.-S., Culpepper,
J.A., Wysocka, M., Trinchieri, G., Murphy, K.M., and O’Garra, A. (1995).
Dendritic cells produce IL-12 and direct the development of Th1 cells from
naive CD4+ T cells. J. Immunol. 154, 5071–5079.
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