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We solve viscous Burgers’ equation using a fast and accurate algorithm—referred to here as
the reduction algorithm—for computing near optimal rational approximations.
Given a proper rational function with n poles, the reduction algorithm computes (for a
desired L∞-approximation error) a rational approximation of the same form, but with a
(near) optimally small number m � n of poles. Although it is well known that (nonlinear)
optimal rational approximations are much more efficient than linear representations of
functions via a fixed basis (e.g. wavelets), their use in numerical computations has been
limited by a lack of efficient, robust, and accurate algorithms. The reduction algorithm
presented here computes reliably (near) optimal rational approximations with high
accuracy (e.g., ≈ 10−14) and a complexity that is essentially linear in the number n of
original poles. A key tool is a recently developed algorithm for computing small con-
eigenvalues of Cauchy matrices with high relative accuracy, an impossible task for standard
algorithms without extended precision.
Using the reduction algorithm, we develop a numerical calculus for rational representations
of functions. Indeed, while operations such as multiplication and convolution increase the
number of poles in the representation, we use the reduction algorithm to maintain an
optimally small number of poles.
To demonstrate the efficiency, robustness, and accuracy of our approach, we solve Burgers’
equation with small viscosity ν . It is well known that its solutions exhibit moving
transition regions of width O(ν), so that this equation provides a stringent test for adaptive
PDE solvers. We show that optimal rational approximations capture the solutions with high
accuracy using a small number of poles. In particular, we solve the equation with local
accuracy ε = 10−9 for viscosity as small as ν = 10−5.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

We solve viscous Burgers’ equation using a fast and accurate algorithm for constructing rational approximations with
(near) optimally small L∞ error. When the viscosity ν is small, solutions of Burgers’ equation develop sharp (moving)
transition regions of width O(ν), which presents a challenge for standard numerical methods. Although solving viscous
Burgers’ equation is primarily of academic interest, it allows us to demonstrate the efficiency, accuracy, and robustness of
using optimal rational approximations for numerical computations. Our ultimate goal is to develop nonlinear approximation
methods for solving partial differential and integral equations in higher dimensions, where the ability to construct near
optimal rational (or exponential) approximations to functions of one variable is a key component.
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Since the seminal result in [22], it has been known that functions with singularities may be efficiently approximated
in the L∞ norm using proper rational functions. Indeed, the number of poles required to approximate a function with
singularities is directly related to the sparsity of the function’s wavelet coefficients (see [17, Theorem 11.1]). However,
in contrast to more traditional L2-type methods (using e.g., wavelet bases as in [2]), the use of such optimal L∞-type
approximations in numerical analysis has been limited due to a lack of efficient and robust algorithms.

Given a proper rational function f , we present an algorithm—which we refer to as the reduction algorithm—to compute,
for a fixed number of poles, a rational approximation g to f with a (near) optimal L∞ error. We use the reduction algorithm
to develop a numerical calculus based on rational functions. Although operations such as multiplication and convolution
increase the number of poles in the representation, we use the reduction algorithm afterwards to keep the number of poles
optimally small for a specified accuracy. A salient feature of this approach is that optimal rational approximations efficiently
represent functions with singularities or sharp transitions, and that positions of the poles are directly associated with the
locations of singularities [5].

Our reduction algorithm relies on theory developed by Adamyan, Arov, and Krein1 [1] (referred below as AAK) for
constructing optimal approximations in the L∞-norm using meromorphic functions with a specified number of poles in
the unit disk. In particular, let f denote a real-valued (periodic) rational function with n pairs of complex poles γ j , 1/γ j
(|γ j| < 1) and coefficients α j , α j . Then it turns out (see Appendix A.1) that a (near) optimal rational approximation g ,
containing exactly m poles in the unit disk, may be obtained from the mth con-eigenvector um of the associated n × n
Cauchy matrix Cij = √

αi
√

α j/(1 − γiγ j). Moreover, the approximation error satisfies ‖ f − g‖∞ ≈ λm , where λm is the mth
con-eigenvalue of C , and the m poles of the approximation are roots of a rational function determined by the components
of the con-eigenvector um . An analogous formulation also exists for obtaining (near) optimal approximations via decaying
exponentials [4,6], as well as rational functions defined on the real line. We formulate the con-eigenvalue problem in
Section 2, and refer to [16, Section 4.6] for its general discussion. See also [23] for a clear discussion of the AAK theory.

Let us observe that in order to employ the reduction algorithm, two seemingly ill-advised numerical tasks must be
performed—namely, accurately computing small con-eigenvalues (and con-eigenvectors) of Cauchy matrices, and computing
all the roots in the unit disk of certain rational functions. One of the main points of this paper is to provide algorithms
that solve both problems efficiently, reliably, and with high accuracy. A key tool in this regard is an algorithm developed in
[14] to compute even the tiniest con-eigenvalues of positive-definite Cauchy matrices C with high relative accuracy, which is
impossible using standard methods (see [13,12,11] for the background on algorithms for achieving high relative accuracy).
Also, of particular importance, is the robustness of the root-finding method, since it must be employed many times. For
example, in the context of solving Burgers’ equation with viscosity ν = 10−5 and approximation tolerance ε = 10−9, on the
order of a million applications of the reduction algorithm are performed.

For functions with n poles resulting from intermediate computations, the reduction algorithm requires only O(m2n)

operations to find an optimal approximation with m poles. In our numerical experiments with the reduction algorithm, we
find that an approximation error of ε ≈ 10−14 may be reliably obtained within double precision arithmetic, even when the
number of poles n is large and their spatial distribution is highly clustered.

There is a significant literature devoted to applications of the AAK approach in control theory (cf. [24]), signal processing
(cf. [8]), and numerical analysis (cf. [26,28,30,5]), to mention just a select few. The reformulation of the AAK theory given
here could be related to the approaches taken in [29,21,10]. However, as far as we know, all of the AAK-type algorithms
discussed in the literature require O (n3) operations when applied to a rational function with n poles, and may require
extended precision arithmetic if high accuracy of the result is desired. In contrast, our reduction algorithm requires only
O(m2n) operations to find an optimal approximation with m poles and achieves high accuracy (ε ≈ 10−14) using only
double precision arithmetic.

We show in this paper that solutions of Burgers’ equation with viscosity ν require only O(logν−1) + O(logε−1) poles
for its rational approximation with an L∞ error of size ε . Burgers’ equation has been traditionally used to test the limits
of new numerical methods since the solution develops sharp transition regions that need to be captured adaptively. Con-
ceptually, the two closest adaptive methods are those in [25] and [2]. While in [2] adaptivity is achieved by adding wavelet
scales when needed, the algorithm in [25] achieves spectral accuracy by adaptively positioning the necessary number of
interpolating nodes within the transition region.

We compare the performance of our algorithms with that in [25], where authors use sub-optimal rational approxima-
tions based on conformally mapped Chebyshev grid points and barycentric interpolation. It appears that (for a comparable
approximation error and viscosity) using optimal rational approximations to represent solutions of Burgers’ equation results
in significantly fewer poles. We also note that (as far as we know) our method successfully solves viscous Burgers’ equation
with the smallest viscosity reported in the literature, thus demonstrating the efficiency, accuracy and robustness of the re-
duction algorithm. Since standard methods for discretizing PDEs (e.g., collocation, projection, etc.) do not readily fit within
the framework of our nonlinear numerical calculus, we also present a discretization scheme that may be of independent
interest.

In Section 2, we describe the reduction algorithm and its connection to solving a con-eigenvalue problem. In Section 3,
we discuss the main algorithm for solving Burgers’ equation, and present our numerical results.

1 In some papers, the names of Adamyan and Krein are also spelled as Adamjan and Kreı̆n.
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2. Reduction algorithm for rational functions

In this section, we summarize the algorithm for obtaining a (near) optimal approximation of a periodic rational function
by another periodic rational function with a smaller number of poles. As mentioned earlier, our reduction algorithm is
based on a theorem of Adamyan, Arov, and Krein [1], which concerns the approximation of a periodic function f , essentially
bounded on the unit circle ∂D, by a meromorphic function r(z) (z = e2π ix) containing a specified number of poles in the
unit disk. We limit our presentation to rational functions f taking real values on ∂D. This case turns out to be particularly
important, as it allows us to develop a practical algorithm based on approximating the Fourier series coefficients of f with
positive index. More general functions f may be dealt with by using the techniques in [5]. We note that the AAK theory
may also be formulated for functions defined on the real line (cf. [23]).

2.1. Overview of key algorithmic steps

Following the same steps as in [4, Section 6] (see also Appendix A.1), if the original function is rational, the (infinite)
Hankel system derived from AAK theory may be reduced to a finite con-eigenproblem. Specifically, consider a rational
function f of the form

f (z) =
n∑

i=1

αi

z − γi
+

n∑
i=1

αi z

1 − γi z
+ f0, (2.1)

where f0 is real, the residues α j and poles γ j are complex, and 0 < |γ j | < 1. Note that f is real-valued on the unit circle

and that the Fourier series coefficients f̂k of f (e2π ix) satisfy

f̂k =
n∑

i=1

αiγ
k−1
i , k � 1,

with f̂−k = f̂k and f̂0 = f0. We now describe an algorithm to find a rational approximation g(e2π ix) to f (e2π ix), of the
same functional form (2.1), with a specified error in the L∞-norm and a (near) optimal number of poles. Given a target
accuracy ε , the steps for computing the rational approximant g are as follows:

Step 1. Compute a con-eigenvalue λm ≈ ε and corresponding con-eigenvector u of the positive-definite Cauchy-like ma-
trix C ,

Cu = λmu, u =

⎛⎜⎜⎝
u1
u2
...

un

⎞⎟⎟⎠ , Cij = α
1/2
i α

1/2
j

1 − γiγ j
, i, j = 1, . . . ,n. (2.2)

Here the con-eigenvalues λ0 � λ1 � · · · � λn−1 > 0 are labeled in non-increasing order. In contrast to standard
methods, our algorithm exploits the structure of C to compute its con-eigenvalues (and associated con-eigenvectors)
with high relative accuracy, and in order O(n log(ε−1)2) operations (see Section 2.2).

Step 2. Find the m zeros η j inside the unit disk of the proper rational function v(z),

v(z) = 1

λm

n∑
i=1

√
αi ui

1 − γi z
. (2.3)

The fact that there are exactly m zeros in the unit disk, corresponding to the index m of the con-eigenvalue λm ,
is a consequence of the AAK theory. As shown in Appendix A.1 (see Eqs. (A.8)), the key to the high accuracy of
evaluating the function v(z) is the relationship

v(γi) = ui/
√

αi, i = 1, . . . ,n, (2.4)

which, together with the n poles 1/γi , uniquely determines v(z).
Step 3. Find the coefficients βi of g(z) by solving the m × m linear system,

m∑
i=1

1

1 − ηiη j
βi =

n∑
i=1

αi

1 − γiη j
, j = 1, . . . ,m. (2.5)

Denoting ‖ f − g‖∞ = supx∈[0,1] | f (e−2π ix)− g(e−2π ix)|, the resulting rational approximation g(e2π ix) satisfies ‖ f − g‖∞ ≈ ε
and, thus, is close to the best L∞-error achievable by rational functions with no more than m poles in the unit disk (see
also [26] for a discussion of optimal rational approximations).
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Remark 1. In Step 3, we solve for the coefficients βi in O(m2) operations by exploiting the structure of Cauchy matrices (see
[11,7]). We note that such a solver may require quadruple precision if the overall desired approximation error ε is smaller
than ≈ 10−10. However, since m = log(ε−1) is small, Step 3 for finding coefficients βi does not impact the overall speed of
the algorithm even if performed in quadruple precision.

Remark 2. In applications where the function f (e2π ix) has singularities or sharp transitions, the poles γ j in the rational
representation of f (e2π ix) may be located very close to the unit circle (and/or to each other). In such cases, it is advanta-
geous to maintain the poles in the form γ j = exp(−τ j), since they are well separated on a logarithmic scale. Importantly,
the reduction algorithm computes the new poles η j = exp(−ζ j) with nearly full precision in the exponents ζ j , i.e., the ratio
|ζ̂ j −ζ j |/|ζ j | is close to machine precision even when |ζ j | � 1 (see [14]). However, to achieve high accuracy in the numerical
examples of this paper, it was not necessary to maintain the poles in exponential form.

Remark 3. It may be shown (to be published elsewhere) that the con-eigenvalues λm of the positive-definite Cauchy matrix
Cij = α

1/2
i α

1/2
j /(1 − γiγ j) in (2.2) satisfy the inequality

max{λ2m, λ2m−1} � n2 |αm|
1 − |γm|2

m−1∏
k=1

∣∣ fγk (γm)
∣∣2

,

where fγk denote the Möbius transformations

fb(z) = z − b

1 − bz

and the parameters αm and γm are appropriately sorted. Since the transformation fb maps the unit disk into itself if
|b| < 1, the con-eigenvalues decay as λm ∼ rm (r < 1). This estimate shows that, for accuracy ε , we may reasonably expect
O(logε−1) terms in our approximation. In fact, we have observed this behavior in our numerical experiments.

Let us now briefly discuss the algorithmic aspects behind efficiency and accuracy of solving Steps 1–3 above.

2.2. Accurate computation of con-eigenvalues/eigenvectors

For Step 1, we use a recent algorithm developed and analyzed in [14] for computing con-eigenvalues of Cauchy matrices
with high relative accuracy, which we briefly describe in this section.

It is well known that standard eigenvalue algorithms compute an approximate con-eigenvalue λ̂m with an error no better
than |λm − λ̂m|/|λ1| =O(δ), and an approximate unit con-eigenvector ûm with an error no better than

‖um − ûm‖2 = O(δ)/absgapm, absgapm ≡ min
l �=m

|λm − λl|/|λ1|,

where δ denotes the machine round off. This implies that a computed con-eigenvalue smaller than |λ1|δ will generally have
few or no correct digits. Another undesirable feature of using standard con-eigenvalue methods to solve Step 1 is the O(n3)

complexity for finding the m � n poles of g(z), where n is the original number of poles of f (z).
In contrast, the con-eigenvalue algorithm introduced in [14] computes even the smallest con-eigenvalues (and cor-

responding con-eigenvectors) accurately, i.e., the computed con-eigenvalue λ̂m satisfies |λm − λ̂m|/|λm| = O(δ), and the
computed unit con-eigenvector ûm satisfies

‖um − ûm‖2 = O(δ)/relgapm, relgapm ≡ min
l �=m

|λm − λl|/(λl + λm).

Thus, the computed con-eigenvalues and con-eigenvectors are accurate if the relative distance between the con-eigenvalues
is not too small (which is the case for matrices considered here). Importantly, the mth con-eigenvalue (and con-eigenvector)
is computed in O(m2n) operations. We note that, under mild assumptions, the con-eigenvalues of positive-definite Cauchy
matrices decay exponentially fast. It then follows that, for a given desired accuracy ε , ‖ f (e2π ix) − g(e2π ix)‖∞ ≈ ε , the
number of poles m in the approximant g(z) is O(logε−1). Therefore, the complexity of our algorithm is O((logε−1)2n), i.e.,
is essentially linear in the number of original poles n and, thus, its speed is controlled by the number of poles of the final
optimal approximation. Moreover, in contrast to the usual perturbation theory for general matrices, small perturbations of
the poles γm and residues αm (determining the Cauchy matrix C = C(α,γ )) lead to correspondingly small perturbations in
the con-eigenvalues and con-eigenvectors [14].
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2.3. Finding poles for near optimal approximation

There are two numerical difficulties associated with the root-finding algorithm in Step 2 of Section 2.1. First, the roots of
polynomial or rational functions may be notoriously ill-conditioned with respect to their defining parameters. In particular,
using the explicit formula (2.3) to compute values of v(z) typically results in a loss of roughly log10(λ

−1
m ) digits. Indeed,

using (2.4) to rewrite (2.3) as

n∑
i=1

αi v(γi)

1 − γi z
= λm v(z),

we see that the sum must suffer cancellation of about log10(λ
−1
m ) digits if v(γi) and v(z) are of comparable size (note that

λm controls the approximation error and, thus, is necessarily small).
The second difficulty associated with the root-finding step is that root-finding methods based on standard iterative

procedures such as Newton’s method are often too sensitive to the initial guess and, for that reason, may not locate all the
roots reliably. Our PDE solver (see Section 3) requires roughly a million applications of the reduction algorithm and, thus,
it is imperative that the root-finding algorithm is both efficient and reliable in locating all m roots of v(z) (recall that the
index m of the con-eigenvalue λm corresponds to the number of roots in the unit disk). Indeed, due to optimality of the
rational approximation, missing even one root leads to an unacceptably large error in the corresponding approximation.

The root-finding algorithm presented below makes use of two key observations. First, the values v(γi) = ui/
√

αi of v(z)
may be computed in Step 1 with high accuracy from the con-eigenvalue components ui . Noticing that the n values v(γi)

and poles γi
−1 uniquely determine v(z), we compute v(z) via rational interpolation with the values v(γi) and poles γi

−1

rather than using formula (2.3). Heuristically, the reason this approach works well is that the roots of v(z) are typically
close to the poles γi (since the roots yield the poles of a near optimal approximation), and it is natural to expect that
having many accurate values v(γi) of v(z) close to the roots allows us to compute them with high accuracy. The second
key observation is that the roots of v(z) coincide with the eigenvalues of a rank-one-plus-diagonal matrix, and this matrix
may be applied (along with its shifted inverse) in O(n) operations. This yields an efficient and robust way to locate all roots
of v(z) within the unit disk.

The basic strategy behind the root-finding algorithm is as follows. First, we use Newton’s method on the rational in-
terpolant computed from the values v(γi) and poles γi

−1. Since we have good initial guesses for Newton’s method, this
procedure typically locates most of the roots of v(z). To compute any roots that Newton’s method misses (recall that we
know from Step 1 the total number m of roots in the unit disk), we use an efficient version of shifted inverse iteration on
the diagonal-plus-rank-one matrix whose eigenvalues coincide with the roots of v(z). Because the eigenvalues of this ma-
trix are often ill-conditioned, some of these eigenvalues may be only evaluated with a few accurate digits. However, using
Newton’s method on the rational interpolant allows us to refine the missing roots to nearly full precision.

Let us now describe this algorithm in greater detail. As noted above, v(z) is uniquely determined from its n values
v(γi) = ui/

√
αi , accurately computed from Step 1, and its n poles 1/γi . This allows us to compute an approximation ṽ(z)

to v(z) via continued fractions,

ṽ(z) = a1

1 + a2(z − γ1)/(1 + a3(z − γ2)/(1 + · · ·)) , (2.6)

where the coefficients a j are determined from the interpolation conditions ṽ(γi) = v(γi), and may, in general, be computed
in O(n2) operations. Importantly, the poles γi are often clustered “around” the roots of v(z) (this is the case in our PDE
application), and it is sufficient to use local rational interpolation within a given cluster to find roots. This reduces the
complexity to essentially O(m) operations, where m is the number of roots in the unit disk. Once the coefficients a j are
determined, the values of ṽ(z) and ṽ ′(z) may be computed in O(n) operations using recursion formulas [9] (the complexity
reduces to O(m) if it is done locally as described above). As indicated previously, this method yields very accurate results
when the poles γi are highly clustered (which is the case in our PDE application). Indeed, the roots of v(z) coincide with
the poles of a (near) optimal rational approximation, so that a given root is often located close to some particular cluster
γi1 , γi2 , . . . , γik of original poles. Since Step 1 computes the values v(γik ) of v(z) with high accuracy, such pole clustering
actually contributes to a high degree of numerical stability. As a technical point, computing the coefficients a j in (2.6)
requires arranging the nodes γ1, . . . , γn in increasing order of magnitude in order to achieve high accuracy.

We also note that, as an alternative to using continued fractions, the roots of v(z) may also be accurately computed
using Lagrange interpolation (and the known poles γi

−1 of v(z)),

v(z) =
∏n

i=1(z − γi)∏n
i=1(1 − zγi)

n∑
j=1

s j

(z − γ j)
, s j =

∏
i(1 − γ jγi)∏

i �= j(γ j − γi)
v(γ j). (2.7)

Computing the barycentric weights s j , in general, requires O(n2) operations, and evaluation of v(z) and v ′(z) (once the
weights s j are computed) requires O(n) operations. Constructing rational interpolants from appropriately grouped pole
clusters γi again allows us to reduce the complexity to O(m) operations. We note that computing the coefficients s j requires
in this case arranging the nodes γ1, . . . , γn in decreasing order of magnitude in order to achieve high accuracy.
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As mentioned previously, we compute roots that the above procedure misses by using the fact that the roots of (2.3)
coincide with the eigenvalues of the diagonal-plus-rank-one matrix (cf. [27] and [20]),

A = D + abT, (2.8)

where the diagonal matrix D and the vectors a and b satisfy

Dii = γi
−1, ai = γi

−1√αiui∑n
j=1 γ j

−1√α ju j
, bi = γi

−1, i = 1, . . . ,n.

Using the Sherman–Morrison formula, the matrix (A − λI)−1 may be efficiently applied in O(n) operations and, therefore,
simultaneous inverse iteration may be used to compute all m eigenvalues of A inside the unit disk (and, hence, all m roots of
v(z) in the unit disk). To illustrate this procedure, assume that m−1 roots β1, . . . , βm−1 have been found using the version of
Newton’s method described above, and we would like to compute the missing root βm . To do so, we first use the Sherman–
Morrison formula, combined with one step of inverse iteration, to compute eigenvectors q1, . . . ,qm−1 of A corresponding
to the known eigenvalues β1, . . . , βm−1, one by one. We then orthogonalize these m − 1 vectors using the stabilized Gram–
Schmidt procedure, thus yielding a basis q̂1, . . . , q̂m−1 for the invariant subspace span{q1, . . . ,qm−1} = span{̂q1, . . . , q̂m−1}.
Finally, we use simultaneous inverse iteration applied to q̂1, . . . , q̂m−1,q, where q is chosen randomly. Notice that each
step of this process requires orthogonalizing q(k+1) = (A − λ(k) I)−1q(k) against q̂1, . . . , q̂m−1, where λ(k) is the guess for
βm after k steps. The matrix-vector product (A − λ(k) I)−1q(k) may be computed in O(n) operations from the Sherman–
Morrison formula. Therefore, each step of this iterative process requires O(mn) operations, and an initial O(m2n) operations
to orthogonalize q1, . . . ,qm−1.

Remark 4. In applications where the poles γi are not clustered, we have observed that the roots of v(z) are computed with
nearly full precision using Lagrange interpolation (2.7). In contrast, using continued fractions as in (2.6) may not always
yield accurate roots if the poles are not clustered.

Remark 5. In both Newton’s method and the inverse iteration method, we used the original poles, γi , as starting guesses.
However, the starting guess does not play a significant role in inverse iteration since it is globally convergent.

3. Solving (1 + 1) dimensional nonlinear partial differential equations using optimal rational approximations

We now describe a method for solving Burgers’ equation,

ut − uux = νuxx, u(x,0) = u0(x), u(0, t) = u(1, t), (3.1)

using the reduction algorithm of Section 2. We demonstrate that using optimal rational approximations allows us to com-
pute solutions that are accurate over a very large range in Fourier space and, thus, resolves the spatial singularities with
high accuracy.

The main idea of our time-stepping scheme is to represent the solution in space as a proper rational function. The
discretization of (3.1) requires only a few basic operations on such rational functions, and preserves their rational form.
These operations naturally increase the number of poles in the representation and, thus, we employ the reduction algorithm
at each stage of the process to keep the number of poles as small as possible. Our results show that the solution of (3.1)
may be obtained using rational functions with a small number of poles and with a uniform error, even within the rapid
transition region developed in the process of evolution.

We first describe how, starting from u(x,0) = u0(x), we compute u(x, t) for a given timestep t . By recasting (3.1) in
semigroup form (see Appendix A.2), an appropriate temporal and spatial discretization of (3.1) leads to the nonlinear system
of equations,

ul(x) =
Mx∑

p=1

λl
pu0

(
x − φl

p

) +
Mt∑
j=1

Mx∑
p=1

λl
p, ju

2
j

(
x − ψ l

p

)
, (3.2)

where ul(x) ≈ u(x, τl), 1 � l � Mt , and {τl} are the Mt Gauss–Legendre quadrature nodes on the time interval (0, t). The
real-valued quantities φl

p , ψ l
p , λl

p , λl
p, j in (3.2) depend on the timestep t , the number Mt of quadrature nodes in time,

and the number of quadrature nodes Mx used in space to discretize the convolution kernels. From the rapid decay of the
periodic heat kernel,

Kν(x, t) = 1√
4πνt

∑
k∈Z

e−(x+k)2/(4νt),

where ν is the viscosity parameter in (3.1), it follows that φl
p and ψ l

p are localized to a O(
√

νt) neighborhood of x = 0 (see
Appendix A.2 for details).
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We assume that the initial function u(x,0) = u0(x) is given as a periodic rational function of the form

u0(x) =
M0∑
j=1

α j

e−2π ix − γ j
+

M0∑
i=1

α j

e2π ix − γ j
+ α0,

and that this representation is nearly optimal. We then solve the system of Eqs. (3.2) by approximating each function ul
using the reduction algorithm. We obtain, via fixed point iteration applied to (3.2) and the reduction algorithm, rational
functions ul(x) of the form,

ul(x) =
Ml∑
j=1

α j,l

e−2π ix − γ j,l
+

Ml∑
j=1

α j,l

e2π ix − γ j,l
+ α0, (3.3)

which solve (3.2) to a specified level of precision, and have a (near) optimal number of poles.
More specifically, given u(m)

j ≈ u j(x), 1 � j � Mt , at iteration m, we use (3.2) to define the next iterates u(m+1)

l (x) for
l = 1, . . . , Mt ,

u(m+1)

l (x) =
Mx∑

p=1

λl
pu0

(
x − φl

p

) +
Mx∑

p=1

λl
p, j

l−l∑
j=1

{(
u(m+1)

j

(
x − ψ l

p

))2 +
Mt∑

j=l+1

λl
p, j

(
u(m)

j

(
x − ψ l

p

))2

}
.

Note that, in computing u(m+1)

l (x) for l > 1, we use the functions u(m+1)
j (x), 1 � j < l already available to us. We take

u(1)
j (x) = u0(x), 1 � j � Mt , as an initial guess for u j(x).

Although this initial form for u(m+1)

l (x) is also rational, it is not of the form (3.3), since it contains poles of multiplicity
two. However, it follows from Eq. (3.4) and the distribution of the parameters φl

p and ψ l
p in (A.12), that the poles of

u(m+1)

l (x) are tightly clustered in O(
√

νt) neighborhoods about the poles γm of the initial function u0(x). We may therefore

obtain a very accurate sub-optimal representation of u(m+1)

l (x) of the required form (3.3) by computing (q,q + 1) Padé
approximants of the rational functions in (3.4) associated with each cluster of poles, where the Padé expansions are centered
about 1/γm . In our numerical experiments, (q,q + 1) Padé approximations of order 1 � q � 4 typically yield an L∞ error
smaller than 10−14. Note that obtaining a proper rational approximation of u(m+1)

l (x) in this manner requires solving M0
small (e.g., 3 × 3) linear systems, and yields a sub-optimal approximation with about three times the optimal number of
poles. We then use the reduction algorithm, outlined in Section 2, to obtain an optimal rational representation of u(m+1)

l (x).
This process is repeated until the desired level of precision is obtained.

3.1. Examples

As a first example, we solve Eq. (3.1) with viscosity ν = 10−3, and with initial condition u0(x) = sin(2πx). For the time
discretization, we use a timestep equal to 10−3 and Mt = 3 quadrature nodes τl in (0, t) (see Eq. (3.2)). This yields a local
error of less than 10−11. For the spatial part, we apply the reduction algorithm by selecting the smallest con-eigenvalue
value greater than ε = 10−12, which ensures a uniform L∞-error of about 10−12. In our application of Padé approximation,
we obtain a spatial error in the L∞-norm no larger than 10−11.

We take 400 timesteps, which ensures that we evolve (3.1) past the point at which the solution begins to decrease. To
assess the error, we independently obtain the solution to (3.1) by using the Hopf–Cole transformation to reduce Burgers’
equation to the heat equation. We then solve the heat equation in extended precision arithmetic (the Hopf–Cole transfor-
mation is highly ill-conditioned) to obtain a solution that we use as a gauge for assessing accuracy. We verify that the
L∞-norm of the difference between the two solutions remains less than 1.6 × 10−9.

Fig. 3.1 shows the computed solutions u(x, t), which have 5, 9, 14, and 13 complex-conjugate pairs of poles at times
t = 0.02, t = 0.11, t = 0.21, and t = 0.41. We also show the error of the computed solution at times t = 0.11, t = 0.21, and
t = 0.41.

As a second example, we solve Burgers’ equation (3.1) with viscosity ν = 10−5 and the initial condition u0(x) =
sin(2πx) + 1/2 sin(4πx). In our temporal discretization, we used a timestep equal to 10−5 and Mt = 3 quadrature nodes.
For the spatial part, we apply the reduction algorithm with an approximation error of ε = 10−9, which ensures a uniform
L∞-error of ≈ 10−9. In our application of Padé approximation, we obtain a spatial error in the L∞-norm no larger than
10−11. Although we were unable to independently verify the accuracy of the computed solutions for such a small viscosity
ν (for the lack of alternative methods of reasonable complexity), we note that the iteration scheme in (3.4) converged (in
the L∞-norm) to within an error no larger than 7.5 × 10−9 at every timestep.

Fig. 3.2 shows the computed solutions u(x, t0 j), with t0 = 10−5 and time steps t j , j = 102, 104, 2×104, 3×104, 5×104.
We see that the solution u(x, t) develops two moving sharp transition regions, which approach each other and eventually
merge into a single one about x ≈ 1/2. The rational representations of u(x, t j) have 4, 11, 33, 29, and 19 complex-conjugate
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Fig. 3.1. (a) Computed solution u(x, t) at t = 0.02, t = 0.11, t = 0.21, t = 0.41 and its absolute error (on a logarithmic scale) for (b) t = 0.11, (c) t = 0.21,
and (d) t = 0.41.

Fig. 3.2. Plots of u(x, t), for t j = 10−3, 0.1, 0.2, 0.3, and 0.5.

pairs of poles, respectively. Fig. 3.3 demonstrates that the transition region of u(x, t) occur within intervals of width ≈ 10−5.
Finally, Fig. 3.4 illustrates the poles γi(t) in the representation,

u(x, t) =
M0∑
j=1

α j(t)

e−2π ix − γ j(t)
+

M0∑
i=1

α j(t)

e2π ix − γ j(t)
+ α0,

for t = 0.2, 0.274, 0.3, 0.4. As expected, the poles cluster about transition regions, and move (adaptively) as the two wave-
fronts approach each other.
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Fig. 3.3. Solution u(x, t) at time t = 0.4, localized about the transition region (1/2 − 10−5,1/2 + 10−5). Note the absence of any Gibbs-type phenomena.

Fig. 3.4. Location of poles (within the unit disk) in the representation of u(x, t), for t = 0.2, 0.275, 0.3, and 0.4.

Appendix A

A.1. Review of AAK theory

In order to formulate the basic AAK theorem on the unit disk, let us denote by H∞ the Hardy space of bounded analytic
functions and by H∞

N the set of functions

H∞
N =

{
g(z)

(z − η1) · · · (z − ηk)
, |η j| < 1, k � N, and g ∈ H∞

}
.

Suppose f ∈ L∞ has the Fourier series
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f (z) =
∞∑

n=−∞
fnz−n,

and consider the associated infinite Hankel matrix H f

H f =

⎛⎜⎜⎝
f1 f2 f3 · · ·
f2 f3 f4 · · ·
f3 f4 f5 · · ·
...

...
...

. . .

⎞⎟⎟⎠ ,

with singular values σn considered in decreasing order. From the singular value problem for the Nth singular value

H f v = σN w,

H∗
f w = σN v, (A.1)

where v = (v j) j�1 and w = (w j) j�1, we define the functions

v(z) =
∞∑
j=1

v j z
j−1, w(z) =

∞∑
j=1

w j z
− j,

and

r(z) = f (z) − σN
w(z)

v(z)
. (A.2)

For this particular case, the AAK theorem asserts that r ∈ H∞
N and

‖ f − r‖∞ = inf
g∈H∞

N

‖ f − g‖∞ = σN .

An important special case is when f (z) has the form (2.1), that is,

f (z) =
M∑

m=1

αmz−1

1 − γmz−1
+

M∑
m=1

αmz

1 − γmz
+ f0, (A.3)

where αm and γm are complex and 0 < |γm| < 1. We now show that the infinite singular value problem (A.1) may be
reduced to the finite con-eigenvalue problem (2.2).

First, note that Eq. (A.1) may be written as

∞∑
j=1

f i+ j−1v j = σ wi, i = 1,2, . . . , (A.4)

∞∑
j=1

f i+ j−1 w j = σ vi, i = 1,2, . . . . (A.5)

Using that the Fourier coefficients of (A.3) are of the form

fn =
M∑

m=1

αmγ n−1
m , n � 1,

we calculate from (A.4)

∞∑
j=1

(
M∑

m=1

αmγ
i+ j−2

m

)
v j =

M∑
m=1

αmγ i−1
m

∞∑
j=1

γ
j−1

m v j

=
M∑

m=1

αmγ i−1
m v(γm) = σ wi .

Now multiplying both sides of the last equation by zi−1 and summing, we obtain

M∑ αm

1 − γmz
v(γm) = σ z−1 w

(
z−1). (A.6)
m=1
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Similarly, from (A.5), we have

∞∑
j=1

(
M∑

m=1

αmγm
i+ j−2

)
w j =

M∑
m=1

αmγm
i−1

∞∑
j=1

γm
j−1 w j

=
M∑

m=1

αmγm
i−1(γm

−1 w
(
γm

−1)) = σ vi .

Finally, multiplying by zi−1 and summing, we arrive at

M∑
m=1

αm

1 − γmz
γm

−1 w
(
γm

−1) = σ v(z). (A.7)

Hence, for a function f of the form (A.3), the functions v and w in (A.2) turn out to be rational and fully determined by
their values at the poles of f . Taking z = γn and z = γn in Eqs. (A.6) and (A.7), respectively, we obtain

M∑
m=1

αm

1 − γmγn
v(γm) = σγm

−1 w
(
γm

−1),
M∑

m=1

αm

1 − γmγn
γm

−1 w
(
γm

−1) = σ v(γn). (A.8)

We symmetrize the above equations by multiplying the first equation by αn
1/2 and the second equation by α

1/2
n to get

M∑
m=1

α
1
2

mαn
1
2

1 − γmγn
α

1
2

m v(γm) = σαn
1/2γm

−1 w
(
γm

−1),
M∑

m=1

αm
1
2 α

1
2

n

1 − γmγn
αm

1/2γm
−1 w

(
γm

−1) = σα
1
2

m v(γm).

Let us define the vectors p and q with entries pm = α
1
2

m v(γm), qm = αn
1/2γm

−1 w(γm
−1), and the positive-definite matrix C

with entries

Cmn = α
1
2

mαn
1
2

1 − γmγn
.

Then the above equations are equivalent to

Cp = σq,

Cq̄ = σ p̄,

which may be reduced to a con-eigenvalue problem for σ > 0, see [16, Section 4.6]. One simple way to see this and obtain
an equation of the form (2.2) is by defining x = p + q̄. If x = 0, then iq = ip and hence

C(ip) = σ ip.

If x �= 0, we have

Cx = σ x

and, in both cases, we obtain a con-eigenvalue problem for the matrix C .

A.2. Discretization of Burgers’ equation

We rewrite Eq. (3.1) in semigroup form (see, e.g., [15,18,19,3])

u(t) = eνtLu(0) +
t∫

eν(t−τ )L N
(
u(τ )

)
dτ , (A.9)
0
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where u(t) denotes the function u(·, t). The operator L, Lu(x) = uxx , represents the linear part of (3.1) while the operator N ,
N(u) = 1/2(u2)x , represents the nonlinear part. The action of the operator eνtL on a function f is given by

(
eνtL f

)
(x) =

1
2∫

− 1
2

Kν(y, t) f (x − y)dy, with Kν(y, t) = 1√
4πνt

∑
k∈Z

e−(y+k)2/(4νt).

To discretize Eq. (A.9) in time, we use the approximation

N
(
u(τ )

) ≈
Mt∑
j=1

R j(τ )N
(
u(τ j)

)
, τ ∈ [0, t]

where {τ j}Mt
j=1 denote the Gauss–Legendre nodes on the interval (0, t), and R j(τ ) denote the Legendre interpolating poly-

nomials for these nodes, i.e.,

R j(τm) = δ jm, for j,m = 1, . . . , Mt .

Taking t = τl in (A.9), we obtain the semi-discrete system of equations

ul = eντl Lu0 +
Mt∑
j=1

( τl∫
0

eν(τl−τ )L R j(τ )dτ

)
N(u j), 1 � l � Mt, (A.10)

where ul = ul(x) denote the computed values of u at time t = τl and u0 = u(x,0).
For the spatial discretization, using N(u) = 1/2(u2)x and integrating by parts, Eq. (A.10) may be written as

ul(x) =
1
2∫

− 1
2

Kν(y, τl)u0(x − y)dy +
Mt∑
j=1

1
2∫

− 1
2

Lν, j(y, τl)u2
j (x − y)dy, (A.11)

where the kernel Lν, j(y, t) is given by

Lν, j(y, t) = −1

2

t∫
0

(∂y Kν)(y, t − s)R j(s)ds.

For small ν , Kν(y, τl) and Lν, j(y, τl) decay rapidly away from zero. Therefore, we may truncate the integrals in (A.11) to
the intervals (−δl(ν), δl(ν)) and (−ηl(ν),ηl(ν)), and then discretize using appropriately chosen quadrature nodes φl

p and

ψ l
p and weights μl

p and γ l
p ,

ul(x) =
−δl∫

−δl

Kν(y, τl)u0(x − y)dy +
Mt∑
j=1

ηl∫
−ηl

Lν, j(y, τl)u2
j (x − y)dy

≈
Mx∑

p=1

λl
pu0

(
x − φl

p

) +
Mt∑
j=1

Mx∑
p=1

λl
p, j

(
u j

(
x − ψ l

p

))2
. (A.12)

In the last equation,

λl
p = μl

p Kν

(
φl

p, τl
)
, λl

p, j = γ l
p Lν, j

(
ψ l

p, τl
)
,

which are computed beforehand given the quadrature nodes.

Remark 6. If the viscosity ν is not small, then the kernels Kν(y, t) and Lν, j(y, t) are not sharply peaked in space; using the
trapezoidal rule is sufficient to obtain a sub-optimal rational representation for ul(x).
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