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1. INTRODUCTION

In [8], from the one-dimensional combustion equations written in La-
grangian coordinates for the simple reactant to product mechanism, Majda
obtain the following simplified combustion model:

(u+qz), +f(u), = Bu,, (1.1)
z,= —kH(u)z.

It is hoped that this qualitative model retains most of the essential features
of the Lagrangian equations, except the species diffusion (see [1, 11]).
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In the present paper, we consider the following model:

(u+qz), +f(u), = eu,, (12)
z,= vz, — kH(u)z.

We suppose

(HD 0<vy,<f"(w) <M, fu)>0, f(u) <0 Vu & (—o, +).

(H2 O0<H'W <M, Hu) =0 for u<0; Hu)=1 for u>
1 > 0.
With rescaling to x and ¢, we might assume e =1, k is replaced by
another constant B > 0, and v is replaced by d. We always assume d > 0.
We rewrite (1.2) as

(u+qz) + f(u) = uy, (13)
z,=dz,, — BH(u)z.

For the given u™ < 0 < u, < u* with

W) ) )~ f(w)

u* —u, u* — (u+q)

and u"+ g > 0 Li and Tan [6] prove that there exists a constant B, > 0;
when Bk < B, (1.1) admits a strong detonation travelling wave which
connects (u*,0) and (u*,1). When Bk = B, (1.1) admits a weak detona-
tion travelling wave which connects (u,,0) and (u*,1); if Bk > By, there
is no travelling wave solution with speed ¢ that connects the state (1", 1)
at £ = +oo,

Recently, in [7], Liu and Ying consider (1.1) for the case u™+ g < 0.
They first prove the existence of the travelling wave solutions and then
they prove that the travelling wave is stable if g > 0 is sufficiently small.

In [5], Larrouturou studies the travelling wave solutions to (1.3). He also
obtains the existence for both the weak and the strong detonations. His
results are described in terms of g. That is, for fixed B > 0, he obtained a
g, Which depends on B: when g > ¢,, (1.3) admits a strong detonation;
when ¢ = ¢,, (1.3) admits a weak detonation. His results (for the strong
detonation) can be described in terms of B.

THeorem 1.1 (Li and Tan [6]). Assume (H.1) and (H.2) and u*< 0 <
Mo <u ,z"=1,2"=0 hold. Let c =[f(u”) — fWl/[u"—(w* "+ @Il If
f'(u*) <c <f'(u"), there exists a B, > 0; when 0 < B < By, (1.3) admits a
travelling wave (¢, ¢ X(x — ct) which satisfies

(6. ) (=»)=(u",z7), (& )(+») =(u",2"). (14)
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Moreover, the strong detonation profile above has a nonmonotone spike in the
d-profile; i.e., ¢, € (—o0, + ), when & < &,, (&) is monotone increasing;
when &> &,, ¢(&) is monotone decreasing.

The goal of this paper is to obtain the stability of the strong detonation
of (1.3) under the assumption that B > 0 is sufficiently small. The defini-
tion of stability follows from Sattinger [12]. That is, we proceed to prove
the solution of the Cauchy problem for (1.3) satisfies

lim (1) = §(-— ct + )] = 0 (15)

lim [|2(-6) = £(-— at + )] = 0, (16)

provided the initial perturbation, u,(x) — ¢(x) and zy(x) — £(x), is suffi-
ciently small in some sense. Here +y is a proper constant related to the
initial perturbation.

Under the moving frame & = x — ct, (1.3) can be rewritten as

(u+qz), = Uge —f(u)e+c(u+qz)e

z, =dzz; + cz; — BH(u)z.

(1.7)

The travelling wave solution of (1.3) is the steady state of (1.7) which is a
C? function satisfying (1.4). Under the assumption of Theorem 1.1, one
can easily prove that the travelling wave (¢, )(¢) - (u*, z*) exponen-
tially fast as & —» +oo.

Analogous to [4], our main result in this paper is described in terms of
the weighted L. norm

(&), =[wi(E)u(é)]..

with w,(£) = cosh(né), where n > 0 is a proper constant.

THEOREM 1.2. If (u*, z*) and f(u) satisfy the assumption in Theorem
1.1, then there exist M > 0, B, > 0, 6 > 0, when 0 < B < B,

[uo(x) = d(x) |l < 8,
lzs(x) = £ i <80 z4(x) — £'(x) . < 8,
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and (p( &), £(&)) is suitably translated; we have

M
lu.8) = ¢, < T
M
lz(&.0) = ¢(&) v = 7
M
la(z(&.0) = 2N, = T

In the proof of Theorem 1.2, we shall follow Goodman’s integrand
argument (see [2]) as well as Jones er al. [4] and Sattinger’s weighted
spectrum analysis (see [12]). In it, we introduce a new variable v = u + gz
and the perturbation is taken to be

V(& t) = fi(u +qz— (d+ql))(s.t)ds

and we require the initial data satisfy

fj:(uo(x) +qzo(x) — (p(x) +qf(x)))dx =0

which can be accomplished by a suitable choice of translation for the
travelling wave.

The paper is organized as follows: In Section 2, we present some
preliminaries. In Section 3, we will analyse the spectrum and obtain the
resolvent estimates for the linearized operators. And, finally, in Section 4
we prove Theorem 1.2.

2. PRELIMINARIES
As we have seen in Section 1, in the moving frame, (1.3) becomes

(u+gqz), = Uge —f(uw)e+c(u+qz)e

(2.1)
z, =dzg + cz; — BH(u)z.
Denote u; =u — ¢, w =z — {, v = u, + qw; we get
U= (u)ge = f(W e+ f(P)e + cuv;

(2.2)

o, =dwy + co; — BH(u)z + BH(¢){.
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Let V(& 1) = [¢, 0(s,1)ds, we have u, =V, — qw. Integrating the first
equation of (2.2), we obtain

V=LV +h(V,, 0,
0 = L,o+ hz((rz, o, ;)), *2
where
L=+ (c—f'(¢))7
L,=dd/ + cd, — BH(¢)
h(Veo 0, ;) = =f(u) + () = () (u = d) +qf (d) 0 — qu
hy(Vesw,0) = —B(H(u) — H($)){.

Since |¢| < C; (independent of B > 0), 0 < ¢ < 1, by virtue of (H.1) and
(H.2), one can easily get

1l < C,(IVe? + lol + ol + | w;) 2
Ihyl < C,B(IV,| + lwl)

Here C, is independent of B > 0.

Following the notations in [4], let BU(R, R) represent the Banach space
of bounded and uniformly continuous functions that are bounded under
the supremum norm.

Let w,(£€) = cosh(né); n > 0 is a constant to be determined. Define

olly, =[w:(€)0(€) .
lolly = lloll, + lloglly,-
And consider the Banach space
B, ={v € BU(R,R); vy < +o}.

From Pego [9], as well as Pazy [8], we know the following:

LEmmA 2.1. For each m >0, i = 1,2, the operator L, on BW1 with
domain D(L,) is a closed, densely defined operator. For some «;, B; real,
with 0 < a; < /2, the sector

Senp, = (A€ C;Re(A = B;) = —cos a;f(A — B) |}
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is in the resolvent set of L;. And for any such sector Sa,, B,

(@) [R(A Lo, < o,

C
T la-8)|

(b) [[R(A, L))

llvlly

|| ¢
<—
=TT Bl

C
()[R Lo, < WHUM

hold for all X € S, 5 andv € B, .

By this lemma, L; generates an analytic semigroup S,(¢) on the space
B, . So for each (V;, w,) € B, , the solution to (2.4) can be achieved via
the variation of constant formula

V(1) = SV + [ Si(t = 7)hy(7) dr
0

o(t) = S,(t)w, + ]O’Sl(t — 7)hy(7) dr.

The solution can be extended as long as [V, < +=, [|wll,, < +c.

3. RESOLVENT ESTIMATES

Consider the linear operator L:
Lu=u" —2bu' + qu, "=d/d¢ (3.1)

The resolvent equation for (3.1) is
u" —2bu' +qu — au=g(¢). (3.2)

Performing the transformation u(¢) = v(&)exp(B(&)) with B(&) =
Eb(s) ds, we get

(4 — N)v =e Bg, (3.3)
where .Zv =v" + (b' — b? + q)v.
p(€) =b'(&) —b*(¢) +q(£),
pe= [lim p(&),  q.= [lim q(&).

go ko

In [12], Sattinger proves the following.
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LEMMA 3.1 (Sattinger [12]). We consider # as an linear operator on the
Banach space L.,. The eigenvalues of # in the interval A >p (p =
max(p ., p_)) are confined to the interval p < X < p, (p; = sup, c g p(£¢))
and form a discrete set of points on the real axis which can cluster only at
A = p. A has a continuum of eigenvalues in the semiinfinite interval —» <
A <p.

Let w =1+ ¢ 5, By g,(L) we mean the spectrum of L relative to
the Banach space B,,. Assume

Jim 2b(&) =k (3.4)
J o) —p < +=, ]Olp(f)—p*|<+°°, (35)

I

k
b(f)—7

+

< 4o, f()+x‘b(§) _E +o,  (3.6)

2

Sattinger also proves the following.

THEOREM 3.2 (Sattinger [12]). Under the above assumption on b and q,
we may draw the following conclusions about the resolvent operator (A — L)™*,
considered as a transformation on B,,:

M) Ifk*>0, k>0, we have p, (L) NP+ = p(A#) NP*.
N Ifk*<0, k~<0, we have p, (L) NP~ = p(A#) NP,
() Ifk*<0, k> 0, we have p, (L) = p(A2).
(V) If k*>0, k-<0, we have p,(L)N(P*NP")=pl#)N
(2 "nF),
where p, (L) is the resolvent set of L relative to the Banach space B,,, p(.#)

is the resolvent set of # relative to the Banach space L. P* and P~ are
exterior to the parabolas

(k*)°

N 2(1 + cos 9) (37

Py
where A —p .= p,e'’ < —m < 0 < . The parabolas (3.7) meet the real
axis at A = q , and extend to infinity in the left half-plane.

THEOREM 3.3. Let L,, L, be defined as in (2.4). Under the assumption of
Theorem 1.1, there exist constants v > 0 and 8, > 0 which are independent
of B, when 0 < B < B,; we have

sup{Re \; A € g, (L)} < =8, <0
fori=1,2.
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Proof. For operator L,, without loss of generality, we assume d = 1.
And so

Lyu=u"+cu' — BH($)u. (3.8)

Comparing to (3.2), we have 2b = —¢ <0, k*=k = —c/2 < 0. That is
just the case (Il) in Theorem 3.2. The correspondent &~ intersects the
real axis at A = g~ = —B and extends to infinity in the left half-plane. By
Lemma 3.1, we know

o) NP =D

So, we have #~C p,(L,) (for w = 1 + ¢/2).
If we choose n > ¢ /2, we also have 2~ C p, (L,).
Now we analyse the solutions of the ordinary differential equations

u" +cu' — (A +BH(¢))u=0

with A €27, When ¢ — 4+, we have the corresponding characteristic
equations

y?+cy—(A+BH(¢$,)) = 0; (3.9)
here we denote ¢, = u*. (3.9) may also be written as
(i) for € » 4o,
yi+ecy—A=0 (3.10)
(i) for &£ » —c,
y24+cy—A—B=0. (3.11)

One can find that there exists 5, > 0 (independent of B). When B is
small and A € (#7)¢ N {A; Re A > —§,}, (3.10) admits no solution which
satisfies Re A < —m, and (3.11) admits no solution which satisfies Re A >
n. Combining this result with &~ c p, (L,), we get

sup{Re A; A € g, (L,)} < =8, <0,

where 8, > 0 is independent of B: 0 < B < B,.
For L,, it satisfies L,} = 1V" + (¢ — f'(¢))V'. We have

2b= —c+f(¢), q=0,

e o (e

k*=
2 2

0
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which corresponds to case (I11) in Theorem 3.2. So we have
pu(L1) = p#1)

where w( &) = 1 + exp([§(c — f'(¢p)) ds).
The corresponding

pi=qi_(b¢)2 = _%(C _f/(‘bi))z
p= —%min{(c — () (¢ —f’(¢—))2} = —9,<0
p(€) =b'(€) —b2(&) =f"($)d' — (c — ()"

To prove the theorem, it suffices to prove that there exists 6; > 0 which is
independent of B > 0, s.t.,

p(€) < —8,<0 Vée (—», +x).
To this end, we integrate the equation of ¢,
" —f($)d" +c(d+4qf) =0,
to get

¢ =f(d) —f(u") —c(dp—u"+q({—1))
f(¢) —fw™) .
p+ql—u"—gq

= (¢ +ql~(u"+4q))

For the strong detonation profile shown in Theorem 1.1, we know there
exists a u, € (u,,u"),st. ¢ =f'(u,) (see Fig. 3.1)
In the neighborhood of u,, we have

f(é) —f(u") _c<f(¢)—f(u+) B
p+ql—u"—q T ¢-u"—gq

c+e< —6,.

So, in the neighborhood N, of u = u,, we have
p(§) < —8;<0.
When &> &,, we have ¢’ < 0. And when ¢ & N,, we have (¢ —

f'(¢)? = 8, > 0. Thus we get p(&) < —§; <0 V€= &, Here &, is the
maximum point as described in Theorem 1.1.
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Ficure 3.1

Now we turn to consider the case of & < &,. In this case, ¢’ > 0 and so
¢(€) = u~. Hence,

p(E) = ($)(f($) —f(u") —c(d+ql—u"—q)) = (c ~f(¢))’
< (D) (F($) = (1)) =" (¢)(d—u=q) = (c = ()"

Let F(p) = f"(pNf(p) — fwh) — cf" ()N — ut— q) — (¢ — f'($))?
We have

Fu)<—-6,<0

F(o) =) -

ut—gq
+()(f'(P) —c+2(c—f'(¢)))
< =f"($)(f'($) —¢) <0.

So we have F(¢$) < —9§;, that is, V&€ < &, we have p(£) < -8, < 0.
Combining it with Lemma 3.1 and Theorem 3.2, we know

sup{Re ;A € g, (L;)} < — 85 <0.

Choosing 7 = imax{c,|f'(u™) —cl, |f'(w™) — cl}, for the corresponding
w,, we know Theorem 3.3 is true.
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Following the semigroup theory in Pazy [9] and Henry [3], we know that
L, generates an analytic semigroup S,(¢) which satisfies

1S:(2) v, = Me! (3.12)
1
IZ:S:(t) |, < TME_W- (3.13)

Here M and u > 0 are constants independent of 0 < B < B,.
But on the other hand, o = £(¢) is a nonzero solution of

Lyw=0. (3.14)

Using the Wronskian determinant, we can obtain another solution v = w,
which is linearly independent of w = £(&). By virtue of Cramer’s rule, one
can easily get the expression for the solution of

Lyw=u. (3.15)
Similar to the discussion in [4], we can prove that
1; wllw, < Mllvll,,,. (3.16)

Here M, is also independent of B with B > 0 sufficiently small. (3.16)
might be rewritten as

| %R0, Ly)],, < M,. (3.17)
Similarly, for L; we have
4 R(0, Ly) ||, <M. (3.17)

Combining (3.17), (3.18) with (3.13), we know

1
[ S:(0) ], < —Me7#t fort = 1 (3.19)
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Since S,(¢) is an analytic semigroup, for 0 < ¢ < %, we also have

[3:S:(0) ], < M/VE (3.20)

M,
1+¢

laeSi(0)oll,, < (ol + gl fore>0.  (3.22)

Here M, might depend on B > 0.

4. STABILITY FOR THE TRAVELLING WAVES

In this section we proceed to prove Theorem 1.2. From (2.13), (2.14) we
know

3V (1) = 3:S.(1)WVo + [ 9:Sy(t = T)hy(7) dr (4.1)
o(1) = Sy(t)wg + [ S,(t = 7)hy(7) dr (4.2)

0
Go(1) = 0,8,(1) wy + fo’ 3 Sy(t — T)hy(7) dr. (4.3)

When ¢ > %, from (4.1)-(4.3) we get

M,
1+¢

_ M
O ! [2C) ey PO

o), < —= Vol + 113, V;ll,)

+lo(m) [y +lo(r) ) dr

t M )
+j;_1/2 Vi— 1 (”VS(T)”W%/Z +|| w§(7)”w1

o)y +lo(n)l,)dr (44)

(2l = Me™* Nl + MB fle= ([, +] (7)) ¢
(4.5)
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M
|| wf(t)”Wl S 1—_'_2t(||a)0”w1 + ”&f w0||W1)

_ M
—|—ft l/z_e_ﬂ(t_f)(
0 t— 7

1
cMpf (B, )l dr @9

V(D) |, + | @e(D)],,) dr

Here and the following M is the general constant independent of 0 < B <
B,. Let

p(t) = sup (L+ 7)|[Vi(7)],,

O0<7<t
p,(1) = sup (L + 7)[l@(7)ll,
o<r<t
pit) = sup (L D) ag(D],,.
From (4.4), we obtain
M,
Ve, = 735 (Wall, + 19Vl

e m—7)

(0 + o2 0) [

e mi—7)

(=172
> dr
(t=7)1+ 1)

+ M( po(1) + P3(t))f

1
M(pi(t) + pz(f))f =ty T)

1
+M(P2(t) +P3(t))/ /2\/t_(1+7)

MZ
< = (Wl +11Vlh,)

+%(Pf(f) +p3(1) + pat) + p5(1)). (47)
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When 0 < ¢ < %, we have

M
Ve, = 75 (Wollw, +13:Vl,)
S TIORY (0)) e —
' o= (14 1)
1

+ M(py(1) + Ps(f))fotmfh

MZ
< = (Wl +11V4lh,)

b (H0) * 030+ () (D) (48)

In the above, for ¢ > 3, 7€ (0,t — 3), we have employed the following
inequalities:

101 C,
(1) <
t—71l+71 1+¢

t—1/2 1 ¢ )
2 ——dr < ——, =1,2,
@ | Vima(ltny e !

_ e MU—T) C B
(3) /t v 5 dr < —1(3_’”/t l/ze_’”dT.

0 (t—7)(1+ 1) 1+1¢ 0

Combining (4.7), (4.8), we get

Pl(t) =< Mz(”Vo”wl + ||‘7§Vo||w1) + M( Plz(t) + pf(l‘) + Pz(t) + P3(t))-
(4.9)

Similarly, from (4.6) we have
p3(1) < My(llwglly, + 1, wollw,) + MB( py(1) + py(2)). (4.10)
By (4.5), we obtain
py(1) < Mllwgllw, + MB( py(1) + py(2)). (4.11)
Let 0 < B < B; = min(B,,1/2M); from (2.11) we know

pa(t) < Mllwgll,, + MBp(1). (4.12)
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Substituting (4.10), (4.12) into (4.9) we get
pa(1) < My(IVoll, + 10, Vollw, + Nlegllu, + 116, o]l )
+ Mpi(t) + MBpy(1).
For 0 < B < B; = min(B,,1/2M), we have
p1(1) < My(IVyll, + 11:Vollw, + llwglly, + 11d; wqll,) + MpZ(t). (4.13)
Since [T V(&) d¢ =0, similar to Lemma A.3 in [4], we have
IVollwz < Colld: Vollws. (4.14)
So (4.13) can be rewritten as
p1(1) < My(19,Volluz + llwglly, + 110, wlluz) + MpZ(t). (4.15)
From (4.15), we know that there exist constants §, > 0, M > 0; when
19, Vollug + gl + 11, @glluz < 8,

we have

p(t) <M  Vt=0.
Returning to (4.10), (4.12), we get
py(t) <M, py(t) <M V=0,

which completes the proof of Theorem 1.2.

Remark. From the expression in (2.13), we have
_ t s 2
V)l = Mz Wl + [~ (Vi) e+ ()

2
o)y +lo(r) ) dr.
From Theorem 1.2, we know
[V(e)|w, <M < 4+ Vt>0,

which implies the global existence of the solutions of the Cauchy problem
in the space B,, for (2.3) if the initial perturbation satisfies the conditions
in Theorem 1.2.
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