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1. INTRODUCTION

w xIn 8 , from the one-dimensional combustion equations written in La-
grangian coordinates for the simple reactant to product mechanism, Majda
obtain the following simplified combustion model:

u q qz q f u s b uŽ . Ž .t x x x
1.1Ž .

z s ykH u z .Ž .t

It is hoped that this qualitative model retains most of the essential features
Ž w x.of the Lagrangian equations, except the species diffusion see 1, 11 .
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STRONG DETONATION TRAVELLING WAVES 517

In the present paper, we consider the following model:

u q qz q f u s e uŽ . Ž .t x x x
1.2Ž .

z s n z y kH u z .Ž .t x x

We suppose

Ž . Ž . Ž . Ž . Ž .H.1 0 - g F f 0 u F M , f 9 u ) 0, f - u F 0 ;u g y`, q` .0 1

Ž . Ž . Ž . Ž .H.2 0 F H9 u F M , H u s 0 for u F 0; H u s 1 for u G1
h ) 0.0
With rescaling to x and t, we might assume e s 1, k is replaced by
another constant B ) 0, and n is replaced by d. We always assume d ) 0.

Ž .We rewrite 1.2 as

u q qz q f u s uŽ . Ž .t x x x
1.3Ž .

z s dz y BH u z .Ž .t x x

For the given uq- 0 - u# - u* with

f u* y f u# f u* y f uŽ . Ž . Ž . Ž .
c s s qu* y u# u* y u q qŽ .

q w xand u q q G 0 Li and Tan 6 prove that there exists a constant B ) 0;0
Ž .when b k - B , 1.1 admits a strong detonation travelling wave which0

Ž . Ž q . Ž .connects u*, 0 and u , 1 . When b k s B , 1.1 admits a weak detona-0
Ž . Ž q .tion travelling wave which connects u#, 0 and u , 1 ; if b k ) B , there0

Ž q .is no travelling wave solution with speed c that connects the state u , 1
at j s q`.

w x Ž . qRecently, in 7 , Liu and Ying consider 1.1 for the case u q q F 0.
They first prove the existence of the travelling wave solutions and then
they prove that the travelling wave is stable if q ) 0 is sufficiently small.

w x Ž .In 5 , Larrouturou studies the travelling wave solutions to 1.3 . He also
obtains the existence for both the weak and the strong detonations. His
results are described in terms of q. That is, for fixed B ) 0, he obtained a

Ž .q which depends on B: when q ) q , 1.3 admits a strong detonation;0 0
Ž . Žwhen q s q , 1.3 admits a weak detonation. His results for the strong0

.detonation can be described in terms of B.

Ž w x. Ž . Ž . qTHEOREM 1.1 Li and Tan 6 . Assume H.1 and H.2 and u - 0 -
y q y w Ž y. Ž .x w y Ž q .xh - u , z s 1, z s 0 hold. Let c s f u y f u r u y u q q . If0

Ž q. Ž y. Ž .f 9 u - c - f 9 u , there exists a B ) 0; when 0 - B F B , 1.3 admits a0 0
ŽŽ .Ž .tra¨elling wa¨e f, z x y ct which satisfies

f , z y` s uy, zy , f , z q` s uq, zq . 1.4Ž . Ž . Ž . Ž . Ž . Ž . Ž .
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Moreo¨er, the strong detonation profile abo¨e has a nonmonotone spike in the
Ž . Ž .f-profile; i.e., 'j g y`, q` , when j - j , f j is monotone increasing;0 0

Ž .when j ) j , f j is monotone decreasing.0

The goal of this paper is to obtain the stability of the strong detonation
Ž .of 1.3 under the assumption that B ) 0 is sufficiently small. The defini-

w xtion of stability follows from Sattinger 12 . That is, we proceed to prove
Ž .the solution of the Cauchy problem for 1.3 satisfies

lim u ?, t y f ?y ct q g s 0 1.5Ž . Ž . Ž .
tª`

lim z ?, t y z ?y ct q g s 0, 1.6Ž . Ž . Ž .
tª`

Ž . Ž . Ž . Ž .provided the initial perturbation, u x y f x and z x y z x , is suffi-0 0
ciently small in some sense. Here g is a proper constant related to the
initial perturbation.

Ž .Under the moving frame j s x y ct, 1.3 can be rewritten as

u q qz s u y f u q c u q qzŽ . Ž . Ž .j jt jj
1.7Ž .

z s dz q cz y BH u z .Ž .t jj j

Ž . Ž .The travelling wave solution of 1.3 is the steady state of 1.7 which is a
2 Ž .C function satisfying 1.4 . Under the assumption of Theorem 1.1, one

Ž .Ž . Ž " ".can easily prove that the travelling wave f, z j ª u , z exponen-
tially fast as j ª "`.

w xAnalogous to 4 , our main result in this paper is described in terms of
the weighted L norm`

u j s w j u jŽ . Ž . Ž .w 1 `1

Ž . Ž .with w j s cosh hj , where h ) 0 is a proper constant.1

Ž " ". Ž .THEOREM 1.2. If u , z and f u satisfy the assumption in Theorem
1.1, then there exist M ) 0, B ) 0, d ) 0, when 0 - B F B ,1 1

3u x y f x F d ,Ž . Ž . w0 1

X
2z x y z x F d , z x y z 9 x F d ,Ž . Ž . Ž . Ž .w w0 01 1
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Ž Ž . Ž ..and f j , z j is suitably translated; we ha¨e

M
u j , t y f j FŽ . Ž . w1 1 q t

M
z j , t y z j FŽ . Ž . w1 1 q t

M
 z j , t y z j F .Ž . Ž .Ž .j w1 1 q t

In the proof of Theorem 1.2, we shall follow Goodman’s integrand
Ž w x. w xargument see 2 as well as Jones et al. 4 and Sattinger’s weighted

Ž w x.spectrum analysis see 12 . In it, we introduce a new variable ¨ s u q qz
and the perturbation is taken to be

j
V j , t s u q qz y f q qz s, t dsŽ . Ž . Ž .Ž .H

y`

and we require the initial data satisfy

q`

u x q qz x y f x q qz x dx s 0Ž . Ž . Ž . Ž .Ž .Ž .H 0 0
y`

which can be accomplished by a suitable choice of translation for the
travelling wave.

The paper is organized as follows: In Section 2, we present some
preliminaries. In Section 3, we will analyse the spectrum and obtain the
resolvent estimates for the linearized operators. And, finally, in Section 4
we prove Theorem 1.2.

2. PRELIMINARIES

Ž .As we have seen in Section 1, in the moving frame, 1.3 becomes

u q qz s u y f u q c u q qzŽ . Ž . Ž .j jt jj
2.1Ž .

z s dz q cz y BH u z .Ž .t jj j

Denote u s u y f, w s z y z , ¨ s u q qw; we get1 1

¨ s u y f u q f f q c¨Ž . Ž . Ž .j jjjt 1 j
2.2Ž .

v s dv q cv y BH u z q BH f z .Ž . Ž .t jj j



LI, LIU, AND TAN520

Ž . j Ž .Let V j , t s H ¨ s, t ds, we have u s V y qv. Integrating the firsty` 1 j

Ž .equation of 2.2 , we obtain

V s L V q h V , v , vŽ .t 1 1 j j
2.3Ž .

v s L v q h V , v , z ,Ž .t 2 2 j

where

L s  2 q c y f 9 f Ž .Ž .1 j j

L s d 2 q c y BH fŽ .2 j j

h V , v , v s yf u q f f y f 9 f u y f q qf 9 f v y qvŽ . Ž . Ž . Ž . Ž .Ž .1 j j j

h V , v , z s yB H u y H f z .Ž . Ž .Ž .Ž .2 j

< < Ž . Ž .Since f F C independent of B ) 0 , 0 F z F 1, by virtue of H.1 and1
Ž .H.2 , one can easily get

< < < < 2 < < < < 2 < <h F C V q v q v q vž /1 2 j j
2.4Ž .

< < < < < <h F C B V q vŽ .2 2 j

Here C is independent of B ) 0.2
w x Ž .Following the notations in 4 , let BU R, R represent the Banach space

of bounded and uniformly continuous functions that are bounded under
the supremum norm.

Ž . Ž .Let w j s cosh hj ; h ) 0 is a constant to be determined. Define1

5 5¨ s w j ¨ jŽ . Ž .w 1 `1

5 5 5 5 5 5¨ s ¨ q ¨ .1 w wj1 1

And consider the Banach space

5 5B s ¨ g BU R , R ; ¨ - q` .� 4Ž . 1w1

w x w xFrom Pego 9 , as well as Pazy 8 , we know the following:

LEMMA 2.1. For each h ) 0, i s 1, 2, the operator L on B withi w1
Ž .domain D L is a closed, densely defined operator. For some a , b real,i i i

with 0 - a - pr2, the sectori

S s l g C ; Re l y b G ycos a l y b� 4Ž . Ž .a , b i i ii i
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is in the resol̈ ent set of L . And for any such sector S ,i a , bi i

C
5 5a R l, L ¨ F ¨Ž . Ž . wwi 11 l y bŽ .i

C
5 5b R l, L ¨ F ¨Ž . Ž . 1i 1 l y bŽ .i

C
5 5c R l, L ¨ F ¨Ž . Ž . wi 1 11r2

l y bŽ .i
hold for all l g S and ¨ g B .a , b wi i 1

Ž .By this lemma, L generates an analytic semigroup S t on the spacei i
Ž . Ž .B . So for each V , v g B , the solution to 2.4 can be achieved viaw 0 0 w1 1

the variation of constant formula

t
V t s S t V q S t y t h t dtŽ . Ž . Ž . Ž .H1 0 1 1

0

t
v t s S t v q S t y t h t dt .Ž . Ž . Ž . Ž .H2 0 1 2

0

5 5 5 5The solution can be extended as long as V - q`, v - q`.w w1 1

3. RESOLVENT ESTIMATES

Consider the linear operator L:

Lu s u0 y 2bu9 q qu, 9 s drdj 3.1Ž .
Ž .The resolvent equation for 3.1 is

u0 y 2bu9 q qu y lu s g j . 3.2Ž . Ž .
Ž . Ž . Ž Ž .. Ž .Performing the transformation u j s ¨ j exp B j with B j s

j Ž .H b s ds, we get0

MM y l ¨ s eyB g , 3.3Ž . Ž .
Ž 2 .where MM ¨ s ¨ 0 q b9 y b q q ¨.

p j s b9 j y b2 j q q j ,Ž . Ž . Ž . Ž .
p s lim p j , q s lim q j .Ž . Ž ." "

jª"` jª"`

w xIn 12 , Sattinger proves the following.
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Ž w x.LEMMA 3.1 Sattinger 12 . We consider MM as an linear operator on the
ŽBanach space L . The eigen¨alues of MM in the inter̈ al l ) p p s`

Ž .. Ž Ž ..max p , p are confined to the inter̈ al p - l - p p s sup p jq y 1 1 j g R
and form a discrete set of points on the real axis which can cluster only at
l s p. MM has a continuum of eigen¨alues in the semiinfinite inter̈ al y` -
l - p.

yB Ž j . Ž .Let w s 1 q e . By s L we mean the spectrum of L relative tow
the Banach space B . Assumew

lim 2b j s k " 3.4Ž . Ž .
jª"`

q`0 y qp j y p - q`, p j y p - q`, 3.5Ž . Ž . Ž .H H
y` 0

y qq`k k0
b j y - q`, b j y - q`, 3.6Ž . Ž . Ž .H H2 2y` 0

Sattinger also proves the following.

Ž w x.THEOREM 3.2 Sattinger 12 . Under the abo¨e assumption on b and q,
Ž .y1we may draw the following conclusions about the resol̈ ent operator l y L ,

considered as a transformation on B :w

Ž . q y Ž . q Ž . qI If k ) 0, k ) 0, we ha¨e r L l PP s r MM l PP .w `

Ž . q y Ž . y Ž . yII If k - 0, k - 0, we ha¨e r L l PP s r MM l PP .w `

Ž . q y Ž . Ž .III If k - 0, k ) 0, we ha¨e r L s r MM .w `

Ž . q y Ž . Ž q y. Ž .IV If k ) 0, k - 0, we ha¨e r L l PP l PP s r MM lw `

Ž q y.PP l PP ,
Ž . Ž .where r L is the resol̈ ent set of L relatï e to the Banach space B , r MMw w `

is the resol̈ ent set of MM relatï e to the Banach space L . PPq and PPy are`

exterior to the parabolas
2"kŽ .

r s 3.7Ž ." 2 1 q cos uŽ .
iu Ž .where l y p s r e - yp - u - p . The parabolas 3.7 meet the real" "

axis at l s q and extend to infinity in the left half-plane."

Ž .THEOREM 3.3. Let L , L be defined as in 2.4 . Under the assumption of1 2
Theorem 1.1, there exist constants h ) 0 and d ) 0 which are independent1
of B, when 0 - B F B ; we ha¨e0

sup Re l; l g s L F yd - 0Ž .� 4w i 11

for i s 1, 2.
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Proof. For operator L , without loss of generality, we assume d s 1.2
And so

L u s u0 q cu9 y BH f u. 3.8Ž . Ž .2

Ž . q yComparing to 3.2 , we have 2b s yc - 0, k s k s ycr2 - 0. That is
Ž . yjust the case II in Theorem 3.2. The correspondent PP intersects the

real axis at l s qys yB and extends to infinity in the left half-plane. By
Lemma 3.1, we know

s MM l PPys B.Ž .`

y Ž . Ž cj r2 .So, we have PP ; r L for w s 1 q e .w 2
y Ž .If we choose h G cr2, we also have PP ; r L .w 21

Now we analyse the solutions of the ordinary differential equations

u0 q cu9 y l q BH f u s 0Ž .Ž .

with l f PPy. When j ª "`, we have the corresponding characteristic
equations

g 2 q cg y l q BH f s 0; 3.9Ž . Ž .Ž ."

" Ž .here we denote f s u . 3.9 may also be written as"

Ž .i for j ª q`,

g 2 q cg y l s 0 3.10Ž .

Ž .ii for j ª y`,

g 2 q cg y l y B s 0. 3.11Ž .

Ž .One can find that there exists d ) 0 independent of B . When B is0
Ž y. c � 4 Ž .small and l g PP l l; Re l ) yd , 3.10 admits no solution which0

Ž .satisfies Re l F yh, and 3.11 admits no solution which satisfies Re l G
y Ž .h. Combining this result with PP ; r L , we getw 21

sup Re l; l g s L F yd - 0,Ž .� 4w 2 11

where d ) 0 is independent of B: 0 - B F B .1 0
Ž Ž ..For L , it satisfies L V s V 0 q c y f 9 f V 9. We have1 1

2b s yc q f 9 f , q s 0,Ž .
c y f 9 f c y f 9 fŽ . Ž .q yq yk s y - 0, k s y ) 0

2 2
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Ž .which corresponds to case III in Theorem 3.2. So we have

r L s r MMŽ . Ž .w 1 ` 1

Ž . Ž j Ž Ž .. .where w j s 1 q exp H c y f 9 f ds .0
The corresponding

22 1p s q y b s y c y f 9 fŽ . Ž .Ž ." " " "4

2 21p s y min c y f 9 f , c y f 9 f s yd - 0Ž . Ž .Ž . Ž .½ 5q y 24

22p j s b9 j y b j s f 0 f f9 y c y f 9 f .Ž . Ž . Ž . Ž . Ž .Ž .

To prove the theorem, it suffices to prove that there exists d ) 0 which is3
independent of B ) 0, s.t.,

p j F yd - 0 ;j g y`, q` .Ž . Ž .3

To this end, we integrate the equation of f,

f0 y f 9 f f9 q c f q qz 9 s 0,Ž . Ž .

to get

f9 s f f y f uq y c f y uqq q z y 1Ž . Ž . Ž .Ž .
f f y f uqŽ . Ž .qs f q qz y u q q y c .Ž .Ž . qž /f q qz y u y q

For the strong detonation profile shown in Theorem 1.1, we know there
Ž y. Ž . Ž .exists a u g u#, u , s.t. c s f 9 u see Fig. 3.11 1

In the neighborhood of u , we have1

f f y f uq f f y f uqŽ . Ž . Ž . Ž .
y c F y c q e F yd .3q qf q qz y u y q f y u y q

So, in the neighborhood N of u s u , we have0 1

p j F yd - 0.Ž . 3

ŽWhen j ) j , we have f9 F 0. And when f f N , we have c y0 0
Ž ..2 Ž .f 9 f G d ) 0. Thus we get p j F yd - 0 ;j G j . Here j is the3 3 0 0

maximum point as described in Theorem 1.1.
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FIGURE 3.1

Now we turn to consider the case of j - j . In this case, f9 G 0 and so0
Ž . yf j G u . Hence,

2q qp j s f 0 f f f y f u y c f q qz y u y q y c y f 9 fŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .
2q qF f 0 f f f y f u y cf 0 f f y u y q y c y f 9 f .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .

Ž . Ž .Ž Ž . Ž q.. Ž .Ž q . Ž Ž ..2Let F f s f 0 f f f y f u y cf 0 f f y u y q y c y f 9 f .
We have

F uy F yd - 0Ž . 1

f f y f uqŽ . Ž .qF9 f s f - f f y u y q y cŽ . Ž . Ž . qž /f y u y q

q f 0 f f 9 f y c q 2 c y f 9 fŽ . Ž . Ž .Ž .Ž .
F yf 0 f f 9 f y c F 0.Ž . Ž .Ž .

Ž . Ž .So we have F f F yd , that is, ;j F j , we have p j F yd - 0.3 0 3
Combining it with Lemma 3.1 and Theorem 3.2, we know

sup Re l; l g s L F yd - 0.Ž .� 4w 1 31

1 q y� < Ž . < < Ž . <4Choosing h G max c, f 9 u y c , f 9 u y c , for the corresponding2

w , we know Theorem 3.3 is true.1



LI, LIU, AND TAN526

w x w xFollowing the semigroup theory in Pazy 9 and Henry 3 , we know that
Ž .L generates an analytic semigroup S t which satisfiesi i

ym tS t F Me 3.12Ž . Ž .wi 1

1
ym tL S t F Me . 3.13Ž . Ž .wi i 1 t

Here M and m ) 0 are constants independent of 0 - B F B .0
Ž .But on the other hand, v s z j is a nonzero solution of

L v s 0. 3.14Ž .2

Using the Wronskian determinant, we can obtain another solution v s v2
Ž .which is linearly independent of v s z j . By virtue of Cramer’s rule, one

can easily get the expression for the solution of

L v s ¨ . 3.15Ž .2

w xSimilar to the discussion in 4 , we can prove that

5 5 5 5 v F M ¨ . 3.16Ž .w wj 11 1

Ž .Here M is also independent of B with B ) 0 sufficiently small. 3.161
might be rewritten as

 R 0, L F M . 3.17Ž . Ž .j 2 1w1

Similarly, for L we have1

 R 0, L F M . 3.17Ž . Ž .j 1 1w1

Ž . Ž . Ž .Combining 3.17 , 3.18 with 3.13 , we know

1
1ym t S t F Me for t G . 3.19Ž . Ž .j i 2w1 t
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1Ž .Since S t is an analytic semigroup, for 0 - t F , we also havei 2

' S t F Mr t 3.20Ž . Ž .j i w1

M2
25 5 5 5 S t ¨ F ¨ q ¨ for t ) 0. 3.22Ž . Ž .Ž .w wj i j1 1w1 1 q t

Here M might depend on B ) 0.2

4. STABILITY FOR THE TRAVELLING WAVES

Ž . Ž .In this section we proceed to prove Theorem 1.2. From 2.13 , 2.14 we
know

t
 V t s  S t V q  S t y t h t dt 4.1Ž . Ž . Ž . Ž . Ž .Hj j 1 0 j 1 1

0

t
v t s S t v q S t y t h t dt 4.2Ž . Ž . Ž . Ž . Ž .H2 0 2 2

0

t
 v t s  S t v q  S t y t h t dt . 4.3Ž . Ž . Ž . Ž . Ž .Hj j 2 0 j 2 2

0

1 Ž . Ž .When t G , from 4.1 ] 4.3 we get2

M2
5 5 5 5 V t F V q  VŽ . Ž .w wj 0 j 01 1w1 1 q t

Mty1r2 2ymŽ tyt .q e V t q v tŽ . Ž .1r2H j jž w w1 1t y t0

2
1r2q v t q v t dtŽ . Ž .w w /1 1

Mt 2q V t q v tŽ . Ž .1r2H j jž w w1 1't y tty1r2

2
1r2q v t q v t dt 4.4Ž . Ž . Ž .w w /1 1

tym t ymŽ tyt .5 5v t F Me v q MB e V t q v t dtŽ . Ž . Ž .w w H ž /0 j j1 1 w w1 10

4.5Ž .
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M2
5 5 5 5v t F v q  vŽ . Ž .w wj 0 j 01 1w1 1 q t

Mty1r2 ym Ž tyt .q e V t q v t dtŽ . Ž .H ž /j jw w1 1t y t0

1t
q MB V t q v t dt 4.6Ž . Ž . Ž .H ž /j jw w1 1't y tty1r2

Here and the following M is the general constant independent of 0 - B F
B . Let0

r t s sup 1 q t V tŽ . Ž . Ž .1 j w1
0FtFt

r t s sup 1 q t v tŽ . Ž . Ž . w2 1
0FtFt

r t s sup 1 q t v t .Ž . Ž . Ž .1 j w1
0FtFt

Ž .From 4.4 , we obtain

M2
5 5 5 5V t F V q  VŽ . Ž .w wj 0 j 01 1w1 1 q t

eym Ž tyt .
ty1r22 2q M r t q r t dtŽ . Ž .Ž .H1 2 2

0 t y t 1 q tŽ . Ž .

eym Ž tyt .
ty1r2

q M r t q r t dtŽ . Ž .Ž .H2 3 2
0 t y t 1 q tŽ . Ž .

1t2 2q M r t q r t dtŽ . Ž .Ž .H1 2 2'ty1r2 t y t 1 q tŽ .
1t

q M r t q r t dtŽ . Ž .Ž .H2 3 2'ty1r2 t y t 1 q tŽ .
M2

5 5 5 5F V q  VŽ .w w0 j 01 11 q t

M
2 2q r t q r t q r t q r t . 4.7Ž . Ž . Ž . Ž . Ž .Ž .1 2 2 31 q t
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1When 0 - t - , we have2

M2
5 5 5 5V t F V q  VŽ . Ž .w wj 0 j 01 1w1 1 q t

1t2 2q M r t q r t dtŽ . Ž .Ž .H1 2 2'0 t y t 1 q tŽ .
1t

q M r t q r t dtŽ . Ž .Ž .H2 3 2'0 t y t 1 q tŽ .
M2

5 5 5 5F V q  VŽ .w w0 j 01 11 q t

M
2 2q r t q r t q r t q r t 4.8Ž . Ž . Ž . Ž . Ž .Ž .1 2 2 31 q t

1 1Ž .In the above, for t G , t g 0, t y , we have employed the following2 2

inequalities:

1 1 C1
1 FŽ .

t y t 1 q t 1 q t

1 Cty1r2 1
2 dt F , j s 1, 2,Ž . H j' 1 q t0 t y t 1 q tŽ .

eym Ž tyt . Cty1r2 ty1r21 ym t ymt3 dt F e e dt .Ž . H H2 1 q t0 0t y t 1 q tŽ . Ž .

Ž . Ž .Combining 4.7 , 4.8 , we get

5 5 5 5 2 2r t F M V q  V q M r t q r t q r t q r t .Ž . Ž . Ž . Ž . Ž .Ž .Ž .w w1 2 0 j 0 1 2 2 31 1

4.9Ž .

Ž .Similarly, from 4.6 we have

5 5 5 5r t F M v q  v q MB r t q r t . 4.10Ž . Ž . Ž . Ž .Ž .Ž .w w3 2 0 j 0 2 11 1

Ž .By 4.5 , we obtain

5 5r t F M v q MB r t q r t . 4.11Ž . Ž . Ž . Ž .Ž .w2 0 2 11

Ž . Ž .Let 0 - B - B s min B , 1r2 M ; from 2.11 we know1 0

5 5r t F M v q MBr t . 4.12Ž . Ž . Ž .w2 0 11
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Ž . Ž . Ž .Substituting 4.10 , 4.12 into 4.9 we get

5 5 5 5 5 5 5 5r t F M V q  V q v q  vŽ . Ž .w w w w1 2 0 j 0 0 j 01 1 1 1

q Mr 2 t q MBr t .Ž . Ž .1 1

Ž .For 0 - B - B s min B , 1r2 M , we have1 0

5 5 5 5 5 5 5 5 2r t F M V q  V q v q  v q Mr t . 4.13Ž . Ž . Ž .Ž .w w w w1 2 0 j 0 0 j 0 11 1 1 1

q` Ž . w xSince H V j dj s 0, similar to Lemma A.3 in 4 , we havey` 0

5 5 2 5 5 3V F C  V . 4.14Ž .w w0 2 j 01 1

Ž .So 4.13 can be rewritten as

5 5 3 5 5 5 5 2 2r t F M  V q v q  v q Mr t . 4.15Ž . Ž . Ž .Ž .w w w1 2 j 0 0 j 0 11 1 1

Ž .From 4.15 , we know that there exist constants d ) 0, M ) 0; when0

5 5 3 5 5 5 5 2 V q v q  v F d ,w w wj 0 0 j 0 01 1 1

we have

r t F M ; t G 0.Ž .1

Ž . Ž .Returning to 4.10 , 4.12 , we get

r t F M , r t F M ; t G 0,Ž . Ž .2 3

which completes the proof of Theorem 1.2.

Ž .Remark. From the expression in 2.13 , we have

t 2ym t ymŽ tyt .5 5V t F M e V q M e V t q v tŽ . Ž . Ž .1r2w w H2 0 j jž1 1 w w1 10

2
1r2q v t q v t dt .Ž . Ž .w w /1 1

From Theorem 1.2, we know

V t F M - q` ; t G 0,Ž . w1

which implies the global existence of the solutions of the Cauchy problem
Ž .in the space B for 2.3 if the initial perturbation satisfies the conditionsw1

in Theorem 1.2.
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