
doi:10.1006/jsco.2002.0533
Available online at http://www.idealibrary.com on

J. Symbolic Computation (2002) 33, 757–775

Subquadratic Computation of Vector Generating
Polynomials and Improvement of the Block

Wiedemann Algorithm

EMMANUEL THOMÉ

LIX (UMR CNRS 7650), École polytechnique, 91128 Palaiseau Cedex, France

This paper describes a new algorithm for computing linear generators (vector generat-
ing polynomials) for matrix sequences, running in subquadratic time. This algorithm

applies in particular to the sequential stage of Coppersmith’s block Wiedemann algo-

rithm. Experiments showed that our method can be substituted in place of the quadratic
one proposed by Coppersmith, yielding important speedups even for realistic matrix

sizes. The base fields we were interested in were finite fields of large characteristic. As
an example, we have been able to compute a linear generator for a sequence of 4 × 4

matrices of length 242 304 defined over F2607−1 in less than 2 days on one 667 MHz

alpha ev67 CPU.

c© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Although it can be stated in a rather general context, we will here envision the problem
of finding a linear generator for a matrix sequence in the light of how it applies to the
block Wiedemann algorithm, described in Coppersmith (1994). This algorithm addresses
the problem of finding one or several solutions to a large sparse linear system defined
over a finite field, or in other words, solutions w to the equation Bw = 0, where B is
a singular N × N matrix defined over the field K = Fq, q being a prime power, and
B is sparse: it has only few non-zero coefficients per row. The block Wiedemann algo-
rithm takes advantage of this last fact (the fewer non-zero coefficients B has, the faster
the computations). Many other “sparse” linear algebra algorithms exist (Wiedemann,
1986; LaMacchia and Odlyzko, 1990; Coppersmith, 1993; Montgomery, 1995). This is in
contrast to more general-purpose procedures, like the well-known Gaussian elimination,
which does not consider nor preserve the sparsity of the input matrix.

Sparse linear systems over finite fields occur in a variety of contexts, more specifically
in computational algebraic number theory. We originally encountered the problem in the
course of solving discrete logarithm problems over F2n with the index-calculus algorithm
of Coppersmith (1984). This computation is described in Thomé (2001b, 2002). Generally,
any index-calculus-type algorithm for computing discrete logarithms in an appropriate
group calls for the solution of a sub-problem of this kind: see Odlyzko (1985) and for
instance Gaudry (2000a,b). Huge sparse linear systems defined over the binary field F2

also occurred in the course of the recent record-breaking factorizations of composite
numbers with the number field sieve (Cavallar et al., 2000; CABAL, 2000).

0747–7171/02/050757 + 19 $35.00/0 c© 2002 Elsevier Science Ltd. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81946611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

758 E. Thomé

Coppersmith’s block Wiedemann algorithm is a clever generalization of an older algo-
rithm proposed in Wiedemann (1986). In the latter algorithm, one is interested at some
point in finding a linear generator for a given scalar sequence. The Berlekamp–Massey or
the extended Euclidean algorithms can do this in quadratic time. Subquadratic alterna-
tives exist, which can take advantage of fast polynomial multiplication algorithms. These
are the HGCD (half-gcd) algorithm from Aho et al. (1974) and the PRSDC (polynomial
remainder sequences by divide-and-conquer) algorithm from Gustavson and Yun (1979).
Coppersmith (1994) introduces a multi-dimensional variant of Wiedemann’s algorithm,
whose main advantage is that it allows partial distribution and/or parallelization of part
of the computations. In this algorithm, the linear generator finding task is transformed
into a multi-dimensional analogue (defined precisely in Section 2), which Coppersmith
solves by a “matrix Berlekamp–Massey”.

The work in this paper provides a subquadratic variant of Coppersmith’s “matrix
Berlekamp–Massey”. The complexity reduction is obtained by the use of the fast Fourier
transform (FFT) method. Our method is recursive, as for the HGCD or PRSDC algo-
rithms from which it was actually adapted. Other subquadratic algorithms exist for this
task (Beckerman and Labahn, 1994), also using FFT. We will discuss more deeply the
respective complexities and the differences between our algorithm and Beckermann and
Labahn’s in Section 2.2, once the required concepts have been defined.

An earlier version of this work appeared in Thomé (2001a). This paper completes the
results presented at ISSAC’2001 by providing a better theoretical setting and improving
the presentation of the algorithm. We have also now implemented our algorithm with
success, and provide running times that could be employed to draw a comparison with
Beckermann and Labahn’s method.

The organization of this paper is as follows. Sections 2–4 concentrate on the task of
computing a linear generator for a matrix sequence. Section 2 defines this central concept
of the generator in 2.1, explains which quantities are computed by our algorithm and
by Beckermann and Labahn’s in 2.2. Section 3 presents the framework and requirements
that are shared by Coppersmith’s algorithm for finding linear generators and ours. Our
new algorithm is presented in Section 4. Sections 5–7 concentrate on the influence of
our new algorithm on the block Wiedemann algorithm. Section 5 introduces the block
Wiedemann algorithm, and its connections to the presentation that we make of the
linear generator finding problem. In Section 6, we discuss the overall cost of the block
Wiedemann algorithm, along with the optimal value of its parameters. Section 7 discusses
practical concerns about the implementation of our approach inside a more extended
computation like the discrete logarithm computation in Thomé (2001b, 2002). Section 8
shows the results of our experiments with the new algorithm.

2. Linear Generators for Matrix Sequences

2.1. definitions

Throughout this paper, K denotes a finite field, and m and n are two chosen integers.
We make no hypotheses on the characteristic of K, nor on m and n being greater than
or equal to the other. We focus on sequences of m×n matrices, which are represented as
matrices of formal power series, that is, elements of the structure K[[X]]m×n. Similarly,
we also introduce several connected structures, like the n × r matrices with polynomial
entries, denoted K[X]n×r, or the n-dimensional column vectors with polynomial entries,

Subquadratic Computation of Vector Generating Polynomials 759

denoted K[X]n×1. When dealing with these structures, one must keep in mind the equiv-
alence with the point of view of polynomials with matrix coefficients. Therefore, when we
make use of the “degree” of a matrix of polynomials, it is actually the maximal degree
of its entries. We define the concept of linear generator for series in K[[X]]m×n.

Definition. Let r ∈ N∗. A sequence A(X) ∈ K[[X]]m×n admits F (X) ∈ K[X]n×r

(non-zero) as a right-hand linear generator if A(X)F (X) ∈ K[X]m×r.

The polynomial F (X) is also often referred to as a matrix generating polynomial for
A(X). For r = 1, F (X) is called a vector generating polynomial. This is actually the
central object we will concentrate on. Also, if r = n, and if the square matrix F (X) is
invertible in K[[X]]n×n (we also say unimodular), then we can write down A(X) in the
right rational form G(X)F−1(X). It is understood that all the concepts above can be
translated to the left-hand situation.

For a pair (F (X), G(X)) ∈ K[X]n×r × K[X]m×r we also introduce the notation:
δ(F,G) := max(deg F, 1+deg G). Thus one can say that F (X) is a generator if and only
if δ(F,AF) is finite.

2.2. existing algorithms for computing generators

Generally stated, our problem is the computation of a right-hand n × r matrix gen-
erating polynomial. In some cases, only r = 1 will be required. Several algorithms have
been introduced to deal with the computation of matrix generating polynomials. Kaltofen
(1995) provides a short survey on these, the earliest work cited being Rissanen (1972).
Coppersmith suggested for this purpose an algorithm which addresses the case r = 1
with complexity O((m+n)n2k2), where k is the degree of the computed generator. Cop-
persmith’s algorithm relies on some non-degeneracy assumptions concerning the input
series A(X) that are summarized in 3.1. One can reasonably expect these requirements
to be satisfied for non-particular input. For the same input series A(X), the “power
Hermite–Padé solver” of Beckerman and Labahn (1994) assumes that FFT is available
over the base field, and computes n× r matrix generating polynomials for any r in time
O((m+n)2mk log2 k), again with k the degree of the generator. The algorithm of Becker-
mann and Labahn makes no regularity assumptions on the input sequence A(X). Other
algorithms are cited in Kaltofen (1995) and Villard (1997a), notably a method due to
Bitmead and Anderson (1980) and Morf (1980). It appears that even if Coppersmith’s
algorithm is not supposed to be the asymptotically fastest of all these algorithms, it
has been the preferred one for experiments with the block Wiedemann algorithm like
Lobo (1995), Kaltofen and Lobo (1999) and Penninga (1998). Several reasons might
explain this. Comparatively, Coppersmith’s algorithm is pretty simple. Also, the absence
of need for randomization might be considered as an advantage, compared to the Bit-
mead/Anderson/Morf method. Another good point for Coppersmith’s algorithm is that
there is no big hidden constant in the complexity: to be exact, m+n

2 n2k2 scalar multipli-
cations are required. Last but not least, asymptotically fast algorithms using recursion
and the FFT, like the algorithms we are concerned about, are usually not worthwhile
below a certain threshold. This threshold might still be above the current computation
sizes, thus making quadratic approaches preferable.

The algorithm that we present in this paper is a subquadratic version of Coppersmith’s
algorithm. It relies on the same assumptions, and also computes a vector generating

760 E. Thomé

polynomial. Using a generic fast polynomial multiplication algorithm, which requires
M(d) operations to multiply two polynomials of degree d with coefficients in K, the
complexity of our algorithm is O((m + n)3M(k) log k). If FFT is available over the base
field, this complexity reduces to O((m + n)2k(m + n + log k) log k). If m and n are in
O(log k), this expresses as c(φ) (m+n)3

m k log2 k + (3 + φ)(m + n)3k log k, where c(φ) is in
the range [0.5, 5] and depends only on φ = m

m+n (c(φ) is very close to 5φ). As in the rest
of the paper, log denotes here the logarithm in base 2.

We add two remarks concerning these algorithms. First, while Coppersmith’s algorithm
and ours are focused on the situation r = 1, it is not hard to see that for generic input,
a solution for r = n is produced simultaneously, yielding a rational form for the series
(but for this to be ensured, we would need additional requirements). Second, Beckermann
and Labahn’s as well as our algorithm have the complexities announced when FFT is
available over the base field. If this is not the case, but the base field is a prime field, then
we can work around the absence of native FFT by padding the data into integers, and
using integer FFT, at the mere cost of an additional log log k factor in the complexity.

3. A Matrix Version of the Berlekamp–Massey Algorithm

3.1. input requirements

The framework that we will present for computing a vector generating polynomial
makes assumptions that are summarized hereafter. First, we will make use of the following
theorem.

Theorem 3.1. Let A(X) ∈ K[[X]]m×n. Suppose that A(X) has a left rational form
D(X)−1N(X). If we have matrices F (X) ∈ K[X]n×r, G(X) ∈ K[X]m×r, E(X) ∈
K[[X]]m×r, and an integer t such that:

A(X)F (X) = G(X) + XtE(X),
Then: t− δ(F,G) ≥ δ(D,N)⇒ E(X) = 0.

The verification of this assertion is an easy matter (checking degrees suffices).
In order to be able to use Theorem 3.1, we assume that A(X) has a left rational form

D(X)−1N(X). We denote by d the integer δ(D,N). We will not need to compute N(X)
and D(X), but we assume that they exist. Furthermore, we introduce an integer s which
is the least integer such that the subspace of Km×1 spanned by the columns of the first
s coefficients of A(X) (as a matrix polynomial) has maximal dimension m. If this is
impossible (because even with s → ∞ the dimension is less than m), then by a change
of basis we can drop the superfluous lines in A(X), then have m smaller, and therefore
assume that s exists without loss of generality.

Depending on the inputs above (the two integers s and d), Coppersmith’s matrix
generalization of the Berlekamp–Massey algorithm, as well as our accelerated alternative,
provide a constructive proof to the following assertion:

Theorem 3.2. A right-hand vector generating polynomial u(X) for A(X) can be deter-
ministically computed using only the first L = s +

⌈
m+n

n d
⌉

coefficients of A(X). The
computed generator u(X) satisfies δ(u, Au) ≤ s +

⌈
m
n d
⌉
.

Subquadratic Computation of Vector Generating Polynomials 761

The integer L = s +
⌈

m+n
n d

⌉
introduced in the last proposition will remain fixed

throughout the paper.

3.2. framework

The strategy that we use in order to produce a vector generating polynomial involves
writing equations like in the hypothesis of Theorem 3.1 for several (as many as m + n)
candidate vectors fj , and vectors gj which are approximations of Afj . With the quantity
δ playing a crucial role in Theorem 3.1, we will also maintain a bound δj on δ(fj , gj),

∀j ∈ [[1,m + n]], A(X)fj(X) = gj(X) + Xtej(X),
δ(fj , gj) ≤ δj . (C1)

The fj ’s, gj ’s, and ej ’s are gathered to form the m + n columns of the three matrices
f(X), g(X), and e(X) (with, respectively, n, m, and m lines). Another condition will be
enforced ([Xk]P denotes the coefficient of degree k in P):

rank([X0]e) = m. (C2)

Since Theorem 3.1 states that fj is a generator if the gap between t and δ(fj , gj)
is big enough, we will try to infer, from the equations (C1) and (C2) above, the same
equations with t increased by one, and the δj ’s increased by less than one on average, so
that eventually the gap will be big enough for some j. We will explain how the original
setting is obtained in 3.3. As for how we go from t to t + 1, this is exactly addressed by
Coppersmith (1984), and we have also detailed this step in Thomé (2001a). We will not
repeat this verbosely here, but rather refer to this procedure as a black-box algorithm
named ALGO 1, which achieves the following:

Theorem 3.3. Assuming conditions (C1) and (C2) hold at step t, there is an algorithm
ALGO 1 that, knowing [X0]e(t) and (δ(t)

1 , . . . , δ
(t)
m+n), computes a (m+n)×(m+n) matrix

P (t)along with integers (δ(t+1)
1 , . . . , δ

(t+1)
m+n) such that:

f (t+1) = f (t)P (t), g(t+1) = g(t)P (t), e(t+1) = e(t)P (t) 1
X

,

and the δ
(t+1)
j ’s satisfy conditions (C1) and (C2) at step t + 1. Furthermore, we have∑

j δ
(t+1)
j −

∑
j δ

(t)
j = m.

3.3. initialization

The initialization of the iterative process is somewhat involved, but can be done
deterministically. Let us recall that we have assumed that the columns of the matrices
a0, . . . , as−1 span the full vector space Km×1. Hence we can find m vectors r1, . . . , rm,
all belonging to the canonical basis of Kn×1, along with integers i1, . . . , im in the range
[[0, s − 1]], satisfying the property that the vectors aik

rk, for k ∈ [[1,m]], form a basis of
Km×1. Given this data, we can provide initialization data for the algorithm, beginning
at t0 = s. We set the first n columns of f (t0)(X) to be the identity matrix In. The
remaining m columns will be the Xs−ikrk’s. All the δj ’s are initially set to t0 = s. We
can see trivially that condition (C1) is satisfied. Condition (C2) is a consequence of the

762 E. Thomé

choice of the ik’s and rk’s. Let us denote by β(X) the last m columns of the matrix
e(t0)(X) (β(X) is an m ×m matrix). By the choice of the ik’s and rk’s, the columns of
β(0) form a basis of Km×1, hence detβ(0) 6= 0, and rank(e(t0)(0)) = m. Furthermore,
let us define an (m + n) × (m + n) matrix h(X), which is the vertical concatenation of
f(X) and e(X). The initial matrix h(t0) has the following shape:

h(t0) =

In Xs−i1r1 · · · Xs−imrm

... β(X)

 .

Since ik < s for all k, the upper right part of h(t0)(0) is zero. Therefore, we have
deth(t0)(0) = det β(0) 6= 0. Thus, h(t0)(X) is unimodular. This fact will be important to
prove that the algorithm produces non-trivial output.

3.4. termination

Coppersmith’s algorithm for finding linear generators consists of simply iterating
ALGO 1 until a generator is produced. The data which needs to be kept along with
this computation is the polynomial matrix f(X), and the scalar matrix [X0]e(X). Since
it is obvious from Theorem 3.3 that the average value δ of the δj ’s increases by m

m+n
each time t increases by 1, we can express the average gap:

t− δ = t−
(

t0 + (t− t0)
m

m + n

)
= (t− t0)

n

m + n
.

For t = t0 +
⌈

m+n
n d

⌉
, we have:

t− δ ≥ d, and δ = s +
m

m + n

⌈
m + n

n
d

⌉
≤ s +

⌈
m

n
d

⌉
.

Therefore there exists at least one j such that fj is a vector generating polynomial, with
the properties announced in 3.2. Note that fj cannot be zero because otherwise we would
have a zero column in h(X), contradicting the fact that h(X) is unimodular.

4. An Accelerated Version of Coppersmith’s Algorithm

4.1. balancing polynomial multiplications

In Coppersmith’s algorithm, the quadratic cost comes from the evaluation of [Xt](Af)
and the multiplication of f(X) by a degree 1 matrix at each step t, for t0 ≤ t ≤ L.
Our divide-and-conquer approach aims at replacing these numerous very unbalanced
computations by a few big polynomial multiplications, in order to take advantage of fast
multiplication algorithms, like the FFT. In order to do this, we make extensive use of
Theorem 3.3. Specifically, the fact that the only knowledge of [Xt](Af)—that is, [X0]e—
is necessary will prove to be crucial. In fact, knowing the first k coefficients of e(t)(X), is
enough to compute P (t) up to P (t+k−1), without updating f(X). Let us formalize these
considerations.

Definition. A k-context is a pair of the form E = (e(X),∆) corresponding to some
iteration step of the iterative algorithm outlined in Section 3.2 where the (m + n)-tuple
∆ = (δj)j∈[[1,m+n]] and the first k coefficients of e(X) are known.

Subquadratic Computation of Vector Generating Polynomials 763

Definition. Generalizing the matrix P (t) introduced in Theorem 3.3, if E is a context
corresponding to iteration step t of the algorithm in 3.2, and a, b are integers such that
0 ≤ a ≤ b, we call π

(a,b)
E the (m + n)× (m + n) matrix:

π
(a,b)
E = P (t+a) · · ·P (t+b−1), and π

(a,b)
E = id if a = b,

where the P (t+i) are the matrices computed as described by Theorem 3.3 at the corre-
sponding iteration steps after t. This definition is justified by:

Theorem 4.1. A given k-context E determines completely any π
(a,b)
E as long as 0 ≤

a ≤ b ≤ k. If E corresponds to iteration step t of the algorithm, say E = E(t), then a
(k − b)-context E(t+b) follows from the computation of π

(0,b)
E .

Proof. The proof is easy by induction. Theorem 3.3 states that E(t) determines P (t).
e(t+1) follows since e(t+1) = e(t)P (t) 1

X . ∆(t+1) follows as well since:

δ
(t+1)
j = max

i
{δ(t)

i + deg P
(t)
i,j }.

By an abuse of notation, we denote the latter ∆(t)P (t). Together, e(t)P (t) 1
X and

∆(t)P (t) form a (k − 1)-context. Generalization of this step from t to t + 1 to the result
of the theorem is trivial.2

With this formalism, it becomes clear that our main point of interest is the quantity
π

(0,L−t0)

E(t0) where E(t0) = (e(t0),∆(t0)) is the initial L—t0-context. Once π
(0,L−t0)

E(t0) is known,

then all the columns of f (t0)(X)π(0,L−t0)

E(t0) satisfy the conditions (C1) and (C2) from 3.2
with t = L, and since we know the δj ’s, we can pick a column that suits the requirements
of Theorem 3.1. In fact, Coppersmith’s algorithm described in the previous section does
nothing more than that. It computes π

(0,L−t0)

E(t0) from E(t0), and can be trivially generalized

to compute π
(0,b)
E from a given b-context E, in quadratic time.

From Theorem 4.1, we design an algorithm whose task is the computation of π
(0,b)
E

from a given b-context E. It is described in Program 4.1. In that piece of pseudo-code,
ALGO 1 is the algorithm introduced in Theorem 3.3. Cutting at b

2 is legitimate because of
Theorem 4.1. The recursive algorithm is named MSLGDC, by lack of imagination, from
“matrix sequences linear generator by divide-and-conquer”. It will be applied to the
(L − t0)-context E(t0) = (e(t0),∆(t0)). As often with recursive algorithms, there exists
a certain threshold under which the quadratic counterpart is more efficient. For the
case of algorithm MSLGDC, taking this into account is easy: we replace the invocation
of ALGO 1, on the second line, by an invocation of ALGO k as soon as b ≤ k, where
we denote by ALGO k any algorithm capable of computing π

(0,k)
E from a k-context. For

instance, Coppersmith’s original algorithm can play this role.

4.2. complexity of MSLGDC

Since we are interested in large base fields, we will only count scalar multiplications.
Our algorithm requires two non-trivial (more than linear) operations at each recursion
level. These are:

eR ← (eπL mod Xb) div Xb b
2 c, and π ← πLπR.

764 E. Thomé

Algorithm MSLGDC
INPUT: A b-context E = (e,∆).
OUTPUT: π

(0,b)
E .

{
if {b==0} return Im+n;
if {b==1} return ALGO 1(e,∆);

(eL,∆L)=
((

e modXb b
2 c
)

, elta

)
; /* A b b

2c-context */

πL=MSLGDC(eL,∆L);

(eR,∆R)=
(((

eπL mod Xb
)

div Xb b
2 c
)

,∆πL

)
; /* A

⌈
b
2

⌉
-context */

πR=MSLGDC(eR,∆R);

π=πL × πR;
return π;

}

Program 4.1. Recursive algorithm for computing π
(0,b)
E

Of these polynomials, e has degree b, and πL and πR have degree m
m+n

b
2 . Using a generic

fast multiplication algorithm requiring M(k) operations to multiply two polynomials of
degree k, these operations would cost m(m+n)2M(b) and (m+n)3M

(
m

m+n
b
2

)
, that is, at

most 3
2m(m + n)2M(b). Now, if we use the FFT, we can do much better. The expression

of the complexity involves the cost M1 of a multiplication in K, and the ratio φ = m
m+n .

The function c(φ) will appear in the proof.

Theorem 4.2. If K supports FFT (see von zur Gathen and Gerhard 1999. Chapter 8),
the two operations above can be achieved in time c(φ)M1(m +n)2b log b +(3 +φ)M1m(m+
n)2b + O((m + n)2b). This yields a complexity bound for algorithm MSLGDC with a b-
context of c(φ)M1(m + n)2b log2 b + (3 + φ)M1m(m + n)2b log b + O((m + n)2b log b)).

Proof. What this theorem says is that the generic result is not only specified using the
complexity of the FFT for M(k), but that we also improve the complexity with respect
to m and n. Let us show how this is obtained.

We refer to von zur Gathen and Gerhard (1999, Chapter 8) for an introduction to
the FFT. In a few words, the FFT relies, on the one hand, on the ability to efficiently
compute the evaluation discrete Fourier transform (DFT) of a polynomial at a bunch
of points—the 2lth roots of unity for some l—and, on the other hand, on the ability to
interpolate equally fast a polynomial given its values at those same points (inverse DFT,
or IDFT, operation). The DFTs of two polynomials can be multiplied pointwise (at a
linear cost in the number of points) to obtain the DFT of the product polynomial. The
latter can then be recovered by an IDFT operation.

We aim here at multiplying polynomial matrices. As above, we compute the DFT of
each entry in the matrices involved (e, πL, and πR), forming the matrix DFTs ê, π̂L, and
π̂R (these are matrices of scalar sequences, or also sequences of scalar matrices). These

Subquadratic Computation of Vector Generating Polynomials 765

DFTs can be multiplied pointwise, involving one scalar matrix multiplication per point,
to obtain the DFTs of the products: êR, and π̂.

The number of points at which the DFTs are computed is actually driven by the
number k of unknown coefficients in the product: we take the smallest power of 2 above
k. Therefore at most 2k points are needed. We know that deg e = b, deg eL = deg eR = b

2 ,
deg πL = deg πR = m

m+n
b
2 = φ b

2 , and deg π = φb. Hence we need transforms using
2∗
(

b
2 +φ b

2

)
= (1+φ)b points at most for the computation eR ← (eπL mod Xb) div Xb b

2 c,
and transforms using 2φb points at most for the computation of π ← πLπR. The cost
of the computation of a DFT or IDFT using k points is below k

2 log k multiplications
in K (von zur Gathen and Gerhard, 1999, Theorem 8.15). Resulting upper bounds on
the time required to compute all the transforms are summarized hereafter. Of course,
the transform of πL need not be computed twice, so we keep the largest figure ((1 + φ)b
points needed).

DFT : e→ ê 1
2M1m(m + n)(1 + φ)b log((1 + φ)b),

DFT : πL → π̂L
1
2M1(m + n)2(1 + φ)b log((1 + φ)b),

IDFT : êR → eR
1
2M1m(m + n)(1 + φ)b log((1 + φ)b),

DFT : πR → π̂R M1(m + n)2φb log(2φb),
IDFT : π̂ → π M1(m + n)2φb log(2φb).

Additionally, the matrix products involved by the pointwise multiplication of the DFTs
yield a complexity of m(m+n)2(1+φ)bM1+2(m+n)3φbM1 operations. The cost equation
for the algorithm MSLGDC for order b follows by summation:

C(b) = 2C

(
b

2

)
+ c(φ)M1(m + n)2b log b

+(3 + φ)M1m(m + n)2b + O((m + n)2b),

hence C(b) ≤ c(φ)M1(m + n)2b log2 b + (3 + φ)M1m(m + n)2b log b + O((m + n)2b log b),
as claimed, where we have introduced as c(φ) the quantity φ2 + 3.5φ + 0.5. For φ = 0.5,
which is a typical setting, c(φ) is 2.5. 2

The complexity above is expressed with respect to the number of terms of the sequence
that are used. For our interest, this number is L = s +

⌈
m+n

n d
⌉
. The generator obtained

has degree k = s + m
n d. We will see in the next section that s is small and can safely be

ignored. If we want to express the complexity required to compute a generator of degree
k with respect to k, we obtain:

C

(
m + n

n

n

m
k

)
= c(φ)M1

(m + n)3

m
k log2 k + O((m + n)3k log k).

So the actual† speedup obtained when we compare with Coppersmith’s version is
n2k

10(m+n) log2 k
, as long as m and n stay relatively small (here we have simplified to m = n).

5. Block Wiedemann Algorithm

We will now see how our approach of the computation of linear generators plugs well
into the block Wiedemann algorithm. In this algorithm, we want to solve the equation
Bw = 0 for a N ×N matrix B defined over a finite field K.

†However, so many parameters are involved that this estimate is not really sharp.

766 E. Thomé

5.1. principle of the block Wiedemann algorithm

In the original (non-block) algorithm from Wiedemann (1986), we focus on:

ak = xTBky, k ≥ 0,

where x and y are fixed elements of the vector space KN acting as random inputs. A
linear generator for this sequence is desired, and can be computed using only the first
2N coefficients ak. If B has γ non-zero coefficients per line on average, those can be
computed using O(γN2) scalar multiplications in K. This computation is faster if γ is
small, that is, if B is sparse. In addition, this evaluation is sequential by nature† since it
involves repeated applications of B. Doing this computation in a parallel or distributed
setting is infeasible without an important amount of communication between the different
processors or machines taking part in the computation (it might be all right for an SMP
crossbar, but it certainly is not for a network). Once a linear generator is obtained, one
derives a solution to the equation Bw = 0.

Coppersmith (1994) brought the following interesting possibility: instead of vectors x
and y, use blocks of vectors, of size N ×m and N × n, respectively, where m and n are
chosen integers. We will concentrate on:

A(X) =
∞∑

k=0

akXk ∈ K[[X]]m×n where ak = xTBky.

One “sample” xTBky therefore contains more information because it is made up of several
scalars. We will compute a vector generating polynomial for A(X). For m = n = 1, this
is the same computation as in the original Wiedemann algorithm. We will see that for
all m and n, this generator yields a solution to our original linear system Bw = 0, and
that it can be computed with the knowledge of approximately N

m + N
n terms of the series

A(X). Designing a block version of the Wiedemann algorithm is interesting because it
allows a partial distribution of the computation of the ak’s across several machines, each
of them computing for instance a given column of all the ak’s. This achieves coarse-grain
parallelization of the computation of the ak’s. Coppersmith was interested in the case
of F2: an n-bit machine can compute a whole line of Bky from Bk−1y in one single
operation, performing n binary multiplications (that is, bitwise ANDs) at a time.

5.2. connections with vector generating polynomials

The inputs to the block Wiedemann algorithm are the matrix B, which is given, and
the matrices x and y. We choose x at random, while y is chosen as Bz, for a random
vector block z. This is necessary to ensure that a solution to the equation Bw = 0 will be
produced. Let us see what are the expected values for the parameters s and d associated
with A(X). Our presentation does not pretend to give a full account on what types of
degeneracy can show up. We refer to Coppersmith (1994), Kaltofen (1995) and Villard
(1997a,b) for this matter.

We claim that we can choose d to be the first integer such that the span of the column
vectors (BT)lxj , 0 ≤ j < m, 0 ≤ l < d, is equal to the full span of these vectors, when

†It has been suggested to us that a baby-step/giant-step approach in the spirit of Kaltofen and Vil-
lard (2001) could help. However such a thing is not doable here since, B being large and sparse, the

computation of B
√

N would have a prohibitive cost in time and space.

Subquadratic Computation of Vector Generating Polynomials 767

taken for all l. Indeed, for this integer, there exists for each k in [[0,m − 1]] a collection
of scalar coefficients λj,k,l such that:

(BT)dxk =
m−1∑
j=0

d−1∑
l=0

λj,k,l(BT)lxj . (1)

Equivalently, if D(X) is the m × m matrix whose (j, k)th entry is the polynomial∑d
l=1 λj,k,d−lX

l, we have:

(BT)dxk = [Xd]
m−1∑
j=0

d−1∑
l=0

(BT)lxjX
lλj,k,lX

d−l,

(BT)dx = [Xd]

((∑
l≥0

X l(BT)lx

)
D(X)

)
,

0 = [Xd]

((∑
l≥0

X l(BT)lx

)
(D(X)− Im)

)
.

Multiplying equation (1) by any power of BT on the left, we obtain more generally that
all the coefficients after the d-th in the polynomial matrix product above are zero. We
can also take the product with y on the left, and transpose the result, to obtain that
A(X) has a left rational form, with unimodular denominator Im −D(X), of degree less
than or equal to d. The value of d will typically be

⌈
N
m

⌉
, since for this value the span

envisioned above is the span of a collection of more than N vectors. Generically, if the
projection incurred by x is not too bad, and if the matrix BT does not have eigenvalues
with large multiplicities, their span includes the full image of BT.

As for s, which is such that the columns of a0, . . . , as−1 span all of Km×1, its existence
depends on good projection properties of x and y. It is highly likely as soon as N is big
compared to m and n that s exists, and that in fact s =

⌈
m
n

⌉
, since this value of s gives

us at least m vectors to choose from in order to span an m-dimensional space.
So we have typically d =

⌈
N
m

⌉
, and s =

⌈
m
n

⌉
. Of course, these values are not rigor-

ously proven, and for real cases, they might be slightly greater. The theoretical analyses
of the block Wiedemann algorithm in Coppersmith (1994), Kaltofen (1995) and Villard
(1997a,b) study the deviation of s and d from their typical value, and recommend (in
short) that we add an O(1) component to these terms in order to avoid possible failure
with very particular input, like matrices having many eigenvalues with large multiplici-
ties. Applying Theorem 3.2, it follows that using L = N

m + N
n + O(1) terms, we are able

to compute a linear generator whose degree is N
n + O(1) (terms like m

n are included in
the O(1)).

From now on, our context will be the one described in this paragraph. The quantities
B,N, d, s, L,m, n, x, z, and y will correspond to the aforementioned.

5.3. different stages of the algorithm

The computation of the coefficients of A(X), which will be named “stage BW1”, is done
sequentially. A vector variable Y is repeatedly updated by Y ← BY , and dot products
xTY are computed at each step. Once we have A(X) at our disposal, we can infer a
linear generator for this matrix sequence, using the tools we have already mentioned (for

768 E. Thomé

example, we can use the MSLGDC algorithm). This will be the step BW2 of the block
Wiedemann algorithm. We quickly show that such a linear generator yields a solution to
the system Bw = 0. Suppose that we obtained a vector generating polynomial, that is,
a pair (u(X), v(X)) and an integer δ satisfying:

A(X)u(X) = v(X), δ(u, v) ≤ d.

Writing down which coefficients are zero, we have:

∀t, t ≥ δ,
δ∑

k=0

([Xt−k]A)([Xk]u) = 0,

i.e.
δ∑

k=0

xTBt−ky[Xk]u = xTB(t−δ)
δ∑

k=0

Bδ−ky[Xk]u = 0.

∀t ≥ 1, xTBt

δ∑
k=0

Bδ−kz[Xk]u = 0.

Then, the quantity w =
∑δ

k=0 Bδ−kz[Xk]u is orthogonal to the span of the (BT)txi’s,
for t ≥ 1. As said before, we can assume that this span is equal to the full image of BT

(this might fail if B has many eigenvalues with large multiplicities). This means, then,
that Bw is necessarily zero, meaning that w is a solution to our linear system Bw = 0
if w 6= 0. In the case w = 0 but as a “polynomial” in B, w has a non-zero valuation ν,
then we have B1+νŵ = 0 for ŵ =

∑δ−ν
k=0 Bδ−kz[Xk]u, and some Btŵ is guaranteed to be

a solution if ŵ 6= 0. The computation of ŵ and t such that Btŵ is a solution is named
step BW3.

6. Complexity Analysis and Optimization

Having a block version of the Wiedemann algorithm introduces a new flexibility: we
can play with parameters m and n. Nevertheless, these parameters do have some optimal
value that we had better use: obviously, the bigger m and n, the shorter the computation
of the ak’s, but also the more tedious the computation of a solution from these. We
will therefore detail the complexity of the different stages (BW1, BW2, BW3) of the
algorithm with respect to m, n, and N . For step BW2, we will give complexities for both
Coppersmith’s and our algorithm.

The block approach allows coarse grain parallelization (see Coppersmith, 1994 or
Kaltofen and Lobo, 1999). In a parallel or distributed setting, distributing the columns
of a vector block Y across several machines allows one to compute Y ← BY in a real
time that does not depend on n (if we have that many machines available). It is impor-
tant to note here that this distribution requires no communication at all between the
machines taking part in the computation. Steps BW1 and BW3 can take advantage of
this, and therefore the real time is the appropriate measure for the algorithm. One can
also regard this as the parallel complexity using a given number of computers, and a
communication complexity in O(1). Now the question is: provided that the hardware we
have access to allows us several values for m and n, how to choose them in order to
achieve the lowest total real time? This is answered in Theorems 6.2 and 6.3. Since m
and n are typically limited by the available hardware, it is reasonable to assume that m
and n are bounded by a constant. Therefore, at least for the complexity of step BW2

Subquadratic Computation of Vector Generating Polynomials 769

using our recursive algorithm, we will incorporate this in the complexity equation, and
focus on the dominating term.

In order to obtain complexity measurements we will use the constant M1 which has
been defined previously (the time for multiplying together two elements of K), as well
as an additional constant, M0, which is the time needed for multiplying a coefficient of
the matrix B (typically of size equal to one machine word) by an element of K. Also,
we denote by γ the average number of non-zero entries of rows of B (B is expected to
be sparse, so γ is small). We do not take additions into account in our analysis. This is
an excessive simplification over small fields like F2, but reasonable over larger fields. We
prove the following results:

Theorem 6.1. The different steps of the block Wiedemann algorithm require the follow-
ing real time:

BW1 (γM0 + mM1)m+n
mn N2 using n computers (see also remark below).

BW2 M1
m+n

2 N2 + O(N) using Coppersmith’s algorithm

c(φ)M1
(m+n)3

mn N log2 N + O(N log N) using our algorithm (provided that m and n
are in O(log N)), using one computer.

BW3 γM0
1
nN2, using n computers.

Proof. As said before, step BW1 is accomplished by repeating the operation Y ← BY ,
where Y = y initially. This sums up as nL matrix times vector product, but since the n
columns of Y are assumed to be treated on separate computers, the real time is the time
needed for L applications of B: γNM0L. Furthermore, we have to add the cost of the
dot products (xi

TYj). These cost mM1N at each step, hence the result (see also remark
below). As for step BW2, the result follows from Coppersmith (1994) for Coppersmith’s
algorithm, and from Theorem 4.2 for our algorithm, specialized to m and n bounded.
The third result follows from the degree of ŵ as a “polynomial” in B being N

n . 2

Remark. In practice, the real time needed for step BW1 can be lowered down to
γM0

m+n
mn N2 by using vectors of the canonical basis for the xi’s. Indeed, the dot products

which account for the mM1
m+n
mn N2 term become trivial (one operation instead of mM1N

with random x’s). It should be noted however that when we do so, x is no longer truly
random, and the correctness analyses of Kaltofen (1995) and Villard (1997a,b) do not
necessarily apply.

We will now write the overall cost of the block Wiedemann algorithm, in the light of
Theorem 6.1. Our analysis is valid over fields other than F2, since the numerous possible
tricks in that case tend to shape the results differently.

Theorem 6.2. Using Coppersmith’s algorithm to handle step BW2, the real time for the

block Wiedemann algorithm is lowest for nopt = 2
√

γM0

M1
, and mopt = 0.7nopt. The total

time needed in this case is Wopt = 3.4
√

γM0M1N
2.

Proof. Applying Theorem 6.1, we obtain directly (recall that φ = m
m+1):

W = γM0
m + n

mn
N2 + M1

m + n

2
N2 + γM0

1
n

N2,

770 E. Thomé

W =
(

γM0

(
1 +

1
φ

)
1
n

+ M1
n

2(1− φ)

)
N2.

If we minimize W for a given φ, the optimal values Wopt and nopt are:

nopt =

√
γM02(φ + 1)(1− φ)

M1φ
,

Wopt = 2N2

√
γM0M1

φ + 1
2φ(1− φ)

.

The minimum value of the quantity φ+1
φ(1−φ) is obtained for φ =

√
2− 1. Specializing nopt

and Wopt to this yields the announced values. 2

Theorem 6.3. Using algorithm MSLGDC for step BW2, the real time for the block

Wiedemann algorithm is lowest for nopt = 0.6

√
γM0N

M1 log2 N
, and mopt = 0.5nopt. The

total time needed in this case is Wopt = 13.8
√

γM0M1N
√

N log N .

Proof. Following Theorem 6.1, W writes down as:

W = γM0

(
φ +

1
φ

)
1
n

N2 + c(φ)M1
1

φ(1− φ)2
nN log2 N.

Following the same reasoning as before, we obtain the optimum at φ ≈ 0.3, and hence
the announced Wopt and nopt. 2

It should be noted that Theorem 4.2 yields a low complexity for step BW2 with respect
to m and n because of the introduction of the FFT which hides the cubic dependency
on m + n. If we had used algorithm MSLGDC with a generic multiplication algorithm,
Wopt would certainly be higher.

The optimal value nopt is not necessarily acceptable, because we are limited by the
available hardware. We will see in the following section that for realistic examples, nopt

is still reasonable.

7. Implementation Concerns

7.1. interest of the block version

The consequences of our analysis depend on the base field. We excluded F2 due to the
extreme particularity of this case. For linear algebra problems encountered for example
within discrete logarithm computations, the base field is large. M1 is then typically much
bigger than M0: indeed, the coefficients of the input matrix are usually kept bounded
to a size of one machine word (see below), so when a generic element of K has size
about 10 words, M0 is a dozen machine cycles, whereas M1 can reach several hundreds of
machine cycles. Therefore, the second part of the algorithm could end up dominating the
overall cost. If we include these considerations in the computation of the optimal value
nopt for the parameters m and n, we see that if one uses Coppersmith’s version of step
BW2, nopt is very small (sometimes hardly above 1). In other words, there is not much

Subquadratic Computation of Vector Generating Polynomials 771

interest in using the block version of the Wiedemann algorithm. On the other hand, our
algorithm MSLGDC yields a bigger optimal value. In the experiments we did, it turned
out to be worthwhile to have n strictly greater than 1.

7.2. influences on input filtering

Our computations also have an interesting consequence on the input given to the block
Wiedemann algorithm, when it comes out of a structured Gaussian elimination program
(Pomerance and Smith, 1992), or more generally any filtering stage like in Cavallar
(2000). Such algorithms aim at reducing the matrix size with minimal fill-in—we want
the matrix to remain sparse—, as far as this is possible. Their output is then given
to an algorithm like Wiedemann’s, or alternatively a block version. Depending on the
context, reduction rates going from one half to one tenth are achieved. When the base
field is not simply F2, the matrices given on input to the filtering program have small
coefficients. Therefore, coefficients of the matrix are stored in a single machine word and
not allowed to go beyond this in order to reduce the memory storage. In the course of
this filtering, one usually arranges for stopping it as soon as the estimated subsequent
cost (of the Wiedemann algorithm for instance) starts to rise up again, after having been
diminished. See Weber and Denny (1998) for an example of such an estimation. The
estimated cost is generally something like γN2, where N is the number of rows of the
matrix, and γ the average number of non-zero entries per row. As the filtering proceeds,
γ grows while N gets smaller.

Our point here is that when using the block version with optimal parameters m and
n, we can focus on the quantity

√
γN2 instead. This means that we are able to continue

the Gaussian elimination a bit further. If we plan to use our subquadratic alternative,
the relevant figure is N

√
γN log N , but this is only valid as long as m and n remain

small. Experiments with matrices coming from discrete logarithm problems showed that
the filtering can actually be brought substantially further.

7.3. memory requirements

We hardly addressed the memory concerns for the block Wiedemann algorithm. How-
ever, these are important because the memory storage needed for the matrix B is usually
huge. For this very reason, parallelization or distribution is hampered by the relative
scarcity of computing resources available that can handle such a big object: if we plan
to distribute step BW1 among several machines with no communication overhead, these
have to work on a local copy of the matrix B. This is why having nopt reasonable was
crucial. This being said, while the memory is definitely an issue for step BW1, things
do not get worse with step BW2, since at this point one can consider that the sequence
A(X) has been computed, and that memory storage for the matrix B is no longer needed.
Therefore, the increased memory requirements of algorithm MSLGDC compared to Cop-
persmith’s algorithm are not very important.

An important point in the ability, explained in the previous subsection, to carry out the
filtering or structured Gaussian elimination further than what we used is that this helps
in reducing the storage needed for B; the memory requirements for step BW1 are driven
by two quantities: γN for the matrix size, and N for the size of all the linear storage
data and such. Continuing the filtering further than before makes these quantities lower,

772 E. Thomé

Table 1. Timings for experiments with MSLGDC.

Field L m n Coppersmith MSLGDC Threshold

F2127−1 1 000 4 4 35 s 36 s 958
10 000 1 h 01 min 14 min

100 000 ≈4 d 6 h 10 min

F2607−1 1 000 4 4 112 s 118 s 923
10 000 3 h 03 min 45 min

100 000 ≈12 d 19 h 34 min
242 304 ≈75 d 47 h 48 min

F2607−1 10 000 10 20 ≈5 d 1 h 57 min 880

F21279−1 1 000 4 4 267 s 292 s 916
10 000 7 h 15 min 1 h 50 min

100 000 ≈30 d 47 h 38 min

and therefore the algorithm could become more usable if its memory requirements are
reduced.

8. Experiments With Algorithm MSLGDC

Algorithm MSLGDC has been implemented in ANSI C, using the big integer multi-
plication library GMP (Granlund, 1996). The input sequences were all chosen arising
from runs of the block Wiedemann algorithm, with base fields which were large prime
finite fields. Our FFT code used extensions of the base field to obtain roots of unity.
Restricting ourselves to base fields of the form Fp, where p = 2k−1 is a Mersenne prime,
we had sufficiently many roots of unity available in a degree two extension. We men-
tioned before that another approach that works pretty well in practice consists in doing
multiplications in Fp[X] via integer FFT, using a packing/padding technique. As alluded
to before, the algorithm actually implemented did not descend recursively to the tiniest
sub-problem. Instead, computation of the π(0,b) matrices for b below a certain threshold
was delegated to a variant of the quadratic algorithm proposed by Coppersmith. The
evaluation of this threshold was done by simple trial and error. Obviously, this value
depends on m, n, the base field, and, above all, the exact implementation. Table 1 shows
that our algorithm performed well, even for quite small examples. For each example, we
give the definition field (it is understood that the Fourier transform operations all take
place in a degree two extension), the matrix sequence length (L), its dimension (m and
n), the time demanded by our implementation of Coppersmith’s quadratic algorithm,
and the time required by our algorithm. The (indicative) threshold is in the last column.
All timings express runtime on one 667 MHz alpha ev67 CPU.

For the record, we give the timings that we obtained for the real life experiment
attached to the large computation of length 242 304. We had N = 484 603, γ = 106.7,
m = n = 4. Using four 2-CPUs alpha ev67’s at 667 MHz, we did step BW1 in 39 days,
step BW2 in 2 days, and BW3 in 20 days. While the setting for m and n was probably
not optimal, it is clear that using MSLGDC saved us a lot on this computation.

Several additional points deserve noting concerning the experiments with our algo-
rithm. First, we found it satisfying to remark that the running times could easily be
extrapolated with almost no error to obtain estimates for the running times for larger
examples (one can check that the timings here fit well with the theory). In the recursive

Subquadratic Computation of Vector Generating Polynomials 773

Table 2. Comparison with results in Lobo (1995).

Field N m, n BW1 Coppersmith MSLGDC BW3 Threshold

F32479 10 000 2 4 h 01 min 1 h 12 min 1 h 57 min
4 2 h 02 min 2 h 02 min 1 h 04 min
8 1 h 05 min 4 h 06 min 34 min

20 000 2 29 h 05 min 4 h 38 min 14 h 30 min
4 14 h 44 min 8 h 15 min 7 h 17 min
8 8 h 07 min 16 h 29 min 3 h 48 min

F65537 10 000 2 1 h 16 min 52 min 3 min 50 s 38 min 147
4 38 min 1 h 27 min 7 min 47 s 19 min 132
8 19 min 2 h 20 min 18 min 56 s 10 min 74

20 000 2 8 h 58 min 3 h 07 min 8 min 45 s 4 h 31 min 161
4 4 h 41 min 5 h 10 min 18 min 32 s 2 h 22 min 132
8 2 h 19 min 9 h 12 min 52 min 01 s 1 h 10 min 80

steps, the cost of the convolution products, which is linear, never became really neg-
ligible compared to the cost of the Fourier transforms. For the biggest transforms on
the large experiment of length 242 304 over F2607−1, the actual DFT (of order 18) cost
was 4 h 11 min, while the convolution cost was 1 h 40 min. We make a final remark
on the memory requirements for our program. Of course, the introduction of the FFT
tends to make these requirements a bit large. At its peak, the large computation on the
sequence of length 242 304 used 11 GB of virtual memory. The machine on which we ran
the experiments only had 4 GB of memory, and coped gracefully with this large virtual
memory size (we had to add a little disk swap space, though). This is due, of course, to
the good locality properties of the FFT algorithm.

Other experiments with the block Wiedemann algorithm are reported in Penninga
(1998), Lobo (1995) and Kaltofen and Lobo (1999). Only Lobo’s thesis (Lobo, 1995)
contains experiments on fields other than F2. Lobo’s results are the experiments over
F32479 quoted in Table 2. For the comparison, we tried to solve problems of similar size,
on similar hardware. Lobo had 107 MHz sparc processors. We used 143 MHz sparcs, and
F65537 as the base field. Apart from steps BW1 and BW3 which do not scale proportionally
to the clock ratio, everything appears to fit well with the theory.

9. Conclusion and Further Work

We have presented in this paper a new algorithm, and our experiments seem to indicate
that it is rather competitive in comparison to the one proposed by Coppersmith, even for
sizes that we consider small, or in any case not unrealistic. We hope that our contribution
will help in improving the competitiveness of the block Wiedemann algorithm over large
fields.

Several directions can be studied by further work. Of course, it would be highly inter-
esting to make a precise comparison of the running time of our MSLGDC algorithm and
the algorithm of Beckerman and Labahn (1994), or other methods. We did not implement
these algorithms, and know of no implementation of them (at least in the subquadratic
version).

Also, algorithm MSLGDC uses products of matrix formal power series that can be
regarded as short products. Namely, when the product e(X)πL(X) is computed, we are
interested in only part of the result. Recent work showed that a constant factor can be

774 E. Thomé

gained for the complexity of such computations for scalar formal power series (Hanrot
et al., 2002). A matrix generalization of this work could help make our algorithm more
efficient.

Acknowledgements

I would like to thank Franois Morain who helped me in preparing this paper. I am
also grateful to Gilles Villard, Erich Kaltofen, as well as the anonymous referees, for
their valuable questions and comments. This research was partially supported by INRIA
Action COURBES and the French Ministry of Research—ACI CRYPTOLOGIE.

References
Aho, A. V., Hopcroft, J. E., Ullman, J. D. (1974). The Design and Analysis of Computer Algorithms,

Reading, MA, Addison-Wesley.
Beckerman, B., Labahn, G. (1994). A uniform approach for the fast computation of matrix-type Padé

approximants. SIAM J. Matrix Anal. Appl., 15, 804–823.
Bitmead, R. R., Anderson, B. D. O. (1980). Asymptotically fast solution of Toeplitz and related systems

of linear equations. Linear Algebr. Appl., 34, 103–116.
CABAL. 233-digit SNFS factorization. Available online at ftp://ftp.cwi.nl/pub/herman/SNFSrecords/

SNFS-233, November 2000.
Cavallar, S. (2000). Strategies in filtering in the number field sieve. In Bosma, W. ed., Proceedings of the

4th Algorithmic Number Theory Symposium, ANTS-IV, LNCS 1838, pp. 209–231. Berlin, Springer.
Cavallar, S. et al. (2000). Factorization of a 512-bit RSA modulus. In Preneel, B. ed., Proceedings of

EUROCRYPT 2000, LNCS 1807, pp. 1–18. Berlin, Springer.
Coppersmith, D. (1984). Fast evaluation of logarithms in fields of characteristic two. IEEE Trans. Inf.

Theor., IT-30, 587–594.
Coppersmith, D. (1993). Solving linear equations over GF(2): block Lanczos algorithm. Linear Algebr.

Appl., 192, 33–60.
Coppersmith, D. (1994). Solving linear equations over GF(2) via block Wiedemann algorithm. Math.

Comput., 62, 333–350.
Gaudry, P. (2000a). An algorithm for solving the discrete log problem on hyperelliptic curves. In Preneel,

B. ed., Proceedings of the EUROCRYPT 2000, LNCS 1807, pp. 19–34. Berlin, Springer.
Gaudry, P. (2000b). Algorithmique des courbes hyperelliptiques et applications à la cryptologie. Thèse,

École polytechnique.
Granlund, T. (1996). GMP, the GNU multiple precision arithmetic library. Homepage at http://www.

swox.com/gmp.
Gustavson, F. G., Yun, D. Y. (1979). Fast algorithms for rational Hermite approximation and solution

of Toeplitz systems. IEEE Trans. Circuits Syst., CAS-26, 750–755.
Hanrot, G., Quercia, M., Zimmerman, P. (2002). Speeding up the division and square root of power

series, manuscript in preparation.
Kaltofen, E. (1995). Analysis of Coppersmith’s block Wiedemann algorithm for the parallel solution of

sparse linear systems. Math. Comput., 64, 777–806.
Kaltofen, E., Lobo, A. (1999). Distributed matrix-free solution of large sparse linear systems over finite

fields. Algorithmica, 24, 331–348.
Kaltofen, E., Villard, G. (2001). On the complexity of computing determinants. In Proceedings of the

Fifth Asian Symposium on Computer Mathematics (ASCM 2001), Singapore, pp. 13–27. Singapore,
World Scientific Publishing Company.

LaMacchia, B. A., Odlyzko, A. M. (1990). Solving large sparse linear systems over finite fields. In Menezes,
A. J., Vanstone, S. A. eds, Proceedings of CRYPTO ’90, LNCS 537, pp. 109–133. Berlin, Springer.

Lobo, A. (1995). Matrix-free linear system solving and applications to symbolic computations. Ph.D.
Thesis, Rensselaer Polytechnic Institute.

Montgomery, P. L. (1995). A block Lanczos algorithm for finding dependencies over GF(2). In Guillou,
L. C., Quisquater, J.-J. eds, Proceedings of EUROCRYPT ’95, LNCS 921, pp. 106–120. Berlin,
Springer.

Morf, M. (1980). Doubling algorithms for Toeplitz and related equations. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, pp. 954–959. New York, IEEE.

Odlyzko, A. M. (1985). Discrete logarithms in finite fields and their cryptographic significance. In Beth,
T., Cot, N., Ingemarsson, I. eds, Proceedings of EUROCRYPT ’84, LNCS 209, pp. 224–314. Berlin,
Springer.

ftp://ftp.cwi.nl/pub/herman/SNFSrecords/SNFS-233
ftp://ftp.cwi.nl/pub/herman/SNFSrecords/SNFS-233
http://www.swox.com/gmp
http://www.swox.com/gmp

Subquadratic Computation of Vector Generating Polynomials 775

Penninga, O. (1998). Finding column dependencies in sparse matrices over F2 by block Wiedemann.
In Report MAS-R9819, Amsterdam, The Netherlands, Centruum voor Wiskunde en Informatica, avail-
able from http://www.cwi.nl/.

Pomerance, C., Smith, J. W. (1992). Reduction of huge, sparse matrices over finite fields via created
catastrophes. Exp. Math., 1, 89–94.

Rissanen, J. (1972). Realizations of matrix sequences. Technical Report RJ-1032, IBM Research, York-
town Heights, New York, NY, T. J. Watson Research Center.

Thomé, E. (2001a). Fast computation of linear generators for matrix sequences and application to the
block Wiedemann algorithm. In Mourrain, B. ed., Proceedings of the ISSAC ’2001, pp. 323–331. New
York, ACM Press.

Thomé, E. (2001b). Computation of discrete logarithms in F2607 . In Boyd, C., Dawson, E. eds, Proceed-
ings of ASIACRYPT ’2001, LNCS 2248, pp. 107–124. Berlin, Springer.

Thomé, E. (2002). Discrete logarithms in GF(2607). Email to the NMBRTHRY mailing list, available at
http://listserv.nodak.edu/archives/nmbrthry.html.

Villard, G. (1997a). A study of Coppersmith’s block Wiedemann algorithm using matrix polynomials.
Research Report 975, Grenoble, France, LMC-IMAG.

Villard, G. (1997b). Further analysis of Coppersmith’s block Wiedemann algorithm for the solution of
sparse linear systems. In Küchlin, W. W. ed., Proceedings of the ISSAC ’97, pp. 32–39. New York,
ACM Press.

Weber, D., Denny, T. (1998). The solution of McCurley’s discrete log challenge. In Krawczyk, H. ed.,
Proceedings of CRYPTO ’98, LNCS 1462, pp. 458–471. Berlin, Springer.

Wiedemann, D. H. (1986). Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theor.,
IT-32, 54–62.

von zur Gathen, J., Gerhard, J. (1999). Modern Computer Algebra, Cambridge, Cambridge University
Press.

Received 12 November 2001
Accepted 27 February 2002

http://www.cwi.nl/
http://listserv.nodak.edu/archives/nmbrthry.html

	Introduction
	Linear Generators for Matrix Sequences
	A Matrix Version of the Berlekamp--Massey Algorithm
	An Accelerated Version of Coppersmith's Algorithm
	Block Wiedemann Algorithm
	Complexity Analysis and Optimization
	Implementation Concerns
	Experiments With Algorithm MSLGDC
	Table 1
	Table 2

	Conclusion and Further Work
	References

