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a b s t r a c t

Let (Xn) be a sequence of d-dimensional stationary Gaussian vectors, and letMn denote the
partial maxima of {Xk, 1 ≤ k ≤ n}. Suppose that there are missing data in each component
ofXk and let M̃n denote the partial maxima of the observed variables. In this note, we study
two kinds of asymptotic distributions of the random vector (M̃n,Mn)where the correlation
and cross-correlation satisfy some dependence conditions.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let (Xn) be a sequence of standard stationary Gaussian random variables. DefineMn = max1≤k≤n Xk and r(n) = EX1Xn+1,
the partial maximum and the correlation, respectively. It is well known that the limiting distribution of the normalized
maxima differs according to the rate of convergence of r(n). Berman [1] proved that the limiting distribution ofMn is similar
to that for an independent and identically distributed Gaussian sequence if r(n) log n→ 0, i.e.

lim
n→∞

P
(
a−1n (Mn − bn) ≤ x

)
= exp {− exp(−x)} ,

where

an = (2 log n)−1/2, bn = a−1n + an (log log n+ log 4π) /2. (1.1)

For r(n) log n→ γ ∈ (0,∞), Mittal and Ylvisaker [8] proved that

lim
n→∞

P
(
a−1n (Mn − bn) ≤ x

)
=

∫
∞

−∞

exp
{
− exp

(
−x− γ +

√
2γ z

)}
φ(z)dz,

where φ(x) is the probability density function (pdf) of a standard Gaussian random variable. For r(n) log n→∞with some
regular conditions for r(n), the strongly dependent case, McCormick and Mittal [6] proved that

lim
n→∞

P
(
r−1/2(n)

(
Mn − (1− r(n))1/2 bn

)
≤ x

)
= Φ(x),
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where Φ(x) is the cumulative distribution function (cdf) of a standard Gaussian random variable. For more details, see
Sections 4.3, 6.5 and 6.6 of Leadbetter et al. [4]. McCormick [5] introduced the following condition:

log n
n

n∑
k=1

|r(k)− r(n)| = o(1) (1.2)

as n→∞ and considered the maximum centered at the sample mean

Xn =
1
n

n∑
i=1

Xi.

For r(k) < 1 for some k and (1.2) holding, McCormick [5] showed that

lim
n→∞

P

(
a−1n

(
Mn − Xn
√
1− r(n)

− bn

)
≤ x

)
= exp {− exp(−x)} , x ∈ R.

McCormick and Qi [7] and Peng and Nadarajah [11] considered the joint limiting behavior of the partial sum andmaximum.
Hu et al. [2] and Peng [10] studied the joint limiting distribution of the partial sum and point process of exceedances.
For the limiting distribution of the extremes of vector Gaussian sequences, see [3,12–14]. The aim of this note is to

establish the joint limiting distribution of the maxima of complete and incomplete samples of stationary Gaussian vector
sequences under some weakly and strongly dependent conditions similar to those of [9,8], where the univariate case is
considered.
Let {Xn = (Xn1, Xn2, . . . , Znd), n ≥ 1} be a sequence of d-dimensional stationary Gaussian random vectors, i.e.

EXni = 0, Var (Xni) = 1 (1.3)

for n ≥ 1 and 1 ≤ i ≤ d and

Cov
(
Xli, Xkj

)
= rij(|l− k|) (1.4)

for 1 ≤ i, j ≤ d, k, l ≥ 1. Let M(s)
n denote the sth order statistic (componentwise) and M(1)

n = Mn. Define the norming
constants

an = (an, . . . , an) , bn = (bn, . . . , bn) (1.5)

with an and bn defined by (1.1). Wiśniewski [13] proved the following main result:

Theorem 1.1. Let (Xn) satisfy rij(n) log n→ ρij for 1 ≤ i, j ≤ d andmax1≤i6=j≤d,n≥0 |rij| < 1. Then

a−1n
(
M(s)
n − bn

) d
→ M(s)(ρ)+ RρZ

for s ≥ 1, where ρ = (ρii, 1 ≤ i ≤ d) and Rρ =
(√
2ρii, 1 ≤ i ≤ d

)
, Z is a standard Gaussian vector with variance–covariance

matrix
(
ρij/
√
ρiiρjj

)
d×d and

P
(
M(s)(ρ) ≤ x

)
=

d∏
i=1

exp {− exp (−xi − ρii)}
s−1∑
j=0

{exp (−xi − ρii)}j /j!.

Furthermore,M(s)(ρ) and Z are independent of each other.

Now suppose that some of the variables ofXk can be observed. Let εki denote the indicator of the event that Xki is observed.
Then Sni = ε1i+ ε2i+· · ·+ εni is the number of observed random variables from the set {X1i, X2i, . . . , Xni}, where 1 ≤ i ≤ d.
In order to prove the main results, the following conditions are needed:

C1. The sequence (Sni) satisfies
Sni
n

P
→ pi ∈ (0, 1]

as n→∞ for 1 ≤ i ≤ d.
C2. The indicator random variables {εki, 1 ≤ k ≤ n, 1 ≤ i ≤ d} are independent, and also independent of {Xk}.

For simplicity, we will use the following notation throughout this note:

un = (un1, . . . , und) , vn = (vn1, . . . , vnd) , (1.6)

where uni = anxi + bn, vni = anyi + bn and xi < yi for 1 ≤ i ≤ d, and

Mni = max {X1i, . . . , Xni} , M̃ni =
{
max {Xki, 1 ≤ k ≤ n, εki = 1} , if Sni ≥ 1,
−∞, if Sni = 0.
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2. Main results

In this section, we consider the asymptotic distribution of the maxima of complete and incomplete samples from
multivariate weakly dependent and strongly dependent stationary Gaussian sequences. We obtain two theorems.
Theorem 2.1 is for the weakly dependent case and Theorem 2.2 is for the strongly dependent case. Corollaries 2.1 and 2.2
are particular cases of these theorems.

Theorem 2.1. Let the d-dimensional stationary Gaussian vector sequence {Xn} satisfy the conditions (1.3) and (1.4). Suppose that
the conditions C1 and C2 hold. Assume further that

rij(n) log n→ 0, 1 ≤ i, j ≤ d (2.1)

as n→∞. Then, for un and vn defined by (1.6), we have

P
{
M̃n ≤ un,Mn ≤ vn

} d
−→

d∏
i

exp {−pi exp (−xi)} exp {− (1− pi) exp (−yi)} (2.2)

as n→∞.

Corollary 2.1. Under the conditions of Theorem 2.1, for an and bn defined by (1.5), we have

P
{
M̃n ≤ anx+ bn

} d
−→

d∏
i

exp {−pi exp (−xi)}

as n→∞, where x = (x1, x2, . . . , xd).

Theorem 2.2. Let the d-dimensional stationary Gaussian vector sequence {Xn} satisfy the conditions (1.3) and (1.4). Suppose that
the conditions C1 and C2 hold. Assume further that

rij(n) log n→ ρij ∈ (0,∞), 1 ≤ i, j ≤ d (2.3)

as n→∞ and

sup
1≤i6=j≤d
n≥0

∣∣rij(n)∣∣ < 1. (2.4)

Then, for un and vn defined by (1.6), we have

lim
n→∞

P
{
M̃n ≤ un,Mn ≤ vn

}
=

∫
+∞

−∞

. . .

∫
+∞

−∞

d∏
i

exp
{
−pi exp

(
−xi − ρii +

√
2ρiizi

)}
× exp

{
− (1− pi) exp

(
−yi − ρii +

√
2ρiizi

)}
φ (z1, z2, . . . , zd) dz1 · · · dzd,

where φ(z1, z2, . . . , zd) is the joint pdf of a d-variate Gaussian vector X0 with zero mean and variance–covariance matrix(
ρij/
√
ρiiρjj

)
d×d.

Corollary 2.2. Under the conditions of Theorem 2.2, for an and bn defined by (1.5), we have

lim
n→∞

P
{
M̃n ≤ anx+ bn

}
=

∫
+∞

−∞

. . .

∫
+∞

−∞

d∏
i

exp
{
−pi exp

(
−xi − ρii +

√
2ρiizi

)}
φ (z1, z2, . . . , zd) dz1 · · · dzd

as n→∞, where x = (x1, x2, . . . , xd).

3. Proofs

In this section, we shall prove the main results. Firstly, let {X∗k , k ≥ 1} denote a sequence of independent d-dimensional
Gaussian vectors with EX∗ki = 0, Var(X

∗

ki) = 1, 1 ≤ i ≤ d, Cov(X
∗

ki, X
∗

kj) = 0 for i 6= j, 0 ≤ k ≤ n and Cov(X
∗

ki, X
∗

lj ) = 0
for 0 ≤ k 6= l ≤ n. Define M∗n to be the partial maxima of the sequence {X

∗

k , 1 ≤ k ≤ n}, i.e. M
∗

ni = max{X
∗

1i, . . . , X
∗

ni} for
1 ≤ i ≤ d. Also let M̃∗n denote the partial maxima of the observed variables, i.e.

M̃∗ni =
{
max

{
X∗ki, 1 ≤ k ≤ n, εki = 1

}
, if Sni ≥ 1,

−∞, if Sni = 0.
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For v = (v1, . . . , vd), vi ∈ (0,∞), define

A (v) =

v1
1/2
· · · 0

...
. . .

...

0 · · · vd
1/2

 , B(v) =

(1− v1)
1/2
· · · 0

...
. . .

...

0 · · · (1− vd)1/2

 .
For the strongly dependent case, we need the following construction. Let X0 be a d-variate Gaussian vector with zero

mean and variance–covariance matrix
(
ρij/
√
ρiiρjj

)
d×d. Suppose that X0 is independent of {X

∗

k , k ≥ 1}. For ρ(n) = (ρ11(n),
. . . , ρdd(n)) and ρii(n) = ρii/(log n), define the d-variate Gaussian variables

Yk = X∗0A (ρ(n))+ X∗kB (ρ(n)) (3.1)

for 1 ≤ k ≤ n, i.e.

Yki = ρ
1/2
ii (n)X

∗

0i + (1− ρii(n))
1/2 X∗ki (3.2)

for 1 ≤ k ≤ n and 1 ≤ i ≤ d. It is easy to check that EYki = 0,Var(Yki) = 1 and Cov(Yki, Ylj) = ρij(n) for 1 ≤ k 6= l ≤ n,
where ρij(n) = ρij/(log n). Let M∗∗n and M̃∗∗n denote, respectively, the partial maxima of {Yk, 1 ≤ k ≤ n} and that of its
observed variables, i.e.

M∗∗ni = max{Y1i, . . . , Yni}, M̃∗∗ni =
{
max {Yki, 1 ≤ k ≤ n, εki = 1} , if Sni ≥ 1,
−∞, if Sni = 0

for 1 ≤ i ≤ d. Noting (3.1) and (3.2), we have

M∗∗n = X∗0A (ρ(n))+M∗nB (ρ(n)) , M̃∗∗n = X∗0A (ρ(n))+ M̃∗nB (ρ(n)) , (3.3)

i.e.

Mni = ρ
1/2
ii (n)X

∗

0i + (1− ρii(n))
1/2M∗ni, M̃ni = ρ

1/2
ii (n)X

∗

0i + (1− ρii(n))
1/2 M̃∗ni

for 1 ≤ i ≤ d. Here, we use the convention a−∞ = −∞.
To prove our main results, we need some lemmas. The first one will be used to prove Theorem 2.1.

Lemma 3.1. Let the d-dimensional stationary Gaussian vector sequence {Xk} satisfy the conditions (1.3), (1.4) and (2.1). Suppose
that the conditions C1 and C2 hold. With {X∗k} defined as above, we have

lim
n→∞

∣∣P {M̃n ≤ un,Mn ≤ vn
}
− P

{
M̃∗n ≤ un,M∗n ≤ vn

}∣∣ = 0.
Proof. For fixed i ∈ (1, . . . , d) and component sequence (Xki), firstly suppose that just {Xi1,i, . . . , Xiki ,i} have been observed
from the set {X1i, . . . , Xni}, which is one case of {Sni = ki}. Let N = {1, 2, . . . , n}, Ii = {i1, . . . , iki},M(Ii) = max{Xli, l ∈ Ii}
andM∗(Ii) = max{X∗li , l ∈ Ii}. Then, by the Normal Comparison lemma given in [4] and noting that uni ≤ vni for 1 ≤ i ≤ d,
we have∣∣P {M(Ii) ≤ uni,M (N /Ii) ≤ vni, 1 ≤ i ≤ d} − P {M∗(Ii) ≤ uni,M∗ (N /Ii) ≤ vni, 1 ≤ i ≤ d}∣∣

≤ K1
d∑
i=1

n
n∑
k=1

|rii(k)| exp
{
−

u2ni
1+ |rii(k)|

}
+ K2

∑
1≤i6=j≤d

n
n∑
k=0

∣∣rij(k)∣∣ exp{− u2ni + u
2
nj

2
(
1+

∣∣rij(k)∣∣)
}

for some absolute constants K1 > 0 and K2 > 0. So, by (2.1) and by arguments similar to those of the proof of Lemma 4.3.2
in [4], we obtain

n
n∑
k=0

∣∣rij(k)∣∣ exp{− u2ni + u
2
nj

2
(
1+

∣∣rij(k)∣∣)
}
→ 0 (3.4)

and

n
n∑
k=1

|rii(k)| exp
{
−

u2ni
1+ |rii(k)|

}
→ 0 (3.5)

uniformly for all ki, 1 ≤ i ≤ d as n → ∞. The result follows by the condition C2, the total probability formula and the
uniform convergence of (3.4) and (3.5). �

The following result is useful for proving Theorem 2.2.
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Lemma 3.2. Let the d-dimensional stationary Gaussian vector sequence {Xk} satisfy the conditions (1.3) and (1.4). Let {Yk} be
the Gaussian vector sequence defined above with equal correlations. Suppose that the conditions C1 and C2 hold. Assume further
that both (2.3) and (2.4) hold. Then

lim
n→∞

∣∣P {M̃n ≤ un,Mn ≤ vn
}
− P

{
M̃∗∗n ≤ un,M∗∗n ≤ vn

}∣∣ = 0.
Proof. For fixed i ∈ (1, . . . , d) and component sequence (Xki), firstly suppose that just {Xi1,i, . . . , Xiki ,i} have been observed
from the set {X1i, . . . , Xni}, which is one case of {Sni = ki}. DefineN = {1, 2, . . . , n}, Ii = {i1, . . . , iki},M(Ii) = max{Xli, l ∈
Ii} and M∗∗(Ii) = max{X∗∗li , l ∈ Ii}. Then, by the Normal Comparison lemma of [4] and noting that uni ≤ vni for 1 ≤ i ≤ d,
we have∣∣P {M(Ii) ≤ uni,M (N /Ii) ≤ vni, 1 ≤ i ≤ d} − P {M∗∗(Ii) ≤ uni,M∗∗ (N /Ii) ≤ vni, 1 ≤ i ≤ d}∣∣

≤ K3
d∑
i=1

n
n∑
k=1

|rii(k)− ρii(n)| exp
{
−

u2ni
1+ wii(k)

}
+ K4

∑
1≤i6=j≤d

n
n∑
k=0

∣∣rij(k)− ρij(n)∣∣ exp{− u2ni + u
2
nj

2
(
1+ wij(k)

)} ,
wherewij(k) = max{|rij(k)|, ρij(n)}, and K3 and K4 are absolute constants. So, by arguments similar to those of the proofs of
Lemmas 4.3.2 and 6.4.1 in [4], we obtain

n
n∑
k=1

∣∣rij(k)− ρij(n)∣∣ exp{− u2ni + u
2
nj

2 (1+ wii(k))

}
→ 0

and

n
n∑
k=1

|rii(k)− ρii(n)| exp
{
−

u2ni
1+ wii(k)

}
→ 0

uniformly for all ki, 1 ≤ i ≤ d, as n→∞. So, the result follows by the condition C2 and the total probability formula. �

Proof of Theorem 2.1. By Lemma 3.1, we only need to prove

lim
n→∞

P
{
M̃∗n ≤ un,M∗n ≤ vn

}
=

d∏
i

exp {−pi exp (−xi)} exp {− (1− pi) exp (−yi)} . (3.6)

By using the total probability formula, we obtain

P
{
M̃∗n ≤ un,M∗n ≤ vn

}
=

d∑
i=1

n∑
ki=1

P {Sn1 = k1, . . . , Snd = kd}
d∏
i=1

{Φ (uni)}ki {Φ (vni)}n−ki .

Define

Σ1 =

d∑
i=1

∑
∃i:
∣∣∣ kin −pi∣∣∣>ε

P {Sn1 = k1, . . . , Snd = kd}
d∏
i=1

{Φ (uni)}ki {Φ (vni)}n−ki (3.7)

and

Σ2 =

d∑
i=1

∑
∀i:
∣∣∣ kin −pi∣∣∣≤ε

P{Sn1 = k1, . . . , Snd = kd}
d∏
i=1

{Φ (uni)}ki {Φ (vni)}n−ki . (3.8)

By the condition C1, we have

Σ1 ≤

d∑
i=1

P (|Sni/n− pi| ≥ ε)→ 0 (3.9)

as n→∞. By (3.8), the inequalities

Σ2 ≤

d∏
i=1

{Φ (uni)}n(pi−ε) {Φ (vni)}n(1−pi−ε)
d∑
i=1

∑
∀i:
∣∣∣ kin −pi∣∣∣≤ε

P (Sn1 = k1, . . . , Snd = kd) (3.10)

and

Σ2 ≥

d∏
i=1

{Φ (uni)}n(pi+ε) {Φ (vni)}n(1−pi+ε)
d∑
i=1

∑
∀i:
∣∣∣ kin −pi∣∣∣≤ε

P (Sn1 = k1, . . . , Snd = kd) (3.11)
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hold. By (3.7)–(3.11) and the condition C1, we have

lim sup
n→∞

P
(
M̃∗n ≤ un,M∗n ≤ vn

)
≤

d∏
i=1

exp {− (pi − ε) exp (−xi)} exp {− (1− pi − ε) exp (−yi)} (3.12)

and

lim inf
n→∞

P
(
M̃∗n ≤ un,M∗n ≤ vn

)
≥

d∏
i=1

exp {− (pi + ε) exp (−xi)} exp {− (1− pi + ε) exp (−yi)} (3.13)

for every ε ∈ (0,min{pi, 1 ≤ i ≤ d}). So, by letting ε ↓ 0 in (3.12) and (3.13), we obtain (3.6). The proof is complete. �

Proof of Theorem 2.2. By Lemma 3.2, in order to prove (2.2), it sufficient to show that

lim
n→∞

P
(
M̃∗∗n ≤ un,M∗∗n ≤ vn

)
=

∫
+∞

−∞

. . .

∫
+∞

−∞

d∏
i

exp
{
−pi exp

(
−xi − ρii +

√
2ρiizi

)}
× exp

{
− (1− pi) exp

(
−yi − ρii +

√
2ρiizi

)}
φ (z1, z2, . . . , zd) dz1 · · · dzd. (3.14)

By (3.3) and the total probability formula, we obtain

P
(
M̃∗∗n ≤ un,M∗∗n ≤ vn

)
= P

(
X∗0A (ρ(n))+ M̃∗nB (ρ(n)) ≤ un,X∗0A (ρ(n))+M∗nB (ρ(n)) ≤ vn

)
=

∫
+∞

−∞

. . .

∫
+∞

−∞

[
P
(
M̃∗n ≤ (un − ZA (ρ(n))) B−1 (ρ(n)) ,M∗n ≤ (vn − ZA (ρ(n))) B−1 (ρ(n))

)]
×ϕ (z1, z2, . . . , zd) dz1dz2 · · · dzd

=

∫
+∞

−∞

. . .

∫
+∞

−∞

n∑
ki=1
1≤i≤d

P (Sn1 = k1, . . . , Snd = kd)
d∏
i

{Φ (qni)}ki {Φ (tni)}n−ki ϕ (z1, z2, . . . , zd) dz1dz2 · · · dzd,

(3.15)

where Z = (z1, z2, . . . , zd) and

qni =
uni − zi

√
ρii(n)

√
1− ρii(n)

, tni =
vni − zi

√
ρii(n)

√
1− ρii(n)

, 1 ≤ i ≤ d.

Note that qni = an
(
xi + ρii −

√
2ρiizi

)
+bn+o(an) and tni = an

(
yi + ρii −

√
2ρiizi

)
+bn+o(an) from the proof of Theorem

6.5.1 in [4]. So, one can check that

lim
n→∞
{Φ (qni)}n = exp

{
− exp

(
−xi − ρii +

√
2ρiizi

)}
and

lim
n→∞
{Φ (tni)}n = exp

{
− exp

(
−yi − ρii +

√
2ρiizi

)}
.

By arguments similar to those of (3.6), we have

n∑
ki=1
1≤i≤d

P (Sn1 = k1, . . . , Snd = kd)
d∏
i

{Φ (qni)}ki {Φ (tni)}n−ki

→

d∏
i

exp
{
−pi exp

(
−xi − ρii +

√
2ρiizi

)}
exp

{
− (1− pi) exp

(
−yi − ρii +

√
2ρiizi

)}
as n→∞. Combining this with (3.15), we obtain (3.14) by the dominated convergence theorem. The proof is complete. �
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