
Technical Report: Computation on the
Extended Complex Plane and Conformal
Mapping of Multiply-connected Domains

Valentin V. Andreev,1

Dale Daniel2 and Timothy H. McNicholl3

Department of Mathematics
Lamar University

Beaumont, Texas 77710 USA

Abstract

We introduce a system for computation on the extended complex plane based on the Type-Two Effec-
tivity approach to computable analysis. Included are computations on meromorphic functions, open sets,
and closed sets. Applications to Möbius transformations, boundaries of multiply connected domains, and
conformal mapping of multiply connected domains are considered.

Keywords: Computable analysis, conformal mapping, Type-Two Effectivity

1 Introduction

The Riemann mapping theorem states that all simply connected domains with more
than one boundary point are conformally equivalent. This theorem made possible
the study of conformal mappings of such simply connected domains onto one and
the same canonical domain, namely, the unit disk.

There has been considerable interest in obtaining constructive proofs of the
Riemann mapping theorem. Paul Koebe’s [9] approach to the simplification of the
first complete proof of the theorem given by Carathéodory is the cornerstone of the
subsequent constructive proofs given by Cheng [2], Bishop and Bridges [1], and of
the computable proof given by Hertling [7].

1 Email: valentin.andreev@lamar.edu
2 Email: dale.daniel@lamar.edu
3 Email: mcnichollth@my.lamar.edu

Electronic Notes in Theoretical Computer Science 221 (2008) 127–139

1571-0661 © 2008 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.12.012
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81946587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:valentin.andreev@lamar.edu
mailto:dale.daniel@lamar.edu
mailto:mcnichollth@my.lamar.edu
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

The study of conformal mappings of multiply connected domains onto canonical
domains immediately encounters two major obstacles. The first is the fact that
continuous mappings preserve connectivity and thus the possible canonical domain
must be multiply connected. The second and the most important one is that two
multiply connected domains of the same order of connectivity need not be confor-
mally equivalent. For example, there is no conformal mapping between the annuli
r < |z| < 1 and R < |z| < 1 whenever r �= R (for a simple proof of this fact, see [12,
p. 333]).

Every doubly connected domain is conformally equivalent to an annulus μ <

|z| < 1, where μ is a unique real number, 0 < μ < 1, called the modulus of
the doubly connected domain. It can be shown that the conformal type of an n-
connected domain (n > 2) is determined by 3n − 6 real numbers also called the
moduli of the domain (for a derivation see [12, p. 354, Exercise 13]).

For connectivity n > 2 there are various canonical domain types: the parallel slit
domain, the circular slit domain, the radial slit domain, the circle with concentric
circular slits, the circular ring with concentric circular slits, and the circular domain.
Two circular domains of the same order of connectivity are conformally equivalent
if and only if there is a Möbius transfomation mapping one of them onto the other
[14, p. 426, Theorem IX.36].

In a paper preceding his proof of the Riemann mapping theorem Koebe [8] gave
a very short outline of his method for construction of a conformal mapping of a
multiply connected domain onto a circular domain. A detailed convergence proof of
Koebe’s method was given by Gaier [3] almost fifty years later, and a more elaborate
version of Gaier’s proof can be found in Henrici [6, Theorem 17.7a]. Our aim is to
present a computable proof of Koebe’s theorem based on Gaier’s approach.

This leads us to consider computation on the extended complex plane (i.e. the
Riemann sphere) which is the mathematically most convenient setting for the study
of conformal mapping. We develop a model of computation on the extended com-
plex plane based on the Type-Two Effectivity (TTE) approach to computable anal-
ysis [15]. That is, we produce admissible representations of the extended complex
plane, its open and closed sets, and the meromorphic functions. We then show
that the fundamental operations such as the field operations, computations of zeros
and poles, Möbius transformations, etc. are computable. In the last two sections,
we take up the problem of determining the precise amount of information neces-
sary to construct a conformal map between two non-degenerate multiply connected
domains.

Unless otherwise mentioned, all definitions and notations for computable anal-
ysis are as in [15].

Proofs of many claims are omitted, but will appear in a future work.

2 Background from complex analysis

Let Ĉ = C ∪ {∞}. We identify C with R2.

Definition 2.1 (Domain terminology)

V.V. Andreev et al. / Electronic Notes in Theoretical Computer Science 221 (2008) 127–139128

(i) A domain is an open connected subset of Ĉ.

(ii) A domain is n-connected if its complement has exactly n connected compo-
nents.

(iii) A domain is degenerate if a component of its complement has fewer than two
points.

(iv) A domain is circular if it is the result of removing one or more disjoint closed
disks from Ĉ.

Each circular domain whose complement has at least two connected components
is associated with two constants, μ and δ. These are defined as follows. Let Dr(z)
denote the open disk with center z and radius r.

Definition 2.2 Let C be an n-connected circular domain with n ≥ 2, and let
Dr1(z1), . . . ,Drn(zn) be the components of Ĉ − C. Define μC to be the reciprocal
of

min{r > 1 : ∃1 ≤ j, k ≤ n (j �= k ∧ Drrj (zj) ∩ Drrk
(zk) �= ∅)}.

Definition 2.3 Let C be an n-connected circular domain with n ≥ 2, and let
Dr1(z1), . . . ,Drn(zn) be the components of Ĉ−C. Denote the boundary of Drj (zj)
by Γj . Let Γk

j denote the circle obtained by reflecting Γk into Γj . We define δC to
be

min{d(Γj , Γk
j) : 1 ≤ j, k ≤ n ∧ j �= k}.

Let Dn(Ĉ) be the set of all n-connected domains.
The Riemann Mapping Theorem states (among other things) that every proper,

open, simply connected subset of the plane is conformally equivalent to the unit
disk D. Such a set is a non-degenerate 1-connected domain. There is an extension
of this result to n-connected subsets of the extended plane.

Theorem 2.4 If D is a non-degenerate n-connected domain, and if z0 ∈ D, then
there is a circular domain C and a conformal mapping f from D onto C such that
f(z0) = ∞.

Unfortunately, when n > 1, it is not the case that all non-degenerate n-connected
domains are conformally equivalent to the same circular region. However, we can
get a weaker uniqueness result if we impose a restriction on the form of the conformal
map.

Theorem 2.5 If D is a non-degenerate n-connected domain that contains ∞ but
not 0, then there is a unique circular region CD such that there is a conformal map
fD of D onto CD such that fD(z) = z + O(z−1). Furthermore, this map is unique.

Theorem 2.5 implies Theorem 2.4. Theorem 2.5 is proven in [6]. In Section 10,
we will investigate the computable content of Theorem 2.5.

We will use winding numbers to compute interiors and exteriors of continuously
differentiable simple closed curves. These are defined as follows.

V.V. Andreev et al. / Electronic Notes in Theoretical Computer Science 221 (2008) 127–139 129

Definition 2.6 When γ is a rectifiable simple closed curve in C and z ∈ Ĉ−ran(γ),
let

η(γ, z) =
1

2πi

∫
γ

dζ

ζ − z
.

η(γ, z) is called the winding number of γ around z.

If γ is a simple closed curve, then let Int(γ) denote the interior of γ, and let
Ext(γ) denote the exterior of γ. A proof of the following can be found in [4].

Proposition 2.7 Let γ be a rectifiable, simple closed curve.

(i) For all z �∈ ran(γ), η(γ, z) is an integer.

(ii) Int(γ) = {z ∈ Ĉ : η(γ, z) �= 0}.
(iii) Ext(γ) = {z ∈ Ĉ : η(γ, z) = 0}.

For computability purposes, we will approximate continuously differentiable
curves with rational polygonal curves. These are defined as follows.

Definition 2.8 (i) A curve γ : [a, b] → C is polygonal if it is continuous and
there exist t0, . . . , tk such that a = t0 < . . . < tk = b and γ is linear on each of
[t0, t1], . . . , [tk−1, tk].

(ii) If, in addition, the coördinates of γ(tj) are rational for each j, then we will call
γ a rational polygonal curve.

The following lemma says that it is possible to simultaneously approximate
a continuously differentiable simple closed curve and its derivative by a rational
polygonal curve with arbitrary precision.

Lemma 2.9 Suppose γ : [a, b] → C is a simple closed curve with continuous deriva-
tive. Then, for every ε > 0, there is a rational, polygonal, simple closed curve
γ0 : [a, b] → C such that

max{|γ(t) − γ0(t)| : t ∈ [a, b]}< ε

sup{|γ′(t) − γ′
0(t)| : t ∈ dom(γ′

0)}< ε

Informally speaking, the following lemma says it is possible to surround the
connected components of the complement of an unbounded, non-degenerate n-
connected domain with rational polygonal curves that are well-separated.

Lemma 2.10 Suppose D is a non-degenerate n-connected domain and ∞ ∈ D. Let
C1, . . . , Cn be the components of the complement of D. Then, there exist rational
polygonal curves γ1, . . . , γn such that the following hold.

(i) ran(γj) ⊆ D.

(ii) If j �= k, then ran(γj) ∩ ran(γk) = ∅.
(iii) Cj ⊆ Int(γj) −

⋃
k �=j Int(γk).

V.V. Andreev et al. / Electronic Notes in Theoretical Computer Science 221 (2008) 127–139130

Using Lemma 2.10, we can prove the following, which will be used later to
recognize the connected components of the complement of an unbounded, non-
degenerate n-connected domain. Let I2 be the notation in Definition 4.1.2 of [15].

Lemma 2.11 Suppose D is a non-degenerate n-connected domain and ∞ ∈ D.
Then, there exist words w1, . . . , wn and rational, polygonal, simple closed curves
γ1, . . . , γn such that the following.

(i) ran(γj) ⊆ D.

(ii) If j �= k, then ran(γj) ∩ ran(γk) = ∅.
(iii) I2(wj) ⊆ Int(γj) − ∪k �=jInt(γk).

(iv) I2(wj) ∩ ∂D �= ∅.
Furthermore, if w1, . . . , wn, γ1, . . . , γn are such that (i) - (iv) hold, then it is possible
to label the connected components of Ĉ − D, C1, . . . , Cn, so that Cj ⊆ Int(γj) −
∪k �=jInt(γk).

3 Computable analysis

3.1 Spaces to be considered and their default naming systems

Suppose X is a topological space. We let O(X) be the set of open subsets of X.
We let C(X) be the set of closed subsets of X.

The following table indicates some of our default naming systems. Definitions
can be found in [15].

Space Default naming system

N νN

Q νQ

Σ∗ IdΣ∗

R ρ

C ρ2

O(C) θ2
<

We introduce an admissible naming system for Ĉ by first building a computable
topology on Ĉ. 4

Definition 3.1 (Computable topology on the extended plane)

(i) Let

σ
Ĉ

= {I2(w) | w ∈ dom(I2)} ∪ {Ĉ − I2(w) | w ∈ dom(I2) ∧ 0 ∈ I2(w)}.

4 This is not the only way to set up computation on Ĉ. There is also the paper [13] in which computation

on these spaces is defined by embedding Ĉ into R3.

V.V. Andreev et al. / Electronic Notes in Theoretical Computer Science 221 (2008) 127–139 131

Thus, σ
Ĉ

is a countable basis for the standard topology on Ĉ.

(ii) For all w ∈ dom(I2), let ν
Ĉ
(〈0, w〉) = I2(w). If 0 ∈ I2(w), let ν

Ĉ
(〈1, w〉) =

Ĉ − I2(w).

(iii) Let S
Ĉ

= (Ĉ, σ
Ĉ
, ν

Ĉ
).

It follows that S
Ĉ

is a computable topological space. Let δ
Ĉ

= δS
Ĉ
. δ

Ĉ
is our

default naming system for Ĉ. Informally speaking, a δ
Ĉ
-name of a z ∈ Ĉ is an

exhaustive list of all basic neighborhoods to which z belongs. If z = ∞, then this
list will only contain neighborhoods of the form C − I2(w). But, if z �= ∞, then
this list will contains neighborhoods of ∞ as well as finite neighborhoods. These
observations lead to the following.

Proposition 3.2 There is no computable F :⊆ Σω → {0, 1} such that for all p ∈
dom(δ

Ĉ
),

F (p) =

⎧⎨
⎩

1 if δ
Ĉ
(p) = ∞

0 otherwise

We now turn to O(Ĉ).

Definition 3.3 (Computable topology on open subsets of the extended
plane)

(i) For all w ∈ dom(ν
Ĉ
), let

νO(Ĉ)(w) = {U ∈ O(Ĉ) | ν
Ĉ
(w) ⊆ U}.

Then, let σO(Ĉ) = ran(νO(Ĉ)).

(ii) Let SO(Ĉ) = (O(Ĉ), σO(Ĉ), νO(Ĉ)).

Clearly, SO(Ĉ) is a computable topological space. Let δO(Ĉ) = δSO(Ĉ)
. δO(Ĉ) is our

default representation of O(Ĉ). Informally speaking, a δO(Ĉ)-name of an open set
is an exhaustive list of all basic neighborhoods whose closures are contained in that
set. If this set is bounded, then this list will only contain bounded neighborhoods.
Otherwise, it will contain both bounded and unbounded neighborhoods. These
observations lead to the following.

Proposition 3.4 There is no computable F :⊆ Σω → {0, 1} such that for all p ∈
dom(δO(Ĉ)),

F (p) =

⎧⎨
⎩

1 if ∞ ∈ δO(Ĉ)(p)

0 otherwise.

We now turn to closed sets.

Definition 3.5 (Computable topology on closed subsets of the extended
plane)

V.V. Andreev et al. / Electronic Notes in Theoretical Computer Science 221 (2008) 127–139132

(i) For all w ∈ dom(ν
Ĉ
), let

νC(Ĉ)(w) = {X ∈ C(Ĉ) | ν
Ĉ
(w) ∩ X �= ∅}

Then, let σC(Ĉ) = ran(νC(Ĉ)).

(ii) Let SC(Ĉ) = (C(Ĉ), σC(Ĉ), νC(Ĉ)).

Hence, SC(Ĉ) is a computable topological space. Let δC(Ĉ) = δSC(Ĉ)
. δC(Ĉ) is our

default representation of C(Ĉ). Informally speaking, a δC(Ĉ)-name of a closed set
lists all basic neighborhoods that intersect the set.

We now consider meromorphic functions. Let M(Ĉ) be the set of all meromor-
phic f :⊆ Ĉ → Ĉ.

Definition 3.6 For all f ∈ M(Ĉ) and all p ∈ Σω, let δM(Ĉ)(p) = f if there exist
q, r such that p = 〈r, q〉, ηωω

q (δ
Ĉ
, δ

Ĉ
)-realizes f , and dom(f) = δO(Ĉ)(r).

δM(Ĉ) is our default naming system for M(Ĉ). Informally speaking, a δM(Ĉ)-
name of a meromorphic function contains a name of the domain of the function as
well as an oracle Turing machine that computes the function. A thorough treatment
of naming systems for function spaces is [5].

We have now defined our default naming systems for the spaces we will consider.
We now describe the default naming systems for the derived spaces.

(i) (Function spaces) When δX , δY are the default naming systems for X, Y

respectively, then [δX → δY] is the default naming system for the set of all
(δX , δY)-continuous functions with domain X. When, in addition, A ⊆ X,
[δX → δY]A is the default naming system for the set of (δX , δY)-continuous
functions with domain A.

(ii) (Products) When δX1 , . . . , δXn are the default naming systems for X1, . . . , Xn

respectively, then [δX1 , . . . , δXn] is the default naming system for X1× . . .×Xn.
In addition, [δX]n is the default naming system for Xn when δX is the default
naming system for X and n ≤ ω.

When only the default naming systems are being used, we will suppress their
mention. For example, we just say that a δ

Ĉ
-computable point in Ĉ is computable.

This convention will eliminate much notation from our discussions. To eliminate
even more, let:

zp = δ
Ĉ
(p)

Dp = δO(Ĉ)(p)

Ep = δC(Ĉ)(p)

fp = δM(Ĉ)(p)

V.V. Andreev et al. / Electronic Notes in Theoretical Computer Science 221 (2008) 127–139 133

3.2 Some lemmas for proving computability

Since η(γ, z) is integer-valued, we immediately obtain the following by using the
fact that integration is a computable operator (see, for example, Theorem 6.4.1.2
of [15]).

Proposition 3.7 γ �→ Int(γ) and γ �→ Ext(γ) are computable.

We now give some tools for proving computability without using type two ma-
chines.

Definition 3.8 A predicate R ⊆ Σω × Σ∗ is computable if there is a type two
machine M such that when ι(w)p is written on the input tape, M halts with output
1 if R(p, w) holds and halts with output 0 if R(p, w) does not hold. A predicate
S ⊆ (Σω)n × (Σ∗)m is computable if there is a computable predicate R ⊆ Σω × Σ∗

such that

S(p1, . . . , pn, w1, . . . , wm) ⇔ R(〈p1, . . . , pn〉, 〈w1, . . . , wm〉).
Lemma 3.9 Let S1 = (M1, τ1, ν1) be a computable topological space. Suppose
dom(ν1) is computable. Let δ be a representation of M0. Let f :⊆ M0 → M1.
Then, the following are equivalent.

(i) f is (δ, δS1)-computable.

(ii) There is a computable predicate R ⊆ Σω × Σ∗ × Σ∗ such that for all p ∈
δ−1(dom(f)) and all w ∈ dom(ν1)

f(δ(p)) ∈ ν1(w) ⇔ ∃yR(p, w, y).

4 Operations on points

We claim that the operations of addition, multiplication, and division are com-
putable on Ĉ. We first review how these operations are defined on Ĉ and what their
domains are.

Definition 4.1 The operations of addition and multiplication are extended to Ĉ

by the equations

z + ∞=∞ + z = ∞, z ∈ Ĉ

z ×∞=∞× z = ∞, z ∈ Ĉ − {0}
Division is extended to Ĉ by the equations

z/∞= 0, z ∈ C

∞/z =∞, z ∈ C

z/0 =∞, z ∈ Ĉ − {0}
Hence

dom(+) = Ĉ × Ĉ

dom(×) = Ĉ × Ĉ − {(0,∞), (∞, 0)}
dom(/) = Ĉ × Ĉ − {(∞,∞), (0, 0)}

V.V. Andreev et al. / Electronic Notes in Theoretical Computer Science 221 (2008) 127–139134

The following can be proven fairly easily using Lemma 3.9, the definition of δ
Ĉ
,

and Definition 4.1.

Proposition 4.2 Addition is computable on Ĉ × Ĉ − {(∞,∞)}. Addition is not
continuous at (∞,∞). Hence, addition is not computable on Ĉ × Ĉ.

Proposition 4.3 Multiplication of points in Ĉ is computable.

Proposition 4.4 Division of points in Ĉ is computable.

5 Uniform computability of Möbius transformations

Given distinct z1, z2, z3 ∈ Ĉ, there is a unique bilinear transformation that maps
z1, z2, z3 to 1, 0,∞ respectively. Denote this transformation by T(z1,z2,z3). Details
may be found in [4]. We claim the following.

Theorem 5.1 The map (z1, z2, z3) �→ T(z1,z2,z3), where (z1, z2, z3) ranges over all
pairwise distinct triples in Ĉ × Ĉ × Ĉ, is computable.

6 Operations on meromorphic functions

We begin by extending some of the results in [10] and [11] on zeros to meromorphic
functions.

Lemma 6.1 The following maps on M(Ĉ) are computable.

(i) f �→ (Ĉ − f−1[{0}]) ∩ dom(f).

(ii) f �→ (Ĉ − f−1[{∞}]) ∩ dom(f).

Theorem 6.2 The following maps are computable on M(Ĉ).

(i) f � f �≡ 0 �→ f−1[{0}].
(ii) f � f �≡ ∞ �→ f−1[{∞}].

In order to prove that f �→ f−1 is computable, we must first prove some things
about operations on open sets.

7 Operations on closed and open sets

Theorem 7.1 (i) The map (f, U) �→ f [U] is computable on pairs such that f ∈
M(Ĉ) is not constant and U is an open subset of dom(f).

(ii) The map (f, C) �→ f [C] is computable on pairs such that f ∈ M(Ĉ) and C is
a closed set that is contained in dom(f).

We can now show that computing inverses of injective meromorphic functions is
possible.

Theorem 7.2 f �→ f−1 is computable on the set of injective meromorphic func-
tions.

V.V. Andreev et al. / Electronic Notes in Theoretical Computer Science 221 (2008) 127–139 135

8 Decomposing boundaries

For all non-degenerate D ∈ Dn(Ĉ), let Compn(D) consist of all (C1, . . . , Cn) such
that C1, . . . , Cn are the connected components of the complement of D. Then, for
all such D, let:

Comp>
n (D) = {(Ĉ − C1, . . . , Ĉ − Cn) | (C1, . . . , Cn) ∈ Compn(D)}

Comp∂
n(D) = {(∂C1, . . . , ∂Cn) | (C1, . . . , Cn) ∈ Compn(D)}

The proof of the following is based on Lemmas 2.10 and 2.11.

Theorem 8.1 (D, ∂D) �→ Comp>
n (D) and (D, ∂D) �→ Comp∂

n(D, ∂D) are com-
putable multifunctions.

9 Constants associated with a circular domain

We claim that the constants associated with a circular domain can be computed
from the domain and its boundary. These constants will be used in Section 10.1.

Proposition 9.1 (C, ∂C) �→ μC is computable (where C ranges over the circular
regions in Dn(Ĉ) for fixed n).

Proposition 9.2 (C, ∂C) �→ δC is computable (where C ranges over the circular
regions in Dn(Ĉ) for fixed n).

10 Conformal mapping of n-connected domains

10.1 Koebe’s algorithm

The following can be proven using Hertling’s result on the Riemann Mapping The-
orem [7] and the results of the previous sections.

Theorem 10.1 When D ranges over all non-degenerate domains in D1(Ĉ) that
contain ∞ but not 0, (D, ∂D) �→ (CD, ∂CD, fD) is computable.

We will need the following for the proof of Theorem 10.3.

Lemma 10.2 From a δM(Ĉ)-name of a map of the form f |C such that f ∈ M(Ĉ)
and f has no poles except at ∞, it is possible to compute a name of f .

Theorem 10.3 When D ranges over non-degenerate domains in Dn(Ĉ) that con-
tain ∞ but not 0, (D, ∂D,CD, ∂CD) �→ fD is computable.

Proof. Given (D, ∂D,CD, ∂CD), we define sequences {Dk}∞k=0, {Ck,1}∞k=0, . . .,
{Ck,n}∞k=0, and {fk}∞k=0 by simultaneous recursion as follows.

To begin, let C1, . . . , Cn be the connected components of Ĉ − D. We then let
D0 = D. Let C0,j = Cj for j = 1, . . . , n. Let f0 = Id. By Theorem 8.1, we can
compute names of ∂C0,j and Ĉ − C0,j from names of D, ∂D.

Let k ∈ N, and suppose fk, Dk, Ck,1, . . . , Ck,n have been defined. Assume we
have also computed names of fk, Dk, and the complements and boundaries of

V.V. Andreev et al. / Electronic Notes in Theoretical Computer Science 221 (2008) 127–139136

Ck,1, . . . , Ck,n. Let k′ ∈ {1, . . . , n} be equivalent to k modulo n. Let fk+1 be the
conformal map of Ĉ−Ck,k′ onto a circular domain C such that fk+1(z) = z+O(z−1).
Since ∂(Ĉ − Ck,k′) = ∂Ck,k′ , by Theorem 10.1, we can compute a name of fk+1.

Now, let Dk+1 = fk+1[Dk]. Let Ck+1,j = fk+1[Ck,j] when j �= k′. Let Ck+1,k′ =
Ĉ − C. Note that when j �= k′, Ck,j ⊆ dom(fk+1) and so we can compute a name
of ∂Ck+1,j . By Theorem 10.1, we can compute a name of ∂Ck+1,k′ . At the same
time, we note that Ĉ − Ck+1,j = Ck+1,k′ ∪ fk+1[Ĉ − Ck,j] when j �= k′. Hence, we
can compute names of the complements of Ck+1,1, . . . , Ck+1,n.

It follows that the sequence {fk}∞k=0 can be computed from D and ∂D. (See,
for example, Theorem 2.1.14 of [15].) We now let:

g0 = f1

gk+1 = fk+2 ◦ gk

The following is proven in [6].

Lemma 10.4 The sequence {gk}∞k=0 converges pointwise to a conformal map g of
D onto CD such that g(z) = z + O(z−1).

So fD = g.
Choose ρ so that ρ > max{|z| : z ∈ Ĉ − CD}. Since this maximum occurs on

∂CD, ρ can be computed from the given information.
Abbreviate CD with C. Let μ = μC and δ = δC . Let

γ =
2ρ2

πδ

[
2[πμ−1]2

lnμ−1
+ 1

]
.

The following is proven in [6].

Lemma 10.5 For all z ∈ D − {∞} and all j ∈ N, |gj(z) − g(z)| ≤ γμ4�j/n�.

It now follows from Theorem 6.2.2.2 of [15] that we can compute a [ρ2 → ρ2]-
name of the restriction of g to D ∩ C. Then, by Lemma 10.2 we can compute a
name of g. This completes the proof.

�

From the proof of Theorem 10.3, we can extract a proof of the following non-
uniform result.

Theorem 10.6 Let D ∈ Dn(Ĉ) be non-degenerate. If D, ∂D are computable, then
CD, fD are computable.

Proof. Choose rational R, r such that R > γ and μ < r < 1. �

10.2 Necessity of parameters

Suppose we have a (possibly non-computable) function x �→ f(x). A sufficient
parameter for this function is a function g such that (x, g(x)) �→ f(x) is computable.
If x �→ g(x) is computable, then we call g superfluous (and it follows that f is

V.V. Andreev et al. / Electronic Notes in Theoretical Computer Science 221 (2008) 127–139 137

computable). If g is sufficient and (x, f(x)) �→ g(x) is computable, then we call
the parameter g exact. The parameter g is called necessary if it is both exact and
non-superfluous.

This terminology can be extended to situations where we add several parameters.
For example, suppose we add two parameters g1, g2 so that (x, g1(x), g2(x)) �→ f(x)
is computable. We say that g1 is exact relative to g2 if (x, f(x), g2(x)) �→ g1(x) is
computable. We then say that g1 is superfluous relative to g2 if (x, g2(x)) �→ g1(x)
is computable. We say that g1 is necessary relative to g2 if it is exact and non-
superfluous relative to g2. We similarly define these terms for g2 relative to g1. We
then extend this terminology to the addition of n > 2 parameters in the obvious
way.

We now claim that with respect to the map D �→ fD, the parameter ∂D is exact
with respect to the additional parameters (CD, ∂CD). The proof is similar to the
proof of Theorem 4.7 of [7].

Theorem 10.7 The map (D, fD, CD, ∂CD) �→ ∂D, where D ranges over non-
degenerate domains in Dn(Ĉ) that contain ∞ but not 0 is computable.

We can similarly show that ∂CD is exact with respect to (∂D, CD). In fact, we
can show that (∂D, fD) �→ ∂CD is computable. We can also show that CD is exact
with respect to (∂D, ∂CD). In fact, it just follows from Theorem 7.1 that fD �→ CD

is computable. We do not know if these parameters are necessary.

References

[1] E. Bishop and D.S. Bridges, Constructive analysis, Springer (Berlin), 1985.

[2] H. Cheng, A constructive Riemann mapping theorem, Pacific Journal Mathematics 44 (1973), 435 –
454.

[3] D. Gaier, Untersuchung zur durchführung der konformen abbildung mehrfach zusammenhängender
gebiete, Arch. Rat. Mech. Anal. 3 (1959), 149 – 178.

[4] T. W. Gamelin, Complex analysis, Undergraduate Texts in Mathematics, Springer-Verlag, New York,
2001.

[5] T. Grubba, K. Weihrauch, and Y. Xu, Effectivity on continuous functions in topological spaces,
Electronic Notes in Theoretical Computer Science 202 (2008), 237–254.

[6] P. Henrici, Applied and computational complex analysis. vol. 3., Pure and Applied Mathematics, Wiley
& Sons, Inc., New York, 1986.

[7] P. Hertling, An effective Riemann Mapping Theorem, Theoretical Computer Science 219 (1999), 225
– 265.

[8] P. Koebe, Über die konforme abbildung mehrfach-zusammenhängender bereiche, Jahresber. Dt. Math.
Ver. 19 (1910), 339 – 348.

[9] , Über eine neue methode der konformen abbildung und uniformisierung, Nachr. Kgl. Ges. Wiss.
Göttingen, Math.-Phys. Kl. 1912 (1912), 844–848.

[10] A. Matheson and T.H. McNicholl, Computable analysis and Blaschke products, Proceedings of the
American Mathematical Society 1 (2008), 321 – 332 (electronic).

[11] T.H. McNicholl, Uniformly computable aspects of inner functions: estimation and factorization,
Mathematical Logic Quarterly (to appear).

[12] Z. Nehari, Conformal mappings, Dover, 1975.

V.V. Andreev et al. / Electronic Notes in Theoretical Computer Science 221 (2008) 127–139138

[13] R. Rettinger, A fast algorithm for julia sets of hyperbolic rational functions, Electronic Notes in
Theoretical Computer Science 120 (2005), 145 – 157.

[14] M. Tsuji, Potential theory, Chelsea, New York, 1975.

[15] K. Weihrauch, Computable analysis, an introduction, Springer-Verlag, 2000.

V.V. Andreev et al. / Electronic Notes in Theoretical Computer Science 221 (2008) 127–139 139

	Introduction
	Background from complex analysis
	Computable analysis
	Spaces to be considered and their default naming systems
	Some lemmas for proving computability

	Operations on points
	Uniform computability of Möbius transformations
	Operations on meromorphic functions
	Operations on closed and open sets
	Decomposing boundaries
	Constants associated with a circular domain
	Conformal mapping of n-connected domains
	Koebe's algorithm
	Necessity of parameters

	References

