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Abstract

Interval Routing is a routing method that was proposed in order to reduce the size of the
routing tables by using intervals and was extensively studied and implemented. Some variants of
the original method were also de2ned and studied. The question of characterizing networks which
support optimal (i.e., shortest path) Interval Routing has been thoroughly investigated for each
of the variants and under di4erent models, with only partial answers, both positive and negative,
given so far. In this paper, we study the characterization problem under the most basic model (the
one unit cost), and with the most restrictive memory requirements (one interval per edge). We
prove that this problem is NP-hard (even for the restricted class of graphs of diameter at most
3). Our result holds for all variants of Interval Routing. It signi2cantly extends some related
NP-hardness result, and implies that, unless P = NP, partial characterization results of some
classes of networks which support shortest path Interval Routing, cannot be pushed further to lead
to e;cient characterizations for these classes. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a distributed network, where processors communicate by sending and receiving
messages, a routing scheme is employed in order to determine the path that a message
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will traverse from its source to its destination. A classical routing method is to keep
in each node a table with n entries (where n is the number of nodes in the network);
the jth entry in the table determines the link on which to send a message destined
to node j. This routing method is optimal in the sense that it is always possible to
construct routing tables that will guarantee a delivery of every message on a shortest
length path. However, it has a prominent drawback; the space required in each node is
proportional to the size of the network, which makes it very costly for large networks.
During the last decade, strategies to reduce the amount of space required for routing

have been thoroughly investigated. It was shown that there exists a trade-o4 between
the length of the routing paths and the memory which is required for the routing (see,
e.g., [17, 1]). Many researchers focused on the problem of designing space-e;cient
optimal routing schemes. A common approach was to label the nodes and links of the
network in a way that encodes some of the information on the network topology, and
then to route messages according to the labeling.
One of the most popular such methods is Interval Routing, which was introduced

in [19, 20] and was implemented in the C104 Router Chip of the INMOS T9000
Transputer design [14]. (See [11] for a surveys on Interval Routing.) The basic idea
of Interval Routing is to reduce the amount of memory needed in a node by encoding
sets of destinations using intervals. An interval is a consecutive sequence of nodes
which might wrap-around over the end of the name segment to its beginning. Under
Interval Routing, every node is assigned a unique number from {0; : : : ; n−1}, and each
link is labeled by a set of intervals. The routing of a message is performed according
to the labeling; a message is sent on the link labeled by an interval which contains
its destination. Some variants of the original method were proposed by posing more
constraints on the interval labels. In linear interval routing wrap-around intervals are
not allowed. In strict interval routing (and strict linear interval routing) an interval on
a link outgoing a node must not include the label of that node.
Though Interval Routing can be implemented on any network, for some networks we

might have to use �(n) intervals on some of the links in order to achieve optimality
[10]. The compactness of an interval routing scheme is the maximum size of a set of
intervals which labels a link. Interval routing schemes with compactness k are termed
k-interval routing schemes (in short, k-IRS). The abbreviation k-LIRS, k-SIRS, and
k-SLIRS, are used for the other variants (linear, strict and strict linear, respectively).
Fundamental questions are to characterize for a constant integer k the class of graphs
for which there exists an interval routing scheme with compactness k (for each of
the variants), or in general, to determine the minimal compactness for which there
exists an interval routing scheme for a given graph. These questions were investigated
quite extensively, under various models. So far, only partial answers (both positive and
negative) have been given.
The class of graphs which admit optimal interval routing schemes with compactness

k was termed k-IRS (respectively, k-SIRS, k-LIRS, k-SLIRS for the other
variants). It was 2rst shown that many familiar classes of graphs such as complete
graphs, meshes, hypercubes [3], complete bipartite graphs [15], and proper interval
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graphs [6] are in the class 1-LIRS. Other graphs such as trees, tori, and unit-circular
arc graphs are in the class 1-IRS [19, 15, 7, 16].
These positive results correspond to the basic and familiar model termed one unit

cost which assumes a uniform cost on all the links. Another common model (which is
a generalization of the 2rst one) is the ,xed link cost under which every link of the
network is assigned a positive number, termed its cost. Costs of links reJect attributes
such as propagation delay and congestion. The length of a path in this model is the
sum of the costs of its links (optimality of a labeling for a network depends on these
costs).
Yet another model is the dynamic link cost under which a labeling of the nodes

of a network is optimal if it enables optimal routing for every assignment of costs
to the links of the network. Under the last model few characterization results were
established. Bakker et al. [3] fully characterized graphs with dynamic link cost in
the class 1-LIRS. In [8] a characterization of graphs with dynamic link cost in the
class 1-SIRS was shown. This result was extended [2] to non-strict schemes and was
generalized in [4], where it was shown that for each k ¿ 1, the set of connected graphs
in the class k-IRS under the dynamic link cost model are closed under taking minors,
which implies, using the classical results in [18], that there are linear time algorithms
recognizing these sets, though there might be no constructive way to design these
algorithms. Furthermore, the model of dynamic link cost is considered too restrictive.
A network admits an optimal labeling only if it does so regardless of the costs of its
links; therefore most of the graphs that admit an optimal labeling under the one unit
cost or 2xed link cost models do not fall into that category when dynamic link costs
are assumed.
Under the one unit cost model, the following partial characterization was given in

[16, 12] for graphs in the class k-IRS: a necessary and su;cient condition for a
network to belong to k-IRS is that each of its biconnected components belongs to
this class. This result reduces the characterization question for interval routing to the
class of biconnected graphs. In the same spirit, a characterization was given in [16]
for the graphs which in the class 1-SLIRS in terms of its biconnected components.
These characterization results hold also under the more general 2xed link cost model.
However, none of these results imply a polynomial time algorithm which recognizes
the corresponding graphs. Last, in an attempt to characterize one-unit cost graphs in
the class 1-LIRS some conditions were given in [4]. It was conjectured in [22] that
the class 1-SLIRS is constructible in the sense that it can be well described using
simple graph operators and gave some properties of graphs in this class.
On the negative side, it was shown [7] that the optimization problem of determining

the minimal k such that a given network with 2xed link costs belongs to k-IRS

(resp., k-LIRS, etc.), is NP-hard. They also showed that the related problem of
determining the minimal integer K such that there is an optimal interval labeling which
uses a total of at most K intervals on all the links is NP-hard. Recently, it was proved
in [9] that the problem of characterizing the class of graphs 2-IRS (and respectively,
2-LIRS, 2-SIRS and 2-SLIRS) is NP-Hard under the one unit cost model (and
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Fig. 1. Complexity results under the various models.

hence under the 2xed link cost model). In that paper the problem of characterizing the
class 1-IRS (and its variants) is mentioned as the main open problem in this area.
In this paper we study the characterization question under the most basic model—

the one unit cost, and with the most restrictive memory requirements—one interval per
link—and settle the above problem. Speci2cally, we prove that the characterization of
graphs which admit optimal (strict or non-strict) interval labeling and optimal (strict or
non-strict) linear interval labeling with compactness 1 in this model is NP-hard (these
results are easily generalized to the 2xed-cost model. Our results signi2cantly extend
the related NP-hardness results of [7], and imply that, unless P=NP, the results of
[3, 16, 22] cannot be further pushed to lead to e;cient characterizations of these classes
of graphs. It is worth noting that, at least for the (strict or non-strict) 1-LIRS with
unit-cost case, our result could come as a surprise, since it was shown in [3] that this
class of graphs is very poor; for example, among other restrictions, a graph in this class
may not contain a sub-graph of minimum paths which is a cycle of length greater than
four.
The complexity results under the various models are summarized in Fig. 1, where

every entry refers to both the strict and non-strict versions of the problem. Following
is a brief explanation of it. Entry “Minimal k s.t. G ∈ k-IRS” (and “minimal k s.t.
G ∈ k-LIRS”) refers to the optimization problem of determining the minimal k for
which a given graph admits an optimal labeling with compactness k. The entry “G ∈ k-
IRS? for any 2xed k¿2” (and “G ∈ k-LIRS? for : : :”) actually refers to a family
of problems—the kth problem is to recognize the graphs in the class k-IRS. To the
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best of our knowledge, these problems are open for all k¿2. In the table NPH denotes
an NP-hard optimization problem and NPC denotes an NP-complete problem.
The rest of the paper is organized as follows. In Section 2, we give a precise def-

inition of the model and the characterization problems. In Section 3, we prove that
two problems which we de2ne in the sequel, the Acyclic Graph Orientation prob-
lem and the Constrained Order problem are NP-complete. We then use these results
in Section 4, where we prove the NP-completeness of both the 1-LIRS and the
1-SLIRS problems under the one unit cost model (and hence under the 2xed link
cost model) and in Section 5, where we prove the same result for the 1-IRS and
1-SIRS problems. Implications of our results and directions for further research are
discussed in Section 6.

2. Preliminaries, de�nitions and notations

2.1. The model

We consider two di4erent models of a network; the one unit cost and the ,xed link
cost. Under both, the network is modeled as an undirected 2nite graph G=(V; E),
|V |= n, where the set of vertices represent the nodes of the network and the set
of edges represent the bidirectional links. Graphs are connected, loopless and do not
contain parallel edges. Under the 2xed link cost model, every edge of the graph is
associated with a positive number, which is its cost; under the one-unit cost model we
assume that the cost of every edge is one unit. The length of the path in the graph
under both models is the sum of costs of its edges (for the one unit cost model this is
equal to the number of edges in it). The basic idea of Interval Routing is to label each
vertex of the graph by a unique number from the set N = {0; : : : ; n − 1}, and then at
each vertex v to label each adjacent edge by a set of intervals over the set N , such that
intervals assigned to edges emanating v are mutually disjoint and their union covers
the set N . The routing is performed according to the labeling; in a vertex v, a message
will be sent on the (unique) edge whose label contains an interval which contains
the destination of the message. The compactness of an interval routing scheme is the
maximum number of intervals that label any edge. In this paper we study only interval
routing schemes with compactness 1 (i.e., every edge in each direction is labeled with
one interval). Formally we de2ne an interval over N as follows.

De�nition 1. An interval of N is one of the following:
1. A linear interval 〈p; q〉= {p;p+ 1; : : : ; q}, where p; q∈N and p6 q.
2. A wrap-around interval 〈p; q〉= {p;p + 1; : : : ; n − 1; 0; : : : ; q}, where p; q∈N and
p¿q.

3. The null interval 〈〉 is the empty set.

We say that a vertex u∈V is contained in an interval 〈p; q〉 if u∈ 〈p; q〉. An
interval labeling scheme with compactness 1 is termed 1-interval labeling scheme and
is formally de2ned as follows.
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De�nition 2. A 1-interval labeling scheme (in short, 1-ILS), LG =(L; {Iv}v∈V ), of a
graph G=(V; E), is de2ned by
1. A one-to-one function L :V →N that labels the vertices of V .
2. For every vertex v, an edge labeling function Iv :Ev→ I , where Ev is the set of

edges adjacent to v and I is the set of intervals of N , that satis2es the following
properties for every v∈V :
union property: N\{L(v)}⊆ ⋃

e∈Ev Iv(e).
disjunction property: For any two distinct edges e1; e2 in Ev, Iv(e1)∩ Iv(e2)= ∅.
(In other words, the non-empty intervals associated with all the edges outgoing any
vertex v form a partition of N or of N − {L(v)}.)

For simplicity, in the sequel we will not distinguish between a vertex v and its label
L(v).

Example 1. The above Figure shows a graph together with a 1-ILS for it. A message
with source 0 and destination 2 will traverse the path 0–1–3–2.

Few variants of interval routing are linear interval routing in which wrap-around
intervals are not allowed, and strict interval routing (respectively, strict Linear Interval
Routing) in which an interval on an edge outgoing a vertex may not contain the label
of this vertex. Their de2nitions follows.

De�nition 3. A 1-linear-interval labeling scheme (in short, 1-LILS), of a graph G=
(V; E), is a 1-interval labeling scheme in which for every v∈V and for every e∈Ev,
the interval Iv(e) is either linear or null.

De�nition 4. A 1 strict interval labeling scheme (in short, 1-SIRS) (resp. 1-SLIRS),
of a graph G=(V; E), is a 1-interval labeling scheme (respectively, 1-linear interval
labeling scheme) in which for every v∈V and for every e∈Ev, L(v) =∈ Iv(e).
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By a labeling scheme we mean 1-ILS or any of its variants. Note that the path a
message with source u and destination v traverses is completely determined by the
labeling scheme of the graph. If the labeling is arbitrary then this path could contain a
cycle; in other words, the message can cycle forever without reaching its destination.
A valid labeling scheme is a labeling that guarantees that every message will eventu-
ally arrive at its destination. A valid labeling scheme induces, for every ordered pair
of vertices (u; v) in the graph, a simple path from u to v. A valid 1-ILS is termed
1-IRS (interval routing scheme) and respectively, valid 1-LILS, valid 1-SILS and valid
1-SLILS are termed 1-LIRS, 1-SIRS and 1-SLIRS. An optimal labeling scheme is a
labeling scheme that guarantees that for every ordered pair of vertices, the induced
path is a shortest length path in the graph (that is, the labeling guarantees that every
message will traverse a shortest length path).
We de2ne four classes of graphs; 1-IRS contains all graphs for which there

exists an optimal 1-IRS, and 1-LIRS contains all the graphs for which there ex-
ists an optimal 1-LIRS. (Clearly, 1-LIRS⊆ 1-IRS.) Correspondingly, 1-SIRS

and 1-SLIRS are the classes of graphs which admit optimal 1-SIRS and optimal
1-SLIRS. (Clearly, 1-SIRS⊆ 1-IRS and 1-SLIRS⊆ 1-LIRS.)
The problems of determining, for a given graph, whether it belongs to either of these

classes, are formally de2ned as follows.
The 1-LIRS problem
Input: A graph G.
Question: does G ∈ 1-LIRS?

and
The 1-IRS problem
Input: A graph G.
Question: does G ∈ 1-IRS?
The problems 1-SIRS and 1-SLIRS are de2ned similarly. Also, if the model

assumed is the 2xed link cost then the input to each of the above four problems is a
graph G=(V; E) and a cost function cost :E→R+, which assigns a positive number
to every edge in the graph. Clearly, all of these problems are in the class NP; given
a graph (with or without a cost function) and any labeling for it, it can be veri2ed in
polynomial time whether the labeling is optimal for the graph.
In this paper we prove the following two theorems.

Theorem 1. The 1-LIRS and the 1-SLIRS problems are NP-complete under the
one unit cost model (and hence under the ,xed link cost model).

Theorem 2. The 1-IRS and the 1-SIRS problems are NP-complete under the one
unit cost model (and hence under the ,xed link cost model).

We will prove Theorems 1 and 2 by a sequence of polynomial transformations from
the 3-SAT problem. In the next subsection we will de2ne two problems that will be
used in the proofs.
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2.2. The acyclic graph orientation and the constrained order problems

Informally, the input to the acyclic graph orientation problem is a directed graph and
a partition of its edges to equivalence classes. The problem is to determine whether
there exists a subset of the equivalence classes such that switching the directions of
the edges in them will result in a directed acyclic graph (DAG). Formally,

The acyclic graph orientation (AGO) problem
Input: A directed graph G=(V; E) and a partition of its edges to equivalence classes

{Ei}06i6t , (the sets Ei are pairwise disjoint and E=
⋃

06i6t Ei).
Question: Is there a subset of indices J ⊆{0; : : : ; t} such that the directed graph

GJ =(V; EJ ), which is obtained by reversing the directions of all the edges in
⋃
j∈J Ej,

is a DAG?
In the Constrained Order problem, the question is to determine whether there exists

a partial order ¡o over a given set of items U that satis2es a given set of order
constraints (in short constraints). 1 A constraint is an ordered pair of sets of items
of the form (Set1 |Set2). Such a constraint is satis2ed by a partial order ¡o i4 either
Set1¡oSet2 or Set2¡oSet1 (A¡oB means that u¡o v for every u∈A and every v∈B).
Formally,

The constrained order (CO) problem
Input: A set of constraints Cons= {Consi}16i6t , over a set of items U , where the

constraint consi is of the form Consi=(Set1i |Set2i ), Set1i ;Set2i ⊆U , Set1i ;Set2i = ∅, and
Set1i ∩Set2i = ∅, for every i=1; : : : ; t.

Question: Is there a partial order ¡o over the set U such that for every constraint
Consi ; i=1; : : : ; t, either Set1i ¡oSet2i or Set2i ¡oSet1i .
Note that both the AGO problem and the CO problem are in NP. In the course

of proving Theorems 1 and 2 we prove that the AGO problem and the CO problem
are NP-complete. Speci2cally, the proof of Theorem 1 is by a sequence of polynomial
transformations. The 2rst transformation is from the well-known NP-complete 3-SAT
problem (see, e.g., [13]) to the AGO problem. The second transformation is from the
AGO problem to the CO problem. The last transformation is from the CO problem to
the 1-LIRS problem. In fact, the last transformation will imply that both 1-LIRS

and 1-SLIRS are NP-complete under both the 2xed cost model and the one unit
cost model.
In order to prove Theorem 2, we show a polynomial transformation from the CO

problem. Again, the same transformation will imply the NP-completeness of both vari-
ations and under both models. The structure of the proofs of Theorems 1 and 2 is
illustrated in Fig. 2.

1 In this paper, a partial order is a transitive, asymmetric relation.
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Fig. 2. The structure of the proofs.

3. The NP-completeness of the AGO and the CO problems

We prove that the AGO problem is NP-complete by a polynomial transformation
from the 3-SAT problem. We then prove the NP-completeness of the CO problem by
a polynomial transformation from the AGO problem.

3.1. A transformation from 3-SAT to AGO

An instance of the 3-SAT problem is a CNF formula ’ over a set of variables
Var= {v1; : : : ; vt}, that is, ’=

∧
i=1;:::; m Ci where Ci=(l1i ∨ l2i ∨ l3i ) is a clause of three

literals, the literal l ji is either a variable vk or a negation of a variable ¬vk for some
vk ∈Var. The question is whether there is a truth assignment to the variables in Var
which satis2es ’. This instance is transformed to an instance of the AGO problem,
which consists of a directed graph G=(V; E) and a partition of E to equivalence
classes {Ej}j∈{0;:::;t} as follows.
The graph G=(V; E) consists of m components H1; : : : ; Hm, where Hi corresponds to

clause Ci=(l1i ∨ l2i ∨ l3i ). Hi contains four directed edges ei; e1i ; e
2
i ; e

3
i , whose underlying

graph is a cycle; The orientations of the edges are determined as follows: the edge ei,
i=1; : : : ; m, is a compass edge which is always oriented counterclockwise. An edge
e ji (16 j 6 3) is oriented clockwise if the literal l ji is a variable vk and it is oriented
counterclockwise if l ji is a negation of a variable ¬vk .
The partition of the edges to equivalence classes is as follows. E0 = {ei}i=1; ::: ; m consists
of all the compass edges. In addition, there is a class Ek for each variable vk ∈Var,
which consists of all edges e ji , where l

j
i is either the variable vk or its negation ¬vk .

Following is an example of the transformation.

Example 2. Fig. 3(a) depicts an example of the transformation from a CNF formula ’
to a directed graph and a set of equivalence classes on its set of edges. The vertices of
Hi, i=1; 2, are ai; bi; ci and di; The compass edge ei is the edge (ai; di). The edge e1i
(which correspond to the literal l1i ) connects the vertices ai and bi, similarly the edges
e2i and e3i connect the vertices bi; ci and ci; di respectively. The edge e11, for example,
is oriented clockwise (i.e., from a1 to b1) since the corresponding literal l11 is a vari-
able (v1). Similarly, e21 is oriented counterclockwise since the corresponding literal l21
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Fig. 3. An example of the transformation. (a) The directed graph G and the equivalence classes of its
edges, constructed by the transformation from the formula ’. (b) The legal orientation of G’s edges which
corresponds to the truth-assignment a.

is a negation of a variable (¬v2). All other edges are oriented by similar rules. The
numbers on the edges (0; 1; 2; 3) denote the equivalence class Ei, (i=0; 1; 2; 3) to which
the edge belongs. For example, the literal l11 is v1 and the literal l22 is ¬v1 and therefore
E1 = {(a1; b1); (c2; b2)}.

In this transformation, we interpret a clockwise orientation of an edge e ji as a truth
assignment a under which the truth value Ta(l ji ) of the literal l ji is T and a coun-
terclockwise orientation of this edge as an assignment a such that Ta(l ji )=F . Thus,
the initial orientation of the edges in the graph G corresponds to an assignment of the
value T to all the variables (therefore, a literal which is a variable is oriented clockwise
and a literal which is a negation of a variable is oriented counterclockwise). Denote
an orientation which is obtained by reversing all the edges in a set of equivalence
classes {Ej}j∈J as legal orientation. Then the de2nition of the equivalence classes Ej
guarantees that in each legal orientation, all the edges which correspond to a variable
vk have the same orientation, which is the opposite orientation of the edges which cor-
respond to ¬vk . The counterclockwise orientation of the compass edges ei guarantees
that in the initial graph G a cycle Hi is a directed cycle i4 clause Ci contains only
negated variables (thus, this clause is not satis2ed by the initial assignment). For a
set J ⊆{1; : : : ; t}, the graph GJ de2ned by reversing the edges in the classes {Ej}j∈J
corresponds to a truth assignment which assigns the value F to each variable in the
set {vj}j∈J , and the value T to all other variables.
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Example 3. Fig. 3(b) is the graph GJ where J = {2}. It corresponds to the assignment
of the value T to v1 and v3 and the value F to v2. Note that ’ is satis2ed under this
assignment and indeed the corresponding graph GJ is a DAG.

We now prove the correctness of the transformation.

Proposition 1. A CNF formula ’=
∧
i=1; ::: ; m Ci over Var= {v1; : : : ; vt} has a satis-

fying truth assignment i: there exists a subset J ⊆{0; : : : ; t} such that the directed
graph GJ =(V; EJ ) is a DAG.

Proof. Assume 2rst that there is a truth-assignment a :Var→{F; T} which satis2es ’.
We take J to be the set of indices J = {k | a(vk)=F}. By the discussion above, an
edge e ji in GJ is oriented clockwise i4 Ta(l ji )=T . By the assumption that a satis2es
’, each component Hi in GJ has at least one edge which is oriented clockwise. Since
the compass edge of Hi is oriented counterclockwise in GJ , we have that GJ contains
no directed cycle, hence it is acyclic, as required.
Assume now that there is a set of indices J such that the graph GJ =(V; EJ ), is

acyclic. We can assume without loss of generality that 0 =∈ J (otherwise, replace J by
TJ = {0; 1; : : : ; t}\J , noting that G TJ is obtained by reversing all the edges in GJ , and
hence it is also acyclic). Thus, for each component Hi in GJ , the compass edge ei
is directed counterclockwise. Now, consider the truth assignment a that assigns F to
all variables {vj}j∈J (and T to the rest of the variables). By the de2nition of GJ ,
Ta(l ji )=T only if in the graph GJ , the edge e ji is directed clockwise. Since the graph
GJ is acyclic, each component Hi contains an edge which is oriented clockwise. This
edge corresponds to a literal in clause Ci with value T under the assignment a, hence
all clauses are satis2ed by a, as claimed.

3.2. A transformation from AGO to CO

Let a directed graph G=(V; E) and a partition of its edges to equivalence classes
{Ej}j=0; ::: ; t be an instance to the AGO problem, where V = {v1; : : : ; vn}. We transform
it to a set of constraints S over a set of items U as follows.
The set U is given by U = {u1; : : : ; un}∪ {lj; rj | 0 6 j 6 t}. The set of constraints

is de2ned as follows. For every directed edge (x; y)∈E there exists a unique j, 0 6
j 6 t such that the edge (x; y) belongs to the equivalence class Ej. We add the
constraint ({lj; x} | {rj; y}) to the set of constraints (i.e., the total number of constraints
is

∑t
j=0 |Ej|= |E|). The transformation is demonstrated by the following example.

Example 4. Let the instance of the AGO be as constructed in Example 2 (Fig. 3(a)).
The transformation will construct from it the following set of constraints over the set
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of items U = {a1; b1; c1; d1; a2; b2; c2; d2; l0; r0; l1; r1; l2; r2; l3; r3}.

( {l0; a1} | {r0; d1} );
( {l0; a2} | {r0; d2} );
( {l1; a1} | {r1; b1} );
( {l1; c2} | {r1; b2} );
( {l2; c1} | {r2; b1} );
( {l2; b2} | {r2; a2} );
( {l3; c1} | {r3; d1} );
( {l3; d2} | {r3; c2} ):

Proposition 2. There exists a subset J ⊆ {0; : : : ; t} such that the directed graph
GJ =(V; EJ ) is a DAG i: there exists a partial order of the items in U which satis,es
all the constraints in S.

Proof. Assume that there is a partial order ¡o that satis2es all the constraints in S.
We claim that if we orient the edges in E such that an edge is oriented from vi to
vj if ui¡ouj, we obtain the desired acyclic orientation. Consider the set of constraints
which corresponds to the class Ej. If lj¡orj then x¡oy for each edge (x; y)∈Ej, hence
these edges preserve their original orientation; otherwise (rj¡olj), all the edges in Ej
are reversed. This means that the resulted graph is GJ , where J = {j | rj¡olj}. Since
¡o is a partial order, GJ cannot contain a cycle, as required.
Conversely, given a set of indices J ⊆ {0; : : : ; t} such that GJ is acyclic, we de2ne

the partial order ¡o on the items of U to be the transitive closure of the following
relation R: For each j =∈ J , and for each (x; y)∈Ej, x R y; lj R y; x R rj, and in addition
lj R rj. For each j∈ J , and for each (x; y)∈Ej, y R x; y R lj; rj R x, and in addition rj R lj.
Clearly, the relation R satis2es all the constraints in S. Moreover, since the graph GJ
is acyclic, it is easily seen that the transitive closure of the relation R is a partial order
on the items of U .

4. The NP-completeness of the 1-LIRS problem

In this section we complete the proof that the 1-LIRS and the 1-SLIRS prob-
lems are NP-complete (Theorem 1), by a polynomial transformation form the CO
problem.

4.1. Polynomial transformation from the constrained order problem

For a set of constraints S = {Cons1; Cons2; : : : ; Const} over a set of items U = {u1;
u2; : : : ; un}, where Consi=(Set1i | Set2i ), i=1; : : : ; t, we construct the graph GS =(VS; ES)
as follows. For each constraint Consi ∈ S we will have three vertices in V , ai; bi, and
mi which are termed the ith triple. Additionally, to every item ui ∈U we will have in
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Fig. 4. A set of constraints S over U = {u1; : : : ; u6} and the corresponding graph GS .

G a vertex vi. Formally,

VS = {mi; ai; bi | 16 i 6 t}∪ {vj | 16 j 6 n}:
The vertices {mi}i=1;:::; t are termed high-level vertices, the vertices {ai; bi}i=1;:::; t are
termed intermediate vertices, and the vertices {vj}j=1;:::; n are termed low-level vertices.
The set of edges ES is de2ned so that the following holds. The subgraph induced

by the intermediate vertices {ai; bi}i=1;:::; t and the subgraph induced by the low-level
vertices {vj}j=1;:::; n are both complete graphs. In addition, each high level vertex mi
is connected only to the two other vertices in the ith triple, ai and bi; ai is also
connected to all low-level vertices except those which correspond to the set Set2i , and
bi is connected to all low-level vertices except those which correspond to the set Set1i .
Formally, E=

⋃4
i=1 Ei, where

E1 = {{mi; ai}; {mi; bi} | 16 i 6 t};
E2 = {{ai; bj} | 16 i; j 6 t}∪ {{ai; aj}; {bi; bj} | 16 i; j 6 t; i = j};
E3 = {{ai; vj} | uj =∈ Set2i }∪ {{bi; vk} | uk =∈ Set1i }; and
E4 = {{vi; vj} | 16 i; j 6 n; i = j}:

The transformation is demonstrated by the following example.

Example 5. Fig. 4 is an example of a set of constraints S over a set of items U = {u1;
u2; : : : ; u6} and the corresponding graph GS . For simplicity, the complete graph induced
by the set of vertices {ai}∪ {bi} and the complete graph induced by the set {vj} are
depicted only implicitly.

Informally, the transformation is based on the following idea. For each constraint
Consi=(Set1i | Set2i ), all the shortest paths from mi to vertices that correspond to the
items in Set1i start with the edge {mi; ai}, and all the shortest paths from mi to vertices
that corresponds to the items in Set2i starts with the edge {mi; bi}. It follows that for
each i=1; : : : ; t, the order on the low-level vertices {vj} induced by an optimal 1-LIRS
for the graph must satisfy the constraint Consi. Therefore, if there is an optimal 1-LIRS
for the graph, there is an order of the items in S that satis2es all the constraints in
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the set S. Conversely, we will show that, given a partial order ¡o which satis2es all
the constraints in S, we can construct an optimal 1-LIRS for the graph. It is worth
to note that it is not hard to prove the 2rst direction using a simpler construction;
connect every vertex ai to all vertices which correspond to items in Set1i and every
vertex bi to all vertices that correspond to items in Set2i , however, we do not know
how to construct an optimal 1-LIRS for this graph.

4.2. Correctness of the transformation

First note that the transformation is polynomial. Given a set of constraints S over a
set of items U , the number of vertices in the graph GS is exactly |VS |= n+ 3t, where
n is the number of items in the set U and t is the number of constraints in the set S.
We prove the following proposition.

Proposition 3. There exists a partial order which satis,es all the constraints in S i:
GS ∈ 1-LIRS (that is; there exists an optimal 1-LIRS for GS).

The rest of this section is the proof of Proposition 3.
We 2rst prove that if GS ∈ 1-LIRS then there exists a partial order that satis2es

all the constraints in S. Let LGS =(L; {Iv}) be an optimal 1-LIRS for the graph GS .
Then the vertex labeling L induces a natural order on the items in U , namely ui¡ouj i4
L(vi)¡L(vj). We argue that ¡o is a partial (in fact—total) order on U which satis2es
all the constraints in S.
Consider the constraint Consi=(Set1i | Set2i ). By the construction of the graph GS ,

every shortest path from mi to any vertex vj that corresponds to an item uj in Set1i starts
with the edge {mi; ai} (in fact, 〈mi; ai; vj〉 is the only shortest path from mi to vj). It
follows that {vj | uj ∈ Set1i } ⊆ Imi(mi; ai). By the same arguments, {vj | uj ∈ Set2i } ⊆
Imi(mi; bi). Thus, there are two disjoint intervals, one of which contains all vertices
that correspond to items in Set1i and the other contains all vertices that correspond to
the items in the set Set2i . Since the order of the low-level vertices is equivalent to
the order of the corresponding items in U , either Set1i ¡oSet2i or Set2i ¡oSet1i ; in either
case, the constraints Consi is satis2ed by the order ¡o.
The proof of the other direction is more intricate. Given a partial order ¡o which

satis2es the constraints in S we will construct an optimal 1-LIRS LGS for GS .
The labeling of the vertices

First we extend the partial order ¡o on the items in U which satis2es all the constraints
in S to a total order ¡to in an arbitrary manner. We then construct a vertex-labeling
function L :VS →{0; : : : ; |VS | − 1} that satis2es the following conditions.
1. For every two low-level vertices vi and vj: L(vi)¡L(vj) i4 ui¡touj. That is, the

order of the low-level vertices is equivalent to the order ¡to on the items in the
set U . Having this in mind, we will identify the set of items Set ji with the set of
low-level vertices {vj | uj ∈ Set ji }.

2. For every ith triple {mi; ai; bi}, 16 i 6 t, there are two cases to consider.
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Fig. 5. The order of the vertices in the case: Set1i ¡Set
2
i .

(a) Set1i ¡to Set2i . Then L(Set1i )¡L(ai)¡L(mi)¡L(bi)¡L(Set
2
i ) (where L(A)=

{L(v) | v∈A} for a set of vertices A). (See Fig. 5.)
(b) Set2i ¡to Set1i . Then L(Set

2
i )¡L(bi)¡L(mi)¡L(ai)¡L(Set

1
i ).

Note that by the assumption that the order ¡to satis2es the constraints in S, exactly
one of the two cases (a) and (b) holds.

3. For i=1; : : : ; t, the vertices of the ith triple (mi; ai; bi) are ordered consecutively.
Formally, {L(mi); L(ai); L(bi)}= {ki; ki + 1; ki + 2} for some integer ki.
Note that clearly a labeling that satis2es all three conditions exists: 2rst arrange all

low-level vertices by the order ¡to, and then insert every ith triple anywhere between
Set1i and Set2i .

An observation which we use later in the proof is that for the ith triple {mi; ai; bi},
if case 2(a) holds then ai is adjacent (in GS) to all low-level vertices that are smaller
than it (and possibly to some low-level vertices that are larger than it) and bi is
adjacent to all low-level vertices which are larger than it. Case 2(b) implies the opposite
observation.

The labeling of the edges
Now we show how to label the edges so as to obtain an optimal 1-LIRS (actually,

1-SLIRS). In our proof we use the observation that in order to show optimality of a
labeling scheme, it su;ces to show that for each pair of vertices u; v, the (unique)
edge e (e adjacent to u) for which L(v)∈ Iu(e), lies on a shortest path from u to v.
For brevity, we will not distinguish between a vertex v and the number assigned to

it L(v). We will denote by min the vertex with minimal label and by max the vertex
with maximal label.
1. Labeling of the edges of a high-level vertex: Consider any vertex mi (16 i 6 t).
mi is at distance 3 from any other high-level vertex mj, at distance 1 from ai and
bi, and at distance 2 from all other vertices. Moreover, the vertex labeling implies
that the edge (mi; ai) [resp. (mi; bi)] lies on a shortest path from mi to each of
the other vertices, except bi [resp. ai] and except the low-level vertices in Set2i
[resp. Set1i ]. Thus, if ai¡mi¡bi, (case 2(a)), then the labeling Imi(mi; ai)= 〈min; ai〉
and Imi(mi; bi)= 〈bi; max〉 guarantees optimal routing from mi. In the other case
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(bi¡mi¡ai), the labeling Imi(mi; ai)= 〈ai; max〉 and Imi(mi; bi)= 〈min; bi〉 guarantees
optimal routing from mi.

2. Labeling of the edges of a low-level vertex: Consider any vertex vj, 1 6 j 6 n.
Then vj is adjacent to all other low-level vertices; also, for any ith triple {mi; ai; bi}
(1 6 i 6 t), vj is adjacent to one or two vertices in {ai; bi} (since it cannot be
both in Set1i and Set2i ). Moreover, an edge from vj to any adjacent vertex in the ith
triple is on a shortest path from vj to any non-adjacent vertex in this triple.
Therefore, optimal routing for any other low-level vertex vk , is guaranteed by the
labeling Ivj (vj; vk)= 〈vk ; vk〉. Optimal routing to vertices in any ith triple {mi; ai; bi}
(16 i 6 t) is guaranteed by the following labeling: Assume w.l.o.g. that ai¡mi¡bi
(the other case is symmetric). If vj is adjacent to both ai and bi then Ivj (vj; ai)=
〈ai; mi〉 and Ivj (vj; bi)= 〈bi; bi〉, otherwise, if vj is connected only to ai then Ivj (vj; ai)
= 〈ai; bi〉, otherwise, vj is connected only to bi and Ivj (vj; bi)= 〈ai; bi〉.

3. Labeling of the edges of an intermediate vertex: Consider any intermediate vertex
ai (a vertex bi is treated similarly). ai is adjacent to mi, to all other intermediate
vertices, and to all low-level vertices except those in Set2i , and it is at distance 2
from all other vertices. A shortest path from ai to a non-adjacent high level vertex
mj passes through either aj or bj, and the shortest paths to a non-adjacent low-level
vertex vj passes through a low-level vertex or an intermediate-level vertex which is
adjacent to both ai and vj. Using these facts, the labeling is constructed as follows:
First, Iai(ai; mi)= 〈mi; mi〉. For a vertex aj (j = i) the interval Iai(ai; aj) will include
aj and mj and for a vertex bj (possibly j= i) the interval Iai(ai; bj) will include
the vertex bj. This guarantees optimal labeling for all high-level and intermediate
vertices. Now we extend this labeling so as to guarantee optimal routing from ai
to all low-level vertices. Assume w.l.o.g that ai¡mi¡bi (the other case is treated
similarly). We have to construct a labeling which will send messages destined to
a neighbor vj of ai directly to vj, and messages destined to a vertex vk ∈ Set2i to
a neighbor of vk . Thus, we 2rst insert vertex vj to Iai(ai; vj) for every neighbor vj
of ai. Next we extend the labeling obtained so far to include also the vertices of
Set2i as follows. Denote as a block a maximal set of vertices in Set2i which are
ordered consecutively by L. Consider such a block B, and assume that its vertices
are mapped by L on the integers l; l+1; : : : ; l+ |B|−1. Since B does not contain all
the vertices of G, there is a vertex x =∈ Set2i which is mapped on either l− 1 or on
l + |B| (i.e., x appears immediately before or immediately after the vertices in B).
If x appears immediately before B, then x= vk for some low-level vertex vk , or x
is an intermediate-level vertex (i.e., aj or bj) which is adjacent to all the low-level
vertices which are larger than it. Similarly, if x appears immediately after B, then
x= vk for some low-level vertex vk , or x is an intermediate-level vertex (i.e., aj or
bj) which is adjacent to all the low-level vertices which are smaller than it. In both
cases, x is adjacent to both ai and to all the vertices in B. In both cases, we set
Iai(ai; x) to include the segment containing B∪{x}. This procedure is repeated for
every block B.

This completes the proof of Proposition 3.
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Note that the above constructed labeling is strict. Thus, if the set of constraints S has
the desired partial order, then the graph GS has an optimal strict linear interval routing.
Also, since the graph constructed admits no non-uniform costs on the links, we proved
the NP-completeness of the 1-LIRS problem and the 1-SLIRS problem under
the one unit cost model and hence under the 2xed link cost model (Theorem 1).

5. The NP-completeness of the 1-IRS problem

In this section we prove that the 1-IRS and the 1-SIRS problems are NP-
complete under the one unit cost model (and hence under the 2xed link cost model)
by a polynomial transformation from the CO problem.

5.1. Polynomial transformation from the CO problem

The transformation is accomplished in two steps; given any set of constraints S
we 2rst construct from it a new set of constraints S ′, we then use exactly the same
transformation we used in Section 4 to construct from S ′ the graph GS′ . We prove
that the original set of constraints S is satis2able if the graph GS′ has an optimal
interval routing scheme and that GS′ has an optimal strict interval routing scheme if S
is satis2able.

Step 1: Let U be a set of items and S = {Consi}16i6t a set of constraints over U
such that Consi=(Set1i | Set2i ) (i=1; : : : ; t). We construct a set of constraints S ′ over
the set U ′ =U ∪{a} (a =∈U ) as follows. For every constraint Consi ∈ S there are two
constraints in S ′;
Consli =( Set1i ∪{a} | Set2i );
Consri =( Set1i | Set2i ∪{a} ).
The set of constraints S ′ is
S ′ = {Consli ; Consri | 16 i 6 t}.

Example 6. The following set of constraints is constructed from the set of constraints
presented in Example 5.

( {u1; u2; u3; a} | {u4; u5} );
( {u1; u2; u3} | {u4; u5; a} );
( {u1; u5; u6; a} | {u2; u3} );
( {u1; u5; u6} | {u2; u3; a} ):

Step 2: Now we construct from U ′ and S ′ the graph GS′ =(VS′ ; ES′) by the trans-
formation of Section 4.

5.2. Correctness of the transformation

It is easily seen that the transformation is polynomial. We prove the following
proposition.
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Proposition 4. There is a partial order on the items in U that satis,es the constraints
in the set S i: GS′ ∈ 1-IRS.

Proof. We use the following well-known (see, e.g., [21]) observation. Given any 1-IRS
LG for a graph G with n vertices, there are n− 1 equivalent 1-IRSs that are obtained
from LG by cyclically shifting the labels of the vertices and intervals. That is, the ith
1-interval labeling is obtained by assigning every vertex v the label L(v) + i (mod n)
and replacing the intervals on the edges correspondingly. The paths that a message will
traverse under any of the n equivalent 1-IRSs are identical. Note that this observation
enables us to assume, given a 1-IRS for the graph G that a speci2c vertex, say a, is
the vertex with maximal label (L(a)= n− 1).
Assume that there is an optimal 1-IRS LG for GS′ . Then (by the observation above)

we can assume w.l.o.g. that the vertex va which corresponds to the item a in U ′ is
the vertex with maximal label. We denote by {mli ; ali ; bli} the triple of vertices which
correspond to the constraint Consli in S ′ and by {mr

i ; a
r
i ; b

r
i } the triple which cor-

responds to the constraint Consri . By the same considerations of the proof in Sec-
tion 4, we get Set1i ∪{va} ⊆ Imli (m

l
i ; a

l
i), Set

2
i ⊆ Imli (m

l
i ; b

l
i), Set

1
i ⊆ Imr

i
(mr

i ; a
r
i ) and

Set2i ∪{va} ⊆ Imr
i
(mr

i ; b
r
i ). We argue that the order of the vertices determined by the

1-IRS LG satis2es either Set1i ¡Set
2
i or Set2i ¡Set

1
i (i=1; : : : ; t). Assume that this is not

the case. Then either there are three low-level vertices vx; vy ∈ Set1i and vz ∈ Set2i such
that L(vx)¡l(vz)¡l(vy), or a similar inequality holds where vx; vy ∈ Set2i and vz ∈ Set1i .
Assume w.l.o.g that the 2rst case holds. Then by the assumption that va is the vertex
with maximal label we get L(vx)¡L(vz)¡L(vy)¡L(va) and clearly this implies that
the intervals Imr

i
(mr

i ; a
r
i ) and Imr

i
(mr

i ; b
r
i ) on the edges outgoing the vertex mr

i are not
disjoint. The other case will imply, by the same arguments, that the intervals on the
edges outgoing mli are not disjoint. It follows that the order of the low-level vertices by
the labeling LG naturally induces a total order on the items of the set U that satis2es
all the constraints in S.
In the other direction we have to construct, given a partial order ¡o that satis2es

all the constraints in the set U , an optimal 1-IRS for the graph GS′ . The construction
proceeds as follows: First, the vertex a and all its adjacent edges are ignored, and the
construction is done as in Section 4 (note that when a is ignored, the graph GS′ is
similar to the graph GS constructed in Section 4, except that now each constraint is
replaced by two identical constraints, which are represented by two triples, {mli ; ali ; bli}
and {mr

i ; a
r
i ; b

r
i }). We set L(a)=max+ 1 where max is the maximal label of all other

vertices. Next we assign the labels Ia(a; x) to the edges leaving a by the same rules
as the labeling Iv for any other low-level vertex v. Then, for each vertex x which is
adjacent to a, Ix(x; a) is set to 〈a; a〉. Last, we modify the edge labeling of high-level
and intermediate-level vertices which are not adjacent to a. For each edge leaving a
high-level vertex mi which was labeled by 〈∗; max〉 we replace max by max+1=L(a).
Each intermediate-level vertex x (x∈{ali ; ari ; bli ; bri }) which is not adjacent to a (there
is exactly one such vertex in each triple) must be adjacent to a vertex y such that
L(y)=min or L(y)=max; we add L(a)=max+1 to the interval Ix(x; y) (if L(a)=min
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then this transforms Ix(x; y) to a cyclic interval). It is easy to see that the resulting
labeling is optimal and uses one interval per edge.

As in Section 4, here also we actually construct an optimal 1-SIRS for the graph G,
thus proving that both the 1-IRS and the 1-SIRS are NP-complete under the one
unit cost model and hence under the 2xed link cost model. This completes the proof
of Theorem 2.

6. Summary and open problems

We proved that recognizing networks that admit either optimal 1-IRS or optimal
1-LIRS (strict or non-strict), is NP-hard under the one-unit cost model (and hence
under the 2xed link cost model). These results clearly imply that the problems of
determining the minimal k such that a network G belongs to k-IRS or to k-LIRS

(entries “Minimal k s.t. G ∈ k-IRS” and “Minimal k s.t. G ∈ k-LIRS”, respectively,
in Fig. 1) are NP hard. They also imply that determining the minimal integer K , for
which a network G has an optimal labeling (IRS or LIRS) which uses a total of at most
K intervals is NP hard: Under the one unit cost model, a simple graph G=(V; E) admits
an optimal 1-LIRS (respectively, 1-IRS) i4 it admits an optimal LIRS (respectively,
IRS) which uses a total of at most 2|E| intervals.
There are still many open questions. Our transformations from the AGO problem

to the 1-LIRS problem and the 1-IRS problem imply that the same problems
remain NP-complete even for the restricted class of graphs with diameter at most
3. Do these problems remain NP-complete for other restricted classes of graphs, e.g.,
bounded degree graphs? In a di4erent direction, recently it was proved [9] that the same
characterization problems are NP-hard also for k =2; it remains an open question to
determine the complexity of the problems k-IRS and k-LIRS for 2xed k, k¿2. It
seems that our technique does not directly imply that any of these problems is NP-hard.
Another question is to 2nd an approximation algorithm to the optimization problem of
2nding the minimal k such that a graph belongs to k-IRS (resp. k-LIRS). Our
results imply that there is no such algorithm with approximation ratio less than 2 (since
the result of such algorithm will be a number strictly less than 2 i4 there is an optimal
1-IRS). The existence of such algorithm with constant ratio is another interesting open
question.
A di4erent direction of research, which is motivated by our results, is to study

networks that admit near optimal interval labeling schemes, that is, networks which
admit a labeling scheme (of a given type) that guarantees a small stretch factor (where
a stretch factor of a routing scheme is the maximum ratio between the length of a
shortest path and the length of a routing path between two endpoints). Recently, it was
shown in [5] that every graph admits an interval routing scheme with stretch factor at
most 5 (and an average stretch factor at most 3) and with compactness 2

√
n(1 + ln n).

It was also shown in [5] that there are some graphs for which the compactness of any
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interval routing scheme that guarantees any constant stretch factor is at least
√
n. An

interesting direction for further research is recognizing classes of networks for which
a better trade-o4 can be achieved.
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