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GROUP EXPLICIT METHODS FOR THE NUMERICAL
SOLUTION OF THE WAVE EQUATION

M. S. SaHmMit and D. J. Evans

Department of Computer Studies, Loughborough University of Technology, Loughborough,
Leicestershire, England

Abstract—The applicability of the group explicit (GE) methods to the numerical solution of hyperbolic
partial differential equations of second-order is discussed in this paper following closely many of the ideas
presented in an earlier related paper.

1. INTRODUCTION

The group explicit (GE) methods have been used successfully to solve numerical problems involving
parabolic and hyperbolic partial differential equations [1, 2].

In this paper we extend the techniques discussed in Ref. 1 so that they are applicable to a system
of first order hyperbolic equations of the form,

U oU
oU L 4% o,
o %%

where A is a real (» x n) matrix and U is an n component column vector. In particular the method
is suitable for the solution of the wave equation,
U o
ot axt’
The new techniques are shown to be clearly more superior to an earlier strategy presented in
Ref. 3.

0<x<l, 20

2. GE METHODS FOR THE SECOND-ORDER WAVE EQUATION

Let us now consider solving the following second-order wave equation:

subject to the initial conditions,
U(x,0) = fi(x),
% 5.0 = ) @
and the boundary conditions
U@, 1) =g(@)
and
U(l, 1) = g,(2). 3

The wave equation (1) can be reduced to a system of simultaneous differential equations of
first order by the following substitutions:

oU
(O
v ot
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and .
oU
D=_—, 4
VP == )
In the more general case, first-order systems of equations can be written in matrix form as
o0 a0
—+A—=0,
a T4 ©®)

where A is an n x n real matrix (not necessarily symmetric) and U is an n-component column vector
U=[uo,ue, ..., U".
A non-singular matrix P exists through the similarity transformation,

PAP'=D 6)
where D is a diagonal matrix having the real eigenvalues of A4 as its elements (i.e. D = diag(y;),
the y; being the eigenvalues of 4). On premultiplying equation (5) by P, we get

6 -1 a —_
= (PU) + PAP = POy =0,

i.e.
ov ov
—E + D -a—; =0, @)
where V = PU. Hence, the decoupled scalar form of equation (7) is given by
ove ove
—_ — = i=1,2,...,n.
6! +/“1 ax 0! ! 15 n (8)

For our particular problem, if

1 -1
-l 7}
then equation (5) takes the form of equation (7), where
V=[VO, YOI = [UD - UD, UD + UY,

ie.

YO =y —yo, yO=iyn4 o)
and

VO =Uyh 4 U(Z)’ U = C%(V(z) —_ V(‘)), (9)
and

o[ 1)

Hence, the decoupled scalar equations for ¥ and V@ are

oV ayw

o T 70 (10a)
and

ovea  gy®@

FPR e =0, (10b)

respectively. System (10) can be rewritten as

P10 F1%0)

o T (1)
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where

-1, ( =1
2 ={ when p (11b)

1, whenp=2"

These first order differential equations in V =[V®, V®]' will be solved by using the weighted
difference analogues,

AOIL—wI@y ;1 + @w =1l (—wol?, 1+ (A=) [(1—w), ;+ 2w — P —wol?, ]}
=ap?,,—vPL 0<0,w<l. (12)
These equations reduce to
AP s+ (@—= 0Py = —A(0 -0, ;+[a+Ai(l — )P (13)
and

(@ + 2000 — 00, =[a — 21— Oofp + (1 — 62, (14)

when w takes the values 1 and 0, respectively. The local truncation errors of equations (13) and
(14) at the point (x;, f;,,,,) are given respectively by, ;

13°V®  (Ary oy 62V"” (A")2 a V(p)]
_ 1 _ —20 1 —20)——
T Ax[ 2 ax? 16 ax*or ,;j+|/z+At :(l o P T i+

Ve 13V Ax g4y
+(Ax)(An)| 21 —26 + (Ax 2[ +55 ]
(Ax)( )[( ) 5 ].;+n/z @AY ¢ a7 ¥ 22 30 o

PV a PVO Al PR
2| Loy a 3
+(At)[(l 20) Gr oy e+ i (1= 20)———axat3]i’j+l/2+0[(Ax)I(At)z] (15)
and
19270 (Ar) 04V 2V (Axy gy
—Aaxl ) Arlia -2
Tia [2 axT T 16 axtar ), ( e T 5 ],,H,z

oyw 183 Ve Ax oty
+ (Ax)(AD| i -20 + (Ax)? —=
(Ax)( )[4( ) <75 ]'Hm ( )[6 37 " 23 3xt ]Hm

OV a VY A P4
axor v 22 ot~ axazﬂ],.,,.“,fo[m") @0l s

+ (AI)Z[—I( —26)

with @, + @, =4 and 0< 8 < 1. If we apply the formula (14), at the point (x,_,, t,, 4), we obtain,
(a +10)USP)1 j+1 "ABUSPJ).{,] [a _A.(l —-0)]l)§’1)|,1+ 2’(1 —B)Uff). (17)

By coupling equations (13) and (17), we arrive at the following set of explicit equations (we have
omitted the details to avoid repetition):

-2 A
02 1= (@ p )ng—)l,j"';l’gfp) (18a)

and

A
v = —gl’?’i’l.j""(g;:_)vff)' (18b)
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These equations must be solved simultaneously to give the values of vV and v® at the grid points
along each j-line. From equation (14), the equation determining the values of v at the ungrouped
point adjacent to the right boundary is given by

08 i ={la -2 -0PL , ;+ A1 - 0P + A0, ., }/(a + A9), 19
whilst from equation (13) we obtain the following formula for the ungrouped point at the left end:
v ={-A0 - 0w — A0v{,  +[a + A(1 - WP}/ (a — 48), a #4. (20)

The GE schemes are then constructed along a similar line as before—and without loss of generality
we assume that we will be using an even number of intervals of the line segment 0 < x < 1.

(i) The GER scheme

By means of equations (13), (17) and (19), the group explicit with right ungrouped point (GER)
scheme is represented by the formula

(al + 260G )WV, = [al — A(1 — 0)G, V¥ + b, @21
where
(1 -1 ! l b
RN
‘1 -1, : :
. R R A o
[} I~ 1 |
G, = | 0 | (22)
-~ [ N U o
L0 -t
L L R e
L : : : N PP
and

b, =[0,0,...,4(1 —0)& + i6v®, \T".

(ii) The GEL scheme

The group explicit with left ungrouped point (GEL) scheme is determined by the equations (20),
(13) and (17) which can be expressed in a more compact form as

(al + 20G,WR, =[al — A(1 — 0)G, ]V + b, (23)
where
L L L ]
‘1 —1. |
1 =12 0.
Gy= |"="1""-" SCRREL R 4
| ) ~ o |
Y. S I
[} [} ]
! 1 ] 1 —1
0
L I' : :1 ~1 dm=-Dxm-1]
and

b,=[—Ai(1 — 0)of — 260, ,,0,0,...,0".
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(iii) The (S)AGE and D(AGE) schemes

The alternative use of the GER and the GEL methods leads to the following (S)AGE
formulae:

al + A0G WP, =[al — A(1 — )G,V +b
( VR =1 ( )G\ v N 25)
(al + 28GR, =[al — A(1 — 0)G,V?, +b,
and the (D)AGE four-step process,
(al +A6G\)¥#®, =[al — A(1 — 60)G, WP + b,
(al + }»OGz)V](Q2 = [aI — A(l - O)Gzlvj(ﬁ.)] + bz ’ J - 0’ 4, o (26)

(al + A0G,V%5 = [al — A(1 — 6)G, IV, + b,
(al + 20G, V), = [al — A(1 — 6)G, V%5 + b,

All of the GE schemes employed above provide us with the values of ¥ and ¥® at the mesh
points. The solution u of the wave equation (1) can then be computed using the relations in
equations (9), i.e.

U0 300" +0?) @7
and
U@ 2@ — o], (28)
From expression (27), for example, we have, at the point (x;, £,),
ou
(-57) il + o] (29)
L

and a first-order explicit approximation is obtained from the equation,

(15,541 — uy)
_J+At_1_ =1 +0P]
or

Upjo = U+ %At[vx('jl) + v?f’]- (30)

On the other hand, if we add equations (27) and (28), we find that,

UD 4 UO @ 31
and at the point (x;, ;) we have
ou ou
— — | = v®.
<6t >t,f+<ax)ij ’ 2
This can be solved by the second-order Lax—Wendroff explicit analogue given by,
U1 = %1(1 + A+ (1= Ay — A= Ay, 1+ Atvf’jz)- (33)
At the point (x;, #;,,,) however, expression (31) becomes
ou ou
- +| = ~vd 34
<6t )i.j+l/2 (ax)uﬂ/z AR 44

and the following second-order accurate Crank—Nicolson type implicit approximation can be used,
—%lui_ Lj+1 + ui.j+ 1 + %;{'uiﬁ» Lj+1= H.ui_ 1j + uij — i/luH_ 1,j + %At(vsz) + v§_2}+ 1). (35)

In employing the method of solution to expression (31), we must of course bear in mind its stability
requirements as well as its order of accuracy.

CAMWA. 15/6-8—8
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3. TRUNCATION ERROR ANALYSIS OF THE GE SCHEMES

(i) Truncation error for the GER scheme
The set of explicit equations obtained by coupling equations (13) and (17) are

—4) A
0P — P vﬁli)l,j_;vgjp):() (36)
and
4 A
o 5ot~ =0 )

The truncation errors for any two grouped points are given by the truncation errors of equations
(36) and (37) for i =2,4,...,m — 2. Thus we have,

192V®  (Ary 04V 19°V?  (Ax)y o'V
Tas—Ax[2 ox? + 16 0x201? |; Li+172 Al 2 oxot 12 0x°0t 1 jen

[ 93yw® 103V®  Ax 94y®
+(Ax)(At)[ YT ] +(Ax)2[—— —3__" __4_}
4 a a i—1,j+1/2 i~ 1,j+1/2

carp| _LEVD @ pVe  Argiye
8 0xor® ' 24 o' | 48 oxor’

_af_reve @ otve o[13Ve | @xp otre
7270 T 16 oxP0r | s 2 Bxdt T 12 0%t |;41n

IWE A% 133V®  Ax o4yw
AWAD| —= 22— AxP| —— ——+— ——
) )[ 4 dx?0t ]i,j+l/2+( %) [ 6 ox’ * 24 ox* ]n‘ﬂ/z

] +0[(Ax)(At)2], o, +a,=4 (38)
i—Lj+1/2

Ary 13V®  a §*V® At g*v®
(@4 [_5 o’ V24 o0 T8 awar
The truncation error for the single ungrouped point near the right end is obtained from equation
(16) by putting i =m — 1. This gives

102V (A1) 34V 62V"’) L @5y gy
= — At]5(1—26
Ta Ax[z 32 T 16 6x26t21,,_,‘j+,/2+ [( Vavar 12 729 5 ]m s

Sy» 103V®  Ax o%yv®
+(Ax)(At)[§(1 20)a ] +(Ax)2[—_.____x__]
m—1,j+1/2 m—1,j+1/2

] + 0[(Ax)(A)=), o + a,=4. (39)
ij+ 172

T 6 ox* 24 ox’
PVP 4 VO Al o4y
2| 101 — £ -2
+(A’)[ W= et TR 5 ]m .
+ 0[(Ax)“' (At)¢2]’ al + az = 4. (40)

(it) Truncation error for the GEL scheme
The truncation error for the single ungrouped point near the left boundary is obtained from
equation (15) with i =1 and this gives the expression

1220 (At} VO , VP (Ax)y o4y
= Ax| —= - 11— X -0
T Ax[ 2 ax? 16 6x26t2], ,+,/2+A’[2(1 g Y2 YT 5% |

3y Iy 41/(p)
+(Ax)(At)[—%(1 20)7 7 ] +(Ax)2[_l" V2 Axoy ]
Lj+12 Lj+12

x 20t 6 ox’ 24 ox*

VP q PV® At Al 4%
2l Ly — —_— vy
+(At) I: 8(1 20) axatz + 24 at3 + 48( 20) ox 61 ]| j+172
+0[(Ax)a|(At)¢z]’ o +a2 = 4, (41)

The truncation errors for any two grouped points are given by T3 and T, respectively.
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(iii) Truncation error for the (S)AGE and (D)AGE schemes

As we have already seen, the truncation errors of the GER and GEL schemes (in their
appropriate order of alternation) constitute the overall truncation errors of the two- and four-step
processes. Thus, there will be cancellations of errors at most points leading to some improvement
in the solutions of the methods when compared with the constituent GER and GEL schemes.

4. STABILITY ANALYSIS OF THE GE SCHEMES

It is clear from equations (1) and (9) that to reach an overall stability, the GE schemes applied
to the decoupled equations in equations (10a) and (10b) must be stable simultaneously.

(i) Stability of the GER scheme
From equation (21), we have

ViR = Fggrv? + b, 42)
where I'ggr is the amplification matrix given by
Tger = (@l + 20G,)"'[al — A(1 — 6)G|] 43)
and
b, = (al + 26G))"'b,. (44

For the case p = 1 (and @ = — 1) we have already established in Evans and Sahimi [1] that the GER
scheme for equation (10a) is absolutely unstable in the range 0 < 6 <1 and is conditionally stable
for 4 >2/(20 — 1) when ;<@ < 1. For the case p =2 (and a = 1) we have

-4 A L |
-2 (44, _________:____: __________ :_ _______
""""" a-an i |
_______ Iy S ) R S B N S
Fosx = | | @)
__________ 0<1—ﬂ)a
| L asny
__________ cToTTTT Ty :1— i
I l ! ! T A 0)] o iymomy

whose eigenvalues are 1 [of multiplicity (m — 2)] and 1 — 1/(1 + 10). For stability, we require that

y) A
l—— ——<2.
(1+48) (1+40)
Hence we deduce that the scheme is conditionally stable for 4 <2/(1 —26) with 0 <0 <3 and it
is absolutely stable for all values of 1 when 1 < 8 < 1. From the two stability requirements above,

we therefore conclude that for overall stability, the GER scheme is stable only for 4 > 2/(20 — 1)
when 1 <6 < 1.

<1 giving 0<

(ii) Stability of the GEL scheme
From equation (23), the GEL scheme can be explicitly expressed as

ViR =Tg v + b,, (46)

where I'gg is the amplification matrix given by Igg = (e + 20G,)"'[al — A(1 — 0)G,] and
b, = (al + 20G,)~'b,. We have already seen in Evans and Sahimi [1] that the GEL scheme when
applied to the differential equation (10a) (when p =1 and a = —1) is conditionally stable for
A <2/(1 —26) and is always stable when 1 < 6 < 1. The amplification matrix of the GEL scheme
for equation (10b) (when p =2 and a =1) is
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[ A : I ]
O AR
=3 A \
1 ] ]
Fem= | .___.__. S U 0 R S S @
_________ S S P
| o L a=h
L : : : -2 A+ 4) | m-nyxm—1y

whose eigenvalues are 1 [of multiplicity (m — 2)] and 1+ 1/(1 — 48). For stability, we require

1+ A <1
a+10)| "
or

p
—2< g
25 =75 <0

which is the same inequality given by Evans and Sahimi [1]. From the argument that followed,
we deduce that the GEL scheme for equation (10b) is always unstable when 0 < 6 <} and is stable
only for A >2(20 — 1) when } < 8 < 1. Again for overall stability, we are led to the same stability
conditions as that which was concluded for the GER scheme above.

(iit) Stability of the (S)AGE and (D)AGE schemes
From equations (25) and (26) we find that the amplification matrices of the S(AGE) and D(AGE)
schemes are given respectively by
Tsace = leer I cer

and

FDAGE = FGERFGELFSAGE'
It has already been proved that the (S)AGE scheme for equation (10a) (whenp =1anda = —1)

is conditionally stable for A < 1. Similarly, the (D)AGE scheme is found to have conditional
stability only for A <3. For the case p =2 (and a = 1), we have,

2 b -
¢ d —c¢ e
e’ f d -f
¢’ d —c e
e’\ ood. —fl" ~. 0
- < - RS
Fgpce = \\\:‘\:\\ \\\:\\ ; (48)
0 \\\:\‘c\’\‘d’ e TNer
Te fr d —f
¢’ da g
L e f R em-yxm-n
where
a=(01-2) 1+—i—], b’=).|:1+——'1——], c'=—A1-2), d'=1-24%
L (1-48) (1-10)

=13 f'=—A(1+4), g'=/1<1-(—1:’1m) and h’=(1+l)[l—— 49)

_r
(1+18)
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and

la’| + (m = 3)|d' |+ 1k’ | <Y (A)

where

p p
¢(1)=(1—,1)[1+————(1_10J+(m—3)(1—12)+(1+1)[1 ‘(1—19)]

for A<1, 6€[0,1] and A6 # 1. It can be shown that the (S)AGE method is stable for 1 < 1.
The (D)AGE amplification matrix (for p =2 and a = 1), however, takes the form

P Py b 5
—q " o
r —-u w x’ r s’
P ¥ v
r —u woox" s
’ , ’ FEREN 0
=8’ v =x oz w v T~
. < <
S \\\ \\\\‘\\‘\\ \\\
\\ \\ \\ ~o \\s.\ \~
— ~ ~ ~ ~ ~
Fppce= ~o o~ S N S TSN T~ (50)
~ >N S e ~ ~ S ~
- ~ ~
\\ o ~ ~ ~ S ~
~ ~
~ ~ ~ - ~
\\ -~ -~ ~ \\ ~
~ ~ ~ ~ ~ ~
S . ~ ~ A S ;™ Se
0 < T —u x' o ~r s
\~ ’ ’ ’
=5 v -x z u v
r' —uw x" y
- v —x' ' q
, P
L Yy =41 Pi] m-tyxm-1

where

’_ l 2
p=a ——}u)z[l +m] — A1 =24),

[ 4 i [ ! 3
_—{—,1(1—1)[1+(1_w):| —A(1+/1)(1—2/1)}, r= 201 —A)A% s =243
v=—2|1+—_T4q AV(1=22), w =24(1-22), v’ =2(1+A)2

- (1_).0)'*'('*‘(_)’“—("),0—( )A?,

O PN
w =(1=AP1+24)—A%(1-21), x'=-21Q2A*-1), y-—2}.2[1 (1+/10)]’

. 2(1 —21) — A2 1= -t
2/ =(14+ A1 —24) — A2(1 + 24), ql—21(l+/1)[1 (1+o,1)]’

. i F

and

1’1+ 1] +3(m — 4w’ +30m — ) 2’|+ piI S Y (A),
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where
A

- _ 2 2_ _ 2 2’ ’ 2 .
v(A)=(1—-41) [1+-—-—(1_w)] A2(1=24)+ 4 [1+———(l_w)]+(1+/1)(1 22)

+3m — (1 — 22 +24) + A2 =20 +5(m — H[(1 + A (1 — 24) + 12(1 + 24)]

,{ 2
+(1+2/1)[1——-——(1+w)]

A 2 ) 2
=[lz+(l—l)2]|:l+m:| +[A2+ A+ AP =20+ (m —4)(1 =242

,1 2
+(1+21)[1—————(1+w)]

for 2 <4, 0 €[0,1] and 40 s 1. It can be shown in a similar manner as before that the (D)AGE
method is stable for 4 <1. For an overall stability, we conclude that the (S)AGE and (D)AGE
processes are conditionally stable for 4 <1 and A <3, respectively. Therefore, it is recommended
that for practical purposes, only (S)AGE is used.

5. NUMERICAL RESULTS

In this experiment, we proceeded with the application of the GE techniques on the second-order
wave equation,
o*U o*U
Rl v (52)
subjected to

U(x, 0) = § sin(nx),
ou
—a_t' (x’ 0) = 0’

Uo,H=0
and
UQ,t)=0.
The analytical solution is given by
U(x, t) = § sin(nx)cos(nt). (53)

Again, we display the absolute errors of the numerical solutions along the mesh line ¢ = 1.0 for
A=0.5and @ =0.5 in Table 1.

To arrive at the solution of the second-order wave equation, Experiment 1 necessitates us to solve
two different sets of first-order differential equations. The first set involves ¥ and V'@ whose
approximations at the mesh points are obtained by applying the GE techniques on equations (10a)

Table 1. Absolute errors of the numerical solutions to the wave equation

X

Average of all
Method 0.1 0.2 03 04 0.5 0.6 0.7 08 09 absolute errors
(S)AGE-EXP  402x107%  26x1072 161x10™% 374x107® 618x10™* 3.38x107% 1.63x10~° 186x107> 406x107>  261x10"}
(D)AGE-EXP 766 x 10™% 6.25x10™% 127x10~% 127x107% 1.22x 107> 155x107% 735x107* 146x 107> 1.14x107* 1.0 x 10~?
(S)AGE-LW 835%107% L11x1072 434x107* LI7x 107> 361 x107* 252x107*. 7.79x 107% 1.5x107% 2.09x 107> 947 x 10~
(D)AGE-LW 113 x 107 885x 107 1.83x107% 1.66x 107> 124 x107% 1.15x 107> 388 x10™* 1.76 x 10~* 198 x 10~* 116 x 10~?
(S)AGE-CN 146 x 107 178 x 1073 469 x 1073 244 x 1073 1.09x 1072 1.67x 107} 12x10"% 654 x 10~* 1.02x 1072 509 x 10~}
(D)AGE-CN 195% 107} 435x 1074 596x 1072 99x107* 9.17x 1077 149x 107> 93x 107> 142x107° 786x107° 429 x 103

Exact
solution ~0.0386272 —0.0734732 ~-0.1011271 —0.1188821 —0.125000 ~0.1188821 —0.1011271 -0.0734732 —0.0386272 —
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and (10b). The solutions u are then computed by means of the explicit Lax-Wendroff and the
Crank—Nicolson type formulae. These solutions are compared in Table 1. No attempt is made to
compute the GER and the GEL solutions as these schemes have a rather rigid stability requirement.
It becomes apparent from the table that the (S)AGE-LW methods provide the most accurate
solution. The stability restrictions of the (S)AGE-CN and (D)AGE-CN methods are 4 <1 and
A <3, respectively, and besides incurring a comparatively heavier computational load, these
methods also happen to produce a less accurate solution for our particular problem. Hence, for
its simplicity and accuracy, the (S)AGE-LW (also stable for A < 1) combination is favoured.
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