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GROUP EXPLICIT METHODS FOR THE NUMERICAL 
SOLUTION OF THE WAVE EQUATION 

M. S. SAint, fit  and D. J. EVANS 
Department of Computer Studies, Loughborough University of Technology, Loughborough, 

Leicestershire, England 

Abstract--The applicability of the group explicit (GE) methods to the numerical solution of hyperbolic 
partial differential equations of second-order is discussed in this paper following closely many of the ideas 
presented in an earlier related paper. 

1. I N T R O D U C T I O N  

The group explicit (GE) methods have been used successfully to solve numerical problems involving 
parabolic and hyperbolic partial differential equations [1, 2]. 

In this paper we extend the techniques discussed in Ref. 1 so that they are applicable to a system 
of  first order hyperbolic equations of  the form, 

0U 0U 
0-T + A ~ x  =0 , 

where A is a real (n x n) matrix and U is an n component column vector. In particular the method 
is suitable for the solution of  the wave equation, 

O~U 02U 
ot z =~x2,  O<.x <. l, t >.O. 

The new techniques are shown to be clearly more superior to an earlier strategy presented in 
Ref. 3. 

2. GE M E T H O D S  FOR THE S E C O N D - O R D E R  WAVE E Q U A T I O N  

Let us now consider solving the following second-order wave equation: 

02U d2U 

0x 2 = c~t2, 

subject to the initial conditions, 

and the boundary conditions 

and 

U(x, o) = f~ (x), 

dU 
o-7 (x, o) = A ( x )  

U(O, t )=gl ( t )  

(1) 

(2) 
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U(1, t) = g:(t). (3) 

The wave equation (1) can be reduced to a system of  simultaneous differential equations of  
first order by the following substitutions: 

UO ) = 0U 
0t 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81946517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


70O 

and 

M. S. Snmm and D. J. EVANS 

V(2) - c3U (4) 
• - -  ~ X "  

In the more general case, first-order systems of equations can be written in matrix form as 

afJ a~3 
a-7 + A ~-x = o, (5) 

where A is an n x n real matrix (not necessarily symmetric) and ~ is an n-component column vector 
]~J = [ U  (I), U (2) . . . . .  u(n)] T. 

A non-singular matrix P exists through the similarity transformation, 

P A P -  1 = D (6) 

where D is a diagonal matrix having the real eigenvalues of A as its elements (i.e. D = diag(g~), 
the #~ being the eigenvalues of A). On premultiplying equation (5) by P, we get 

a 
~t (Pf5) + P A P - t  ~x  ( P ~ )  = O, 

i.e. 

~V ~V 
ot+ D~ =0, 

where V = PQ. Hence, the decoupled scalar f o r m  of equation (7) is given by 

0 V (° (~ V (° 
- - + # ~ - w - - = O ,  i = 1 , 2  . . . . .  n. 

Ux 

For our particular problem, if 

then equation (5) takes the form of equation (7), where 

V = [V °), V(:)] T = [U °) - U a), U °) + U(2)] T, 

i.e. 

and 

and 

VO> = U(~) _ U<~), U(~) = ~ ( V  <~) + V a)) 

Va) = U(~) + U (~), Ua) = C½(V(:) - VO)), 

o°E o I. 
Hence, the decoupled scalar equations for V °) and V a) are 

aVO) dV o) 
o---T + -~ -x  = o  

and 

3V(:) aV(2) 
at O ~  = O, 

respectively. System (10) can be rewritten as 

V ~p) a V ~p) 

0--~ = a  Ox 

(7) 

(8) 

(9) 

(lOa) 

(lOb) 

(1 la) 
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-1, whenp=l 
Q= 

1, whenp =2’ 
(1 lb) 

These first order differential equations in V = [V (I), V(*)lT will be solved by using the weighted 
diflerence analogues, 

~(e[(1~w)v~~~,j+~+(2W~1)V~~~+~~WV~p_'~~j+~]+(1~~)[(1~W)Ujp!~,j+(2W~l)~~~~~j~~,j]} 

= a[v$+ 1 - @I; o<e, w < 1. (12) 

These equations reduce to 

and 

~eUIP_)l,j+l+(a-1,B)U~,~+,= -~(l-e)~~!!,,~+[u+IZ(l-e)]~~~ 

(a + ~e)2+j+l-~etljq,,j+, =[a -n(l - e)lty+qi -e8)0) r+ 1.p 

(13) 

(14) 

when w takes the values 1 and 0, respectively. The local truncation errors of equations (13) and 
(14) at the point (xi, tj+ 1/z> are given respectively by, 

TI, = 
1 ,2,(J’) (At)* cY~V(J’) 

16D]i,j+l,2+A+(l-2@~+~(l-2Q~]i,j+,,2 

+ WW) a 3 V(P) :U - 28)m 1 
1 pyw h ppd 

kJ+ l/2 

6r+z~ 1 i, j+ l/2 

1 + O[(Ax)“‘(At)012] (19 ,, 

bJ+ 112 

and 

T 

+(AxW) 
a 3 V(P) 

:<I -2elaxzat 1 i a3 v(p) AX awp) 
1.1+ I/2 

g-p---- 
24 8x4 1 i.]+ l/2 

+W’ 

a 3 V(P) 

a d3v@, 
40 -maxa12+z ats +48 ,,*+ W~)“‘@tY21 (16) 

with aI + a2 = 4 and 0 < 8 < 1. If we apply the formula (14), at the point (xi_ ,, G+~), we obtain, 

(a + M)vjP) l.1+l -w,j+, =[a - n(l - e)j0jf2,j+qi -e)d@. r/ (17) 

By coupling equations (13) and (17), we arrive at the following set of explicit equations (we have 
omitted the details to avoid repetition): 

uI,P) I./f I 
A&p, j+l.up 

a * a Wa) 

and 
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These equations must be solved simultaneously to give the values of v °) and v °) at the grid points 
along each j-line. From equation (14), the equation determining the values of v cp) at the ungrouped 
point adjacent to the right boundary is given by 

o cp) m - ' 0 +  = { [ a  - -  2 ( 1  - -  <P) U') {p) - O ) v .  + 20v.,,i +, }/(a + O)]v,,,_ ,,j + 2(1 20), (19) 

whilst from equation (13) we obtain the following formula for the ungrouped point at the left end: 

vt,P~+, = { -2 (1  -O)vD~)-2Ov[P~+, + [ a  +2(1 -O)]v~)} / (a  - 2 0 ) ,  a # 2 0 .  (20) 

The GE schemes are then constructed along a similar line as before--and without loss of generality 
we assume that we will be using an even number of intervals of the line segment 0 <~ x ~ 1. 

(i) The GER scheme 

By means of equations (13), (17) and (19), the group explicit with right ungrouped point (GER) 
scheme is represented by the formula 

(aI  + 20G,)v~, = [aI - 2(1 - 0)G,lv~ ') + b,, (21) 

where 

G! = 

1 - 1  

1 - 1  

1 - 1  

1 - 1  
i ~, 
I " \ 0  
I x 
I ~',1 

o ',l 
' 1  

- 1  

- 1  

[(m -- 1) x (m -- 1)] 

(22) 

and 

b I = [ 0 ,  0 ,  . . . ,  2 ( 1  - -  0)/)(m~ ) + 20/)(raP,)+ i ]  T .  

(ii) The GEL scheme 

The group explicit with left ungrouped point (GEL) scheme is determined by the equations (20), 
(13) and (17) which can be expressed in a more compact form as 

(aI + 20G2)vS{ I = [aI - 2(1 - 0)G2]vSP) + b2, (23) 

where 

G 2 = 

- 1  

1 - 1  

1 - 1  0 
- - - ' ~  . . . . .  v . -  . . . .  r . . . . .  

I I I 
, I , 1  - 1  
I I 0 I 
, , , 1  - 1  [(m - 1) × (m - 1)] 

(24) 

and 

b: = [ - 2 ( 1  - o ) v ~ ) -  2ov~",)+ ~, o, o , . . . ,  0 y .  
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(iii) The  ( S ) A G E  and  D ( A G E )  schemes  

The alternative use of the GER and the GEL methods leads to the following (S)AGE 
formulae: 

, j = 0 , 2 , 4  . . . .  , (25) 
(aI  + )~OG, )vJ~, = [aS - ).(1 - O)Gi Iv}') + bi 

(aI  + AOG2)vJP+)2 = [aI - 2(1 - 0)G2]v)~, + b2 

and the (D)AGE four-step process, 

(aI  + 20GI)vJ~ i = [aI 

(aI  + 20G2)vJ~2 = [aI 

-- ~(1 -- 0)GI]V}P)+ b 1 1 

-- 2(1 -- 0)G2]vJ~ 1 + b2 

(aI  + 20G2)vJ~3 = [aI - 2(1 - O)G2]v)+2~P) + b2 ' j = 0, 4 . . . . .  (26) 

(aI  + 20Gt ,.j+,~'c<P) -- [aI -- 2 (1 - 0)G, ]v}P+) 3 "J¢- b 1 

All of the GE schemes employed above provide us with the values of V °) and V c2) at the mesh 
points. The solution u of the wave equation (1) can then be computed using the relations in 
equations (9), i.e. 

U °) ~ ½[v °) + v ~2)] (27) 

and 

U ¢2) ~ ½[v <~) - vO)] .  ( 2 8 )  

From expression (27), for example, we have, at the point (x~, tj), 

(OU)  "" !r''(l) "''(2)1 (29) 
" ~  i , j  " ~ 2 L v i j  - -  ~ i  3" j 

and a first-order explicit approximation is obtained from the equation, 

(u~.j+ i -- uu) _ !r,,(l) 
At 21~0 + v,~ 2)] 

o r  

I ( I )  (2 )  ui,:.+, = u o + ~At[v~ + v o. ]. (30) 

On the other hand, if we add equations (27) and (28), we find that, 

U 0) + U (2) ~ v ~2) (31) 

and at the point (xi, tj) we have 

OU'X / ' O U \ . ,  (~) 

This can be solved by the second-order Lax-Wendrof  explicit analogue given by, 

- -  - -  A t v  o . (33) 

At the point (x,  b+~/2) however, expression (31) becomes 

Ot }~,s+ t/2 \Ox, / i , /+ ~/2 ~ <'~'/+ i/2 

and the following second-order accurate Crank-Nicolson type implicit approximation can be used, 

, ~ (2~ "~) 0. (35) --¼2ui_ i.:+ i + ui, s+ 1 + ~,~ut+ I,S+ 1 = ¼~.u,_ I.s + uu -- ~2u~+ I.S + ~At(vu + - i , : .  

In employing the method of  solution to expression (31), we must of course bear in mind its stability 
requirements as well as its order of accuracy. 

C.A.M.W.A.  15/6-4~--S 
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3. T R U N C A T I O N  ERROR ANALYSIS OF THE GE SCHEMES 

(i) Truncation error for  the GER scheme 

The set of  explicit equations obtained by coupling equations (13) and (17) are 

,,~p) (a - 2) 2 ,,(p) ,,(p) 
V i - - l ' j + l  a ~i_t ,~--a~ O. = 0  

and 

(36) 

= A x  + At -~ lZ  ~ I[30X--~Ot 23/,j + i/2 l.+ I/2 

+(Ax)(At )  40x:Ot  J~j+l/: 6 0 x  3 I- 24 Ox ' - ~  .]~.j+~/2 

+(At)2 [ 1 03V~p) a O3V <p) At 
+ O[(AX)al(At)~2], 0~ 1 -~ 0¢ 2 = 4. (39) 

8 OxOt 2 ~ 24 Ot 3 ~ 48 OxOt 3j~,~+1/2 L. 

The truncation error for the single ungrouped point near the right end is obtained from equation 
(16) by putting i = m - 1. This gives 

T . = A x  ~ ~ + 16 Ùx2Ot~J.._,j+,/~ +At ½(1-20)--ffx--~+ ( 1 - 2 8 )  ax3Otj. ,_, .y+, a 

+ (Ax)(At) ¼(1 - 28) ~ , .- ,4+ 1/2 OX 3 24 ~ x  4 J m - l , j +  1/2 

O3V (~) a O3V <~) At 04V~P)l 
+ (At) 2 -81-(1 - 28) ~ + 2-4 0-~ + ~ (1 - 28) " ~ 0 - ~ / .  

I , j+  I/2 

+ O[(AX)at(At)'2], O~ 1 "~- O~ 2 = 4. (40 )  

(ii) Truncation error for  the GEL scheme 

The truncation error for the single ungrouped point near the left boundary is obtained from 
equation (15) with i = 1 and this gives the expression 

[ 102V(p) (At)2 04 V'P)I [ 02 V(P) ( 1 ~  O' V'P) 1 
T L = A x  2 Ox 2 16 Ox2Ot-----SJ,.y+,/2 + A t  ½ ( 1 - 2 0 ) ~ +  ( 1 - 2 0 )  Ox3Ot j,,i+~/2 

[ a3v ")l, + (ax): [ 'a3v"' + - -  
+ (Ax)(At) -¼(1-20) 0-~-r~dw+~/2 6 0x 3 24 0x 4 dl.j+l/2 

~3V~p) a 03V ~p) a t  04v ~p)-] 
+ ( a t ) :  - ~ ( 1 - 2 0 ) ~ - ~ - ~ 4  24 ot a ~- ~-~ (1-- 20) 0---~-~J,.j+ ,/2 

+ 0[(Ax)~t(At)'2], ~q + at 2 = 4. (41) 

The truncation errors for any two grouped points are given by Ta6 and T37, respectively. 

2 (a + 2) v,~p ) = 0. (37) , + -  o "2 , . j  - -  
a a 

The truncation errors for any two grouped points are given by the truncation errors of equations 
(36) and (37) for i = 2, 4 . . . . .  m - 2. Thus we have, 

m3,=Ax ax 2 + 16 ~x2"-~J,_,.j+,/2 axat 12 ax 3at ,-,,j+,/2 

+ (Ax)(At) Ox2O---~ J , -  ,4+ ,/2 + (Ax)2 1 Ax _ _  
6 Ox 3 24 Ox* Ji-l.j+l/2 

+(At)2 F 1 O3V (p) ~ a O3V (p) ¢ At O4V(") 1 _ 
8 OxOt 2 24 8t 3 48 OxOt----3J~_~.j+m +O[(Ax)a'(At)'2]' ~ 1 + ~ 2 ~ 4  (38) 

L 
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(iii) Truncation error for the (S)AGE and (D)AGE schemes 

As we have already seen, the truncation errors of the GER and GEL schemes (in their 
appropriate order of  alternation) constitute the overall truncation errors of the two- and four-step 
processes. Thus, there will be cancellations of  errors at most points leading to some improvement 
in the solutions of the methods when compared with the constituent GER and GEL schemes. 

4. STABILITY ANALYSIS OF THE GE SCHEMES 

It is clear from equations (1) and (9) that to reach an overall stability, the GE schemes applied 
to the decoupled equations in equations (10a) and (10b) must be stable simultaneously. 

(i) Stability of the GER scheme 

From equation (21), we have 

.j+,v(p> = FoERv)P)+ b,, (42) 

where FOE, is the amplification matrix given by 

FOE" "- (aI + 20Gl)-'[aI -- 2(1 -- O)G~] (43) 

and 

G, = Cat + 20G,)-'b,. (44) 

For the case p = 1 (and a = - 1) we have already established in Evans and Sahimi [1] that the GER 
scheme for equation (10a) is absolutely unstable in the range 0 ~< 0 ~< ½ and is conditionally stable 
for 2 i> 2/(20 - 1) when ½< 0 ~< 1. For the case p = 2 (and a = 1) we have 

FGER = 

-(1 - 2 )  2 
- 2  (I + 2) 

I I 
I I 

I I 
I I 

(1 -21  2 I ', 
- 2  (1+2) ' ,  ' --  --  I 

. . . . . . . . . .  5 ~ - ' ~  , 

0 

, (45) 

(46) 

where FGEL is the amplification matrix given by FGEL=(aI+2OG2)-~[al--2(1-0)G2] and 
G2 = (al + 20G:)-Ib~. We have already seen in Evans and Sahimi [1] that the GEL scheme when 
applied to the differential equation (10a) (when p = 1 and a = - 1 )  is conditionally stable for 
2 ~< 2/(1 - 20) and is always stable when ½ ~< 0 ~< 1. The amplification matrix of the GEL scheme 
for equation (10b) (when p = 2 and a = 1) is 

(ii) Stability of the GEL scheme 
From equation (23), the GEL scheme can be explicitly expressed as 

"j+IV(P) __-- F G E L ¥ ( P )  " t -  b 2 '  

. . . . . . . . . .  / - - ~  ~-I . . . . . . . . . . . . . . . . . .  

, (1 - 2 )  2 
0 

' - 2  (1 + 2)  I . . . . . . . . . . . . . . . . . . . .  7 - - - -  . . . . . . . . . . . . . . . . . .  

2 
1 

, (1 + 2 0 )  [(,~-l)×(m-01 

whose eigenvalues are 1 [of multiplicity (m - 2)] and l - 2 /0  + 20). For stability, we require that 

~20) 2 1 (1 ~< 1 giving 0 ~< (1 + 20------) +'< 2. 

Hence we deduce that the scheme is conditionally stable for 2 ~< 2/(1 - 20) with 0 ~< 0 < ½ and it 
is absolutely stable for all values of 2 when ~< 0 ~< 1. From the two stability requirements above, 
we therefore conclude that for overall stability, the GER scheme is stable only for 2 I> 2/(20 - l) 
when ½< 0 ~< 1. 
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FGE L 

I 

1-~ 2 
I 

(1 - ;tO) 

. . . . . . . . .  i i - % - - -  Y - - , ,  . . . . . . . . . . . . . . . .  

. . . . . . . . . . .  3 !  _+_;t)_: . . . . . .  o . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . .  I _  _ _ . . ~ L  . . . . . . . . . . .  

,' ' ( I  - - ; t )  ;t 
0 , , 

, , _ ; t  ( 1  + ; t )  [ ( m -  I )  x ( m -  I ) ]  

(47) 

whose eigenvalues are 1 [of multiplicity (m - 2)] and 1 + 2/(1 - 20). For stability, we require 

1 ~;t0) -t (1 ~<l 

or  

2 
-2~<  (1 - ; t 0 )  ~<0 

which is the same inequality given by Evans and Sahimi [1]. From the argument that followed, 
we deduce that the GEL scheme for equation (10b) is always unstable when 0 ~< 0 ~< } and is stable 
only for 2 >i 2(20 - 1) when ½ < 0 <~ 1. Again for overall stability, we are led to the same stability 
conditions as that which was concluded for the G E R  scheme above. 

(iii) Stability of the (S)AGE and (D)AGE schemes 
From equations (25) and (26) we find that the amplification matrices of  the S(AGE) and D(AGE) 

schemes are given respectively by 

FSAGE = FGEL/"GER 

and 

.F'DAGE = FGERFGELFSAGE- 

It has already been proved that the (S)AGE scheme for equation (10a) (when p = 1 and a = - 1) 
is conditionally stable for ,!. ~< 1. Similarly, the (D)AGE scheme is found to have conditional 
stability only for ;t ~< }. For the case p = 2 (and a = 1), we have, 

/ " S A G E  

-a '  b '  

c '  d' 

e '  f '  

- c '  e '  

d' - f '  
c' d '  - c '  e ' .  

e '  ¢' d '  - ¢ ' ' "  0 

0 " .  "c' "d '  ~ c '  

" e '  f '  d '  
c' 

e' 

"e' 

_ f '  
d' 

f ,  

g/ 

h ' _  [(m- I) x (m- I)l 

(48) 

where 

a ' = ( 1 - - 2 )  1 + ( 1  , b ' = A  l + ( 1  ' 

e ' = 2 2 ,  f ' = - 2 ( l + ; t ) ,  g ' = 2  1 ( lqS20)  and = ( 1 + 2 )  1 

d '  = 1 - 22 ,  

(49) 
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and 

la'l + (m - 3)ld'l  + Ih'l ~< ~ ( 2 )  

where 

for 2 ~< 1, 0 ~ [0, 1] and 20 ¢ 1. It can be shown that the (S)AGE method is stable for ;t ~< 1. 
The (D)AGE amplification matrix (for p = 2 and a = 1), however, takes the form 

FDAGE 

p~ q~ 

- -q"  t '  

- - S "  I) '  

r t s t 

U '  1)' 

W t X "  r '  S '  

- - x  ~ Z t It ~ lff  

r '  - - u '  w'  x" r" s' 

- - $ "  . O '  - - X  Z ~ D ~ 0 

- . . . .  - . 2 - . . . -  . - .  

r" "---It' ~ w" ~ r '  

~-"- S'  t~' - - X '  2 '  1/' 

r t - - /d '  W" 

--S' Tg" - - X  ~ 

y' 

/3 p 

X'  y '  

z" q~ 
-q~ p; 

(50) 

[ ( m - I ) x  ( m - l ) l  

where 

p ' = ( 1  - 2)211 (1 -- 20)  -- 22(1 -- 22), 

E t ' = - - 2 2  1 + ( 1  + ( 1 + 2 ) 2 ( 1 - - 2 2 ) ,  

w '  = (1 - 2 ) 2 0  + 2 2 )  - 2 2 0  - 2 2 ) ,  

z' = (1 + 2)2(1 - 22) - 22(I + 22), 

[ ]2 
p;=(1+22) 1 ( 1 + 0 2 )  

and 

r ' =  2 ( 1 - 2 ) 2 2  , s ' = 2 2 3  , 

u' = 22(1 - 22), v ' = 2 ( 1 + 2 ) 2 2 ,  

F 
x '  = - 2 2 ( 2 2 2  - 1), y '  = 222 [1 

q ; = 2 2 ( 1 + 2 )  1 ( 1 + 0 2 )  ' 

IP'I + It'[ +½(m - 4 ) l w ' l  +½(m - 4 ) l z ' l  + IP~I ~< ~b(2), 

(51)  
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where 

~(~) =(1 -,~)2 [l + - -  I (1-20) -220-2z)+~2 1 
2 ]  2 

( I Z 2 0 )  + ( 1 + 2 ) 2 0 - 2 2 )  

+ ~(m -- 4)[(1 -- 2)2(1 + 22) + 22(1 -- 22)] + ½(m -- 4)[(1 + 2)2(1 -- 22) + ).2(1 + 22)] 

2 2 

1 

E 2+t 2 =[A 2 + ( 1 - 2 )  2 ] 1 + ( 1 _  + ( 1 + 2 ) 2 ] ( 1 - 2 2 ) + ( m - 4 ) ( 1 - 2 2 2  ) 

+ ( 1 + 2 ~ . )  1 (1-~20) 

for 2 ~< ½, 0 e [0, 1] and 20 ~ 1. It can be shown in a similar manner as before that the (D)AGE 
method is stable for 2 ~< ½. For an overall stability, we conclude that the (S)AGE and (D)AGE 
processes are conditionally stable for 2 ~< 1 and 2 -%< ½, respectively. Therefore, it is recommended 
that for practical purposes, only (S)AGE is used. 

5. N U M E R I C A L  RESULTS 

In this experiment, we proceeded with the application of the GE techniques on the second-order 
wave equation, 

a2U a2U 
ax 2 = a t2 ,  (52) 

subjected to 

and 

The analytical solution is given by 

U(x, 0) = ~ sin(nx), 

OU 
at (x, 0 ) = 0 ,  

u(0, t) = 0 

U(1, t) = 0. 

U(x, t) = ~ sin(nx)cos(nt). (53) 

Again, we display the absolute errors of the numerical solutions along the mesh line t = 1.0 for 
2 = 0.5 and 0 = 0.5 in Table 1. 

To arrive at the solution of the second-order wave equation, Experiment I necessitates us to solve 
two different sets of first-order differential equations. The first set involves V (1> and V (2) whose 
approximations at the mesh points are obtained by applying the GE techniques on equations (10a) 

T a b l e  I .  A b s o l u t e  e r r o r s  o f  t he  n u m e r i c a l  so lu t i ons  to  t he  w a v e  e q u a t i o n  

x A v e r a g e  o f  all  

M e t h o d  0.1 0 .2  0.3 0 .4  0.5 0 .6  0.7 0.8 0.9 a b s o l u t e  e r ro r s  

( S ~ G E - E X P  4 . 0 2 x  10 -3  2 .6  x 10 -3  1.61 x 1043 3 . 7 4 x  l0  -3  6 .18 x 10 -4  3.38 x 10 -3  1.63 x 10 -3  1 . 8 6 x  10 -3  4 . 0 6 x  10 -3  2,61 x I 0  ~3 
( D ) A G E - E X P  7.66 x 10 . 4  6 .25 x 10 -4  1.27 x 10 -3  1.27 x 10 -3  1.22 × 10 -3  1.55 × 10 -3  7.35 x 10 -4  1.46 x 10 -3  1.14 × 10 -4  1.0 x 10 -3  
( S ) A G E - L W  8.35 x 1074 1.11 x 10 -3  4 .34  x 10 -4  1.17 x 10 -3  3,61 x 10 -4  2 .52 x 10 - (  7.79 x 10 -4  1.5 x 10 -3  2 .09 × 10 -3  9 .47 x 10 -4  
( D ) A G E - L W  1.13 x 10 -3  8.85 x 10 -4  1.83 x 10 -3  1.66 x 10 -3  1.24 × 10 -3  1.15 x 10 -3  3.88 x 10 -4  1.76 x 10 -4  1.98 × 10 -3  1.16 x 10 -3  
( S ) A G E - - C N  1,46 x 10 -3  1.78 x 10 -3  4 .69  x 10 -3  2 .44 x 10 -3  1.09 x 10 -2  1,67 x 10 -3  1.2 x 10 -2  6 .54  x 10 -4  1.02 × 10 -2  5.09 × 10 -3  
( D ) A G E - C N  1,95 x 10 -3  4 .35 × l0  -4  5 .96 x lO -3  9.9 × l0  -4  9 .17 x l0  -3  1,49 x 10 -3  9.3 x l 0  -3  1.42 x 10 -3  7 .86 x 10 -3  4 .29  x IO -3  

E x a c t  
s o l u t i o n  - 0 . 0 3 8 6 2 7 2  - -0 .0734732  - 0 . 1 0 1 1 2 7 1  - 0 . 1 1 8 8 8 2 1  - 0 . 1 2 5 0 0 0  - -0 .1188821  - 0 . 1 0 1 1 2 7 1  - 0 . 0 7 3 4 7 3 2  - 0 . 0 3 8 6 2 7 2  - -  
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and (10b). The solutions u are then computed by means of  the explicit Lax-Wendroff  and the 
Crank-Nicolson type formulae. These solutions are compared in Table 1. No at tempt is made to 
compute the G E R  and the G E L  solutions as these schemes have a rather rigid stability requirement. 
It becomes apparent  from the table that the (S )AGE-LW methods provide the most accurate 
solution. The stability restrictions of  the ( S ) A G E - C N  and ( D ) A G E - C N  methods are 2 ~ 1 and 
2 ~< ½, respectively, and besides incurring a comparatively heavier computat ional  load, these 
methods also happen to produce a less accurate solution for our particular problem. Hence, for 
its simplicity and accuracy, the (S )AGE-LW (also stable for 2 ~< l) combination is favoured. 
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