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Abstract

Let Wn,r denote then-fold iterated wreath product ofZ/rZ with itself. In this paper, we are
interested in the tower of groupsW1,r ⊂ W2,r ⊂ · · ·. We show that the irreducible representations
Wn,r are indexed by a set of labeled rooted trees. By adding a partial order on this set of roote
we obtain the Bratteli diagram for this tower of groups. In particular, we give the branching rules
approach yields combinatorial rules for the decomposition of restricted and induced representation
 2004 Elsevier Inc. All rights reserved.

Introduction

Wreath products arise naturally as automorphisms of regular hierarchical combin
structures (see [19] for a nice history and extensive bibliography). For example, ite
wreath products comprise the symmetries of rooted trees and of nested designs (s
[1,2]); they occur in chemistry as the symmetry groups of certain regularly bran
molecules of non-rigid molecules [3,20]; and have even been suggested as descrip
the way in which the human visual system processes information [12].

In this paper, we concern ourselves only with the (iterated) wreath products of
groups. We letWn,r be then-fold iterated wreath product ofZ/rZ with itself. For instance
W1,r = Z/rZ, W2,r = Z/rZ wr Z/rZ, and more generally,Wn,r = Wn−1,r wr Z/rZ. In
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terms of the symmetries of a rooted tree, the former consists of only the cyclic shifts
leaves of a rooted tree of depth one, while the latter, those automorphisms gener
permitting only cyclic shifts of nodes at a given depth.

These groups and their close relatives appear in various contexts. The groupsWn,4 have
been used for signal analysis and image processing [7,8]. Whenr = p a prime,Wn,p is
distinguished as the Sylowp-subgroup ofSpn (see, e.g., [17]). When the indexr does not
remain fixed, and we allown to go to infinity, we arrive at profinite groups important to t
theory of renormalizable dynamical systems [4].

In this paper, we show that the representation theory of these groups, examined throu
the use of the tower of groups

W1,r ⊂ W2,r ⊂ W3,r · · ·

has a rich combinatorial structure.
Our main result shows that the irreducible representations ofWn,r are indexed by a

family of trees which we callr-trees. These are labeled completer-ary trees (defined in
Section 3) of heightn.

By adding a partial order to the set ofr-trees we find a new interpretation of th
branching rules for the irreducible representations of these groups. This in turn giv
alternate derivation, as wellas new interpretation, of theBratteli diagramof this sequence
of groups. Bratteli diagrams are a construction first used in operator algebras [5]. Th
graphical representation of the branching rules corresponding to towers of groups
over the past several years, come to be recognized as a tremendously useful too
construction of efficient algorithms for computing the Fourier transform for finite and
compact groups including wreath products, where they are crucial to the developm
what is to date, the most efficient “FFT” available for these groups [14–16].

This paper is organized as follows. In the first section, we define Bratteli diagram
iterated wreath products. We also describe the inclusionWn−1,r ⊂ Wn,r and describe how
these groups are interpreted as automorphism groups of trees. We also give a pres
of this group in terms of generators and relations. In Section 2, we describe the irred
representations and give a formula for the number of conjugacy classes and irred
representations of these groups.

In Section 3, we introducer-trees and define an order on these trees. We enum
these trees via a recursive formula. The proof of the formula is given by establish
bijection betweenr-trees of heightn − 1 and the irreducible representations ofWn,r .

In Section 4, we use the bijection of ther-trees with the irreducible representatio
of Wn,r to construct the Bratteli diagram for the sequence of groupsW1,r ⊂ W2,r ⊂ · · ·.
This Bratteli diagram yields the branching rules for this sequence of groups. Furthe
counting Hasse walks on the Bratteli diagram yields the degrees of the irred
representations. We end this section by giving a bijection betweenr-trees and conjugac
classes ofWn,r .

We hope that the Bratteli diagram together with the presentation of these iterated
products will serve as a foundation for defining the analogous theory that exits fo
symmetry groups and for the wreath productsZ/rZ wr Sn. In particular, it would be
interesting to define positive traces on the sequence of group algebras.
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1. Preliminaries

A Bratteli diagramB is a weighted graph. It is described by a set of vertices fro
disjoint collection of setsBm, m � 0, and edges that connect vertices inBm to vertices
in Bm+1. We assume that the setB0 contains a unique vertex. The edges are labele
positive integer weights. The setBm is the set of vertices atlevelm. If T1 ∈ Bm is connected
to a vertexT2 ∈ Bm+1, then we writeT1 � T2.

Bratteli diagrams first arose in the theory of operator algebras [5] and more precise
theory of multimatrix algebras [9]. We are interested in the construction of such diag
as relates to the representation theory of finite groups.

Given a tower of subgroups〈1〉 = G0 < G1 < · · · < Gn, the corresponding Bratte
diagram has vertices of setBi labeling the irreducible representations ofGi . If ρ andη are
irreducible representations ofGi , andGi−1 respectively, then the corresponding vertic
are connected by an edge weighted by the multiplicity ofη in ρ when restricted toGi−1.

Example 1. The Young lattice is an example of a Bratteli diagram. In the Young lat
the vertices are Young diagrams (or partitions) and the edge joining a partition ofm to a
partition of m + 1 has weight 1 (if the multiplicity is 1, we omit the labels). LetSn be
the symmetric group. Figure 1 shows the Bratteli diagram for the sequenceS1 < S2 < S3,
whereSj permutes only the symbols 1, . . . , j .

The distinct edges in these diagrams, viewed as directed from levelm − 1 to
levelm, have an interpretation of mutually orthogonalGm−1-equivariant morphisms from
C[Gm−1] into C[Gm]. With this interpretation, the paths from root to leaf give a natu
indexing of so-called “Gel’fand–Tsetlin” bases for the underlying towers of subgrou
These bases correspond to those whose matrix representations have the property th
restricted through the tower of subgroups they are block diagonal with irreducible b
at each step, with equivalent irreducibles actuallyequal. It is this sort of recursive structu
that is so critical to efficient harmonic analysis for these groups (see, e.g., [14]).

We consider the Bratteli diagram of a particular tower of subgroups of the ite
wreath product. In this paper, we will describe the Bratteli diagram for iterated w
products of cyclic groups. In this case, we obtain a Bratteli diagram that is not multipl
free—i.e., a given irreducible ofWn,r may contain multiple copies of some irreducib
when restricted toWn−1,r . By encoding this not by multiple edges, but rather, by weigh
edges, we arrive at ther-trees of Section 3.

Fig. 1.
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1.1. Wreath products

In this section, we define the wreath product of two groups. We give some basic r
regarding these wreath products and a combinatorial interpretation of these gro
subgroups of the automorphism groups of completer-ary trees. We also describe t
inclusionWn−1,r ⊂ Wn,r and give a pictorial interpretation of this inclusion.

In general, letG be a finite group andH be a subgroup ofSn. We can define an actio
of H onGn = G × G × · · · × G (n times), where ifa = (a1, a2, . . . , an) ∈ Gn, then

aπ = (aπ−1(1), aπ−1(2), . . . , aπ−1(n))

whereπ ∈ H .
The wreath productof G with H , denoted byG wr H , is the setGn × H with the

multiplication:

(a;π)(b;σ) := (
abπ ;πσ

)
.

If e denotes the identity inGn andι denotes the identity inH , thenH ∼= {(e;π) | π ∈ H }
andGn ∼= {(a; ι) | a ∈ Gn}. With these identifications, we can think ofGn as a norma
subgroup ofG wr H . Thus, with the action ofH onG as given above, this wreath produ
is just the semi-direct product ofGn by H . The order of this group is|G|n|H |.

The wreath product as defined above is associative for finite groups (for a proo
[17, Theorem 7.26]). Theiterated wreath productof Z/rZ is then-fold wreath produc
defined recursively as follows:

W1,r
∼= Z/rZ

and

Wn,r
∼= Wn−1,r wr Z/rZ,

wherer andn are any two positive integers. It will be convenient to think ofZ/rZ as the
cyclic subgroup of the symmetry groupSr generated by the cycle(1 2 . . . r) of lengthr.
In this case, we think ofZ/rZ as acting on(Wn−1,r )

r via cyclic permutations.
Perhaps the best way to understand wreath products is by interpreting th

automorphism groups of rooted trees. An automorphism of a tree,Γ , with vertex setV ,
is a bijectionφ :V → V such thatu,v ∈ V are adjacent if and only ifφ(u) andφ(v) are
adjacent. For a more detailed description of how this is done, see [17]. Under composit
the set Aut(Γ ) of automorphisms ofΓ is a group.

In this context,Wn,r can be identified with the subgroup of the automorphism grou
the completer-ary tree of heightn that cyclically permutes ther children of each node. I
the special caser = 2, we get thatWn,2 is isomorphic to the automorphism group of t
complete binary tree of heightn.

Example. Aut(Γ ) ∼= Z/2Z wr Z/2Z whereΓ is the rooted tree in Fig. 2. In this cas
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Fig. 2.

we think of Z/2Z as permuting the vertices labeled 1 and 2, andZ/2Z × Z/2Z as
independently permutinga1 with b1 and a2 with b2. For Z/2Z wr Z/2Z wr Z/2Z we
would add two “children” to each of the last 4 vertices in the tree in Fig. 2. Note
using this identification gives an easy way to see that the wreath product is associat

1.2. EmbeddingWn−1,r ⊂ Wn,r

We have definedW1,r = Z/rZ, W2,r = Z/rZ wr Z/rZ (a group of orderr · rr ), and
more generally,

Wn,r = Wn−1,r wr Z/rZ.

Thus,|Wn,r | = r · |Wn−1,r |r , so that

|Wn,r | = r(rn−1)/r−1

implying that the index ofWn−1,r in Wn,r is rrn−1
.

We have defined the iterated wreath product by adding a factor ofZ/rZ on the right.
This definition is essentially via the embedding ofWn−1,r in Wn,r as the subgroup o
automorphisms of the rooted regularr-ary tree of heightn which permute the leftmost (o
any fixed) subtree of heightn − 1 from the root while keeping the other nodes of the t
fixed.

Another way to describe the iterated wreath product is via the embedding ofWn−1,r

in Wn,r , as the subgroup of automorphisms which leave fixed the relative ordering o
of the “bottom-most” subtrees, consisting of groups ofr leaves with a common paren
Collapsing each of these “leaf trees” gives the rootedr-ary tree of heightn − 1, hence the
embedding. This embedding gives a different recursive definition of the iterated w
productW̃n,r as

W̃n,r = Z/rZ wr W̃n−1,r .

Algebraically, we identifyW̃n,r with a subgroup ofSrn (see [17] for the permutatio

version ofG wr H ). With this identification,W̃n−1,r acts by permutations on(Z/rZ)r
n−1

.

Notice that this implies that̃Wn,r is isomorphic to the semi-direct product of(Z/rZ)r
n−1

by W̃n−1,r .



536 R.C. Orellana et al. / Advancesin Applied Mathematics 33 (2004) 531–547

tive.

f

ion.

c

p,
Remark. The groups̃Wn,r andWn,r are isomorphic since the wreath product is associa

1.3. Presentation ofWn,r

We now give a presentation ofWn,r in terms of generators and relations. A groupG

generated by a setX satisfying a set of relationsR will be written G = 〈X | R〉. The
presentation of the wreath product ofH by G is given in the following theorem. The proo
can be found in [10].

Theorem 1.1 [10, p. 176].Let G andH be finite groups with presentationsG = 〈X | R〉
andH = 〈Y | S〉 and letL ⊂ H be a subset such thatL ∪ L−1 = H/{e} wheree is the
identity inH . ThenG wr H has a presentation

G wr H = 〈
X,Y | R,S,

[
X,XL

]〉
whereXL denotes the action ofL onX and[·, ·] denotes the commutator.

We now use this theorem to write a presentation ofWn,r .

Theorem 1.2. The groupWn,r is given by generatorst1, . . . , tn satisfying the following
relations:

(1) tri = 1, i = 1, . . . , n;
(2) ti t

−k
j ti t

k
j = t−k

j ti t
k
j ti , 1� i < j � n, k = 1, . . . , r − 1;

(3) ti t
−k
j tmtkj = t−k

j tmtkj ti , 1 � i < j � n, m < j , andk = 1,2, . . . , r − 1.

Proof. The proof is by induction onn. We apply Theorem 1.1 at each step of the induct
It is clear that we will haven generators corresponding to each factor ofZ/rZ and that each
generator will have orderr. Relations (2) and (3) correspond to the commutators.�

One way to visualize theti ’s as automorphisms of the completer-ary tree is as the cycli
permutations on the leftmost vertices at a given level of ther-ary tree.

Example. A presentation ofWn,2 is given by generatorst1, . . . , tn satisfying the following
relations:t2

i = 1, 1� i � n; (ti tj )
4 = 1, i 	= j,1 � i, j � n; (ti tj ti tj+k)

2 = 1, j > i, and
k = 1, . . . , n− i. It is well known thatW2 = Z2 wr Z2 is isomorphic to the dihedral grou
D8, which has presentation:

〈
t1, t2 | t2

1 = t2
2 = 1, (t1t2)

4 = 1
〉
.

Notice that the iterated wreath productsWn,2 are not Coxeter groups forn > 2.
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2. Representation theory of Wn,r

In this section we describe the representation theory of the groupWn,r . The irreducible
representations can be constructed in a recursive fashion by applying Clifford theo
Recall that we have definedWn,r = Wn−1,r wr Z/rZ as the semi-direct product ofWr

n−1,r

by Z/rZ. HereWr
n−1,r denotes ther-fold direct product ofWn−1,r with itself. Therefore,

we have thatWr
n−1,r is a normal subgroup ofWn,r . The general representation theory

wreath products can be found in [11].
If {ρi} forms a complete set of irreducible representations ofWn−1,r , then the

irreducible representations ofWr
n−1,r are of the formρ1 ⊗ · · · ⊗ ρr , where theρi are not

necessarily distinct. The action ofZ/rZ on Wr
n−1,r by cyclic permutations translates in

an action ofZ/rZ on the representation space ofWr
n−1,r . This group action provides

decomposition of the representation space into a disjoint union of orbits.
Let Oi be an orbit of the representation space. Fix a representativeσi ∈ Oi and let

Gi � Z/rZ denote the corresponding stabilizer subgroup ofσi . Then in the terminology
of Clifford theory,Wn−1,r wr Gi is an inertia group ofWn,r . In particular, we know tha
every irreducible representation ofWr

n−1,r can be extended (trivially) to an irreducib
representation ofWn−1,r wr Gi . This extension is then tensored with any irreduci
representation ofGi to yield an irreducible representation ofWn−1,r wr Gi . Finally,
each of these (twisted) extensions is induced fromWn−1,r wr Gi to Wn,r . These induced
representations are irreducible. Furthermore, every irreducible representation ofWn,r is
obtained in this way.

We summarize the discussion above in the following theorem:

Theorem 2.1. Let {ρi} be a complete set of inequivalent irreducible representation
Wn−1,r , and letdi be the dimension ofρi . Letσ = ρ1 ⊗ · · · ⊗ ρr be an irreducible repre-
senta tion ofWr

n−1,r , letZ/dZ be its stabilizer under cyclic permutations byZ/rZ, and let
σ 1, . . . , σ r/d be the representations ofWr

n−1,r in the orbit ofσ . Setdi = (d1d2 · · ·dr)/di .
If τ is an irreducible representation ofZ/dZ, thenσ ⊗ τ is an irreducible representatio
of Wn−1,r wr Z/dZ and IndWn,r σ ⊗ τ is an irreducible representation ofWn,r . Moreover,
all irreducible representations ofWn,r may be constructed this way,

ResWr
n−1,r

(
Ind

Wn,r

Wn−1,r wr Z/dZ
σ ⊗ τ

)
= σ 1 ⊕ · · · ⊕ σ r/d,

and

ResWn−1,r

(
Ind

Wn,r

Wn−1,r wr Z/dZ
σ ⊗ τ

)
=

r/d⊕
j=1

djρj .

2.1. The number of irreducible representations ofWn,r

Given the construction ofWn,r , we may recursively count the numberkn(r) of
irreducible representations ofWn,r as follows. The number of irreducible representati
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of Gi is |Gi | sinceGi is abelian. Summing over the orbit representatives, we see tha
number of irreducible representations ofWn,r is

kn(r) =
∑
σi

|Gi |,

since each orbit representative is tensored by an irreducible representation ofGi to
obtain an irreducible representation ofWn,r . Let R be the complete set of irreducib
representations ofWr

n−1,r . Let σ ∈ R and letGσ ⊂ Z/rZ be the stabilizer ofσ . The orbit
containingσ has size|Z/rZ|/|Gσ | = r/|Gσ |. Thus we also have that

kn(r) =
∑
σi

|Gi | =
∑
σ∈R

(
r

|Gσ |
)−1

|Gσ | = 1

r

∑
σ∈R

|Gσ |2.

For every divisord of r, there is a unique subgroup ofZ/rZ that is isomorphic toZ/dZ.
Moreover, all subgroups ofZ/rZ are of this form. If we letf (d) be the number ofσ ∈ R

such thatZ/dZ = Gσ , then we may write

kn(r) = 1

r

∑
d |r

f (d)|Z/dZ|2 = 1

r

∑
d |r

f (d)d2.

To computef (d), we use Möbius inversion (see, e.g., [18]). First we define

g(d) =
∑
d |c|r

f (c).

Note that the numberg(d) is the number of elements ofR that are stabilized byZ/dZ,
which is simplykn−1(r)

r/d . By Möbius inversion, we have that

f (d) =
∑
d |c|r

µ(c/d)g(c) =
∑
d |c|r

µ(c/d)kn−1(r)
r/c

where

µ(c/d) =
{

(−1)t if c/d is the product oft distinct primes,
0 otherwise.

Thus, we have the following theorem:

Theorem 2.2. The numberkn(r) of irreducible representations ofWn,r is given by the
recursion

kn(r) = 1

r

∑
d |r

f (d)d2 = 1

r

∑
d |c|r

µ(c/d)kn−1(r)
r/cd2.

wherek1(r) = r.
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In particular, ifr = p is prime, then

kn(p) = 1

p

∑
d |c|p

µ(c/d)kn−1(p)p/cd2 = 1

p

[
kn−1(p)p2 + (

kn−1(p)
)p − kn−1(p)

]
and

kn(p
m) = 1

pm

[
kn−1

(
pm

)
p2m +

m−1∑
i=0

[
kn−1

(
pm

)pm−i − kn−1
(
pm

)pm−i−1]
p2i

]
.

Example.

kn(2) = 1

2

[
22kn−1(2) + kn−1(2)2 − kn−1(2)

] = 2kn−1(2) +
(

kn−1(2)

2

)
and

kn(4) = +1

4

[
kn−1(4)4 + 3kn−1(4)2 + 12kn−1(4)

]
.

3. r-trees

In this section, we define a family of labeled trees which we callr-trees. We also give
a recursive formula for the number of such trees. We then conclude this section w
definition of a partial order on this family of labeled trees.

Recall that arooted tree is a connected simple graph without cycles and wit
distinguished vertex called theroot. A vertex is said to be atlevelj if the distance from it
to the root isj . If x is a vertex at levelj that is connected to vertexy at levelj + 1, then
y is said to be achild of x andx is theparentof y. Thebranching factorof a vertex is its
number of children. Aleaf is a vertex with branching factor zero.

If x is a vertex of a rooted treeT , then thesubtree ofT with root x is the connected
component containingx of the forest obtained by removing the edge betweenx and its
parent. In general, asubtreeof T is a subtree with rooty for some vertexy of T , and the
maximal subtreesof T are the subtrees obtained by removing the root ofT .

A labeled rooted tree is a rooted tree whose vertices have been labeled usin
elements of some set. IfH is a subgroup of the group of automorphisms of a rooted treT ,
then the action ofH on T induces an action ofH on the labellings ofT . We say that two

Fig. 3. Labeled rooted trees that are equivalentunder the action of the full automorphism group.
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Fig. 4. Complete 3-ary tree of height 2.

labellings ofT are equivalent with respect toH if they are in the same orbit under th
action ofH . See Fig. 3.

Thecompleter-ary tree of heightn is the rooted tree whose leaves are all at leven,
and whose vertices that are not leaves all have branching factorr. We are now ready to
recursively definer-trees.

Definition. An r-tree of height0 is simply a vertex labeled with an integer from{1, . . . , r}.
An r-tree of heightn + 1 is a labeled completer-ary treeT of height n + 1 whose
maximal subtrees arer-trees of heightn, and whose root is labeled with an integer fro
{r/d,2(r/d), . . . , d(r/d)} whereZ/dZ is the stabilizer of the labeled maximal subtrees
T under cyclic permutation.

Finally, we say that twor-trees are equivalent if they are in the same orbit under
action ofWn,r as described in Section 1.1. For example, notice that the trees in Fig.
equivalent under the action ofW2,3.

Proposition 3.1. There exists a1–1correspondence betweenr-trees of heightn and the
irreducible representations ofWn+1,r .

Proof. Let z be a generator ofZ/rZ and let ω be a primitiverth root of unity. For
i = 1, . . . , r, let ρi be the irreducible representation ofZ/rZ such thatρi(z) = ωi .
Note that if Z/dZ is a subgroup ofZ/rZ, then zr/d is a generator forZ/dZ, and a
complete set of irreducible representations ofZ/dZ are thoseρi (restricted toZ/dZ)
wherei = 1, . . . , d . In this sense, we may view the labels of anr-tree as correspondin
to irreducible representations, where the labeli(r/d) corresponds to the representationρi

(for the appropriate stabilizer).
By construction, we therefore have a bijection betweenr-trees of heightn and the

irreducible representations ofWn+1,r . In particular, the maximal subtrees of anr-tree
of height n correspond to irreducible representations ofWn,r . Recall that we tenso
these representations to give a representation forWr

n,r . We then extend (trivially) to a

Fig. 5. Example of equivalent 3-ary trees of height 2.
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Fig. 6. The first three levels of the Hasse diagram of the posetT (2).

representation of the subgroupWn,r wr Z/dZ of Wn+1,r , whereZ/dZ is now the stabilizer
of the maximal subtrees under cyclic permutation. This extension is tensored w
irreducible representation ofZ/dZ, which we use to label the root of ther-tree, to give
an irreducible representation ofWn,r wr Z/dZ. Finally, this (twisted) extension is induce
to give an irreducible representation ofWn+1,r . �

This bijection yields the following corollary:

Corollary 3.2. The numberhn(r) of r-trees of heightn is given by the recursion

hn(r) = 1

r

∑
d |c|r

µ(c/d)hn−1(r)
r/cd2

whereh0(r) = r.

Finally, let T (r) denote the set of allr-trees. For eachn � 0, let T (r)
n be the subset o

T (r) of r-trees of heightn. Note that the setT (r) decomposes as the disjoint union of t
setsT (r)

n :

T (r) :=
⋃
n�0

T (r)
n (disjoint union).

We define a partial order onT (r) by saying that, ifS,T ∈ T (r), thenS � T if S is a subtree
of T .

In Fig. 6, the next level would have twenty 2-trees. Note that we have added the
set to the setT (r). This is done for convenience. We will think of∅ as the tree of height−1.

Proposition 3.3. (T ,�) is a locally finite, graded poset with rank functionh :T → N,
whereh(T ) is the height ofT .

Proof. We have already observed thatT (r) is the disjoint union of subsets according
the height functionh. Moreover, by definition, ifS,T ∈ T (r) andS � T , then it must be
the case thath(S) is less than or equal toh(T ). Thus(T ,�) is a graded poset with ran
function h. Lastly, that(T ,�) is locally finite follows directly from the fact that ever
r-tree has only a finite number of subtrees.�
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The posetsT (r) are not lattices and they are not differentiable posets as in the ca
the Young lattice.

4. r-trees and iterated wreath products

In Section 3, we observed that there is a bijection betweenr-trees of heightn and
the irreducible representations ofWn+1,r . In this section, we will use the posetsT (r) to
describe the Bratteli diagrams for the sequence of groupsW1,r ⊂ W2,r ⊂ · · ·. We also
construct a correspondence between ther-trees of heightn and the conjugacy classes
Wn+1,r .

4.1. Bratteli diagram forWn−1,r ⊂ Wn,r

In this subsection, we construct the Brattelidiagram for the sequence of iterated wre
products of cyclic groups. Our main result is that the Hasse diagram of the poset(T (r),�),
together with some labellings of the edges, is the Bratteli diagram of the seque
iterated wreath products. So far we have established the correspondence of the irre
representations with the elements of the poset. We now describe how the Hasse d
together with the appropriate multiplicities yield the branching rules for the sequen
groups.

Recall that, for abelian groups, the representations and the characters are the same.
begin by ordering the irreducible representations ofW1,r = Z/rZ = 〈z〉 according to the
value of the character on the generatorz. We think ofz as a cycle of lengthr. Let ω be a
primitive rth root of unity. We know that the representations are given by

ρm(z) = ωm, 1 � m � r,

whereρr is the trivial representation. Then we have the following correspondence

ρm ←→ m•

for 1 � m � r. Recall that the correspondence is given inductively. Please refer t
discussion on the representations ofWn,r in Section 2 and the proof of Proposition 3
For n � 2, let T1, . . . , Tkn(r) denote ther-trees in T (r)

n which index the irreducible
representations ofWn+1,r . Create the labeled tree

where theTij are not necessarily all distinctr-trees and them corresponds to a represen
tion of the stabilizer of the maximal subtreesTij under cyclic permutation.
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In Section 3 we described an order on ther-trees given by inclusion. That is anr-tree
of heightn is a subtree of anr-treeT of heightn + 1 if and only if it is one of its maxima
subtrees. We add the multiplicities to the edges of the Hasse diagram as follows:

wheremj = d̄j = (di1 · · · dir )/dij anddik is the degree of the representation indexed
Tik . By Theorem 2.1 and the above construction, we have the following theorem.

Theorem 4.1. Let r be any positive integer. The Bratteli diagram of the sequence

CW1,r ⊂ CW2,r ⊂ · · · ⊂ CWn,r ⊂ · · ·

is the graph defined by the Hasse diagram of(T (r),�) where the edges are labeled by t
multiplicities as described above.

Example. The Bratteli diagram ofW0,2 ⊂ W1,2 ⊂ W2,2 is given in Fig. 5. In this case a
the edge weights are 1, thus we omit the labels.

If we think of the multiplicities as multiple edges, then the number of Hasse walks
the empty set at the top of the Hasse diagram to the treeT will yield the degree of the
representation indexed by ther-treeT .

Corollary 4.2. Let T ∈ T (r)
n and letρT denote the irreducible representation ofWn+1,r

indexed byT . Then we have the following:

ResρT
∼=

⊕
h(Ti)=n−1

Ti�T

d̄iρTi ,

and

IndρT
∼=

⊕
h(Ti)=n+1

T �Ti

d̄iρTi .
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4.1.1. Degrees of the irreducible representations ofWn,r

As a consequence of Theorem 4.1 we give a purely combinatorial way to compu
degrees of the irreducible representations ofWn,r in terms of ther-trees indexing thes
representations.

Recall that anr-tree,T , of heightn indexes an irreducible representation ofWn+1,r . By
definition ofr-tree every vertexv at levelj , 0� j � n, can be thought of as the “root” o
anr-tree of heightn− j consisting of all vertices descending fromv. And if 0 � j � n−1
then every suchr-subtree hasr maximal descendantr-subtrees of heightn − j − 1.

Two maximal descendantr-subtrees of the vertexv aredistinctif they are not equivalen
asr-trees.

Let d(j)
i (T ) denote the number of distinct maximal descendant subtrees of theith vertex

(from left to right) in thej th level in ther-treeT . Let T be an arbitraryr-treeT of height
n corresponding to the irreducible representationρT of Wn+1,r . We create anr-ary tree,

CT , of heightn and we label the leaves by 1 and all other vertices are labeled byd(j)
i (T ).

We callCT thecompanion tree ofT .

Proposition 4.3. The degree of the irreducible representationρT of Wn+1,r indexed by the
r-ary treeT of heightn is the product of the labels in the companion treeCT , i.e.,

dT = dρT =
n∏

j=1

rj∏
i=1

d
(j)
i .

Proof. Let T be anr-tree of heightn and letTi1, Ti2, . . . , Tir be its maximal subtrees
which are not necessarily all distinct. By Theorem 4.1, we have that the degreedT of the
irreducible representationρT of Wn+1,r is equal to:

dT =
l∑

j=1

mjdij = l(di1di2 · · ·dir ), (1)

where the sum is over the distinctTij , l is the number of distinct maximal subtrees ofT , i.e.,
l = d

(0)
1 , anddij is the degree of the irreducible representation ofWn,r corresponding toTij .

The proof follows by induction, sincedij is the dimension of the irreducible representat
of Wn,r corresponding tor-treeTij of heightn − 1. By the inductive hypothesisdij is the

Fig. 7. Circled 2-subtreesof height 1 are maximal descendant trees with “root” atv.
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Fig. 8. Two distinct 2-trees of height 2.

product of the labels in the companion tree ofTij . Since this holds for allj = 1, . . . , r, we
have the claim. �
Corollary 4.4. Letni denote the number of times thati occurs as a label of a vertex inCT .
Then

dT = 1n12n2 · · · rnr .

Proof. This is a direct consequence of Proposition 4.3 and the fact that 1� d
(j)
i � r for

all values ofi andj . �
Example. The representation ofW3,3 indexed by the 3-tree in Fig. 8 has degree 18.

4.2. Conjugacy classes ofWn,r

In [13], the conjugacy classes ofG wr Sn are labeled bym-tuples of partitions such tha
the sum of the weights of allm partitions isn, wherem is the number of conjugacy class
of G. Notice that for the caser = 2, this will yield a labeling set for the conjugacy class
of Wn,2, sinceS2 ∼= Z2. Our labeling, however, uses 2-trees and appears to be much
natural. In particular, our labeling easily generalizes to the groupWn,r .

We first describe the conjugacy classes ofWn,r . Notice that a necessary conditio
for two elements(a;π1), (b;π2) ∈ Wn,r to be conjugate is thatπ1 = π2. Let g(k) :=
(e, . . . , e, g, e, . . . , e) ∈ (Wn−1,r )

r whereg is in the kth position. Straightforward com
putations show the following lemma:

Lemma 4.5. Letπ be a cyclic permutation not equal to the identity.

(a) The elements(g(1)
1 g

(2)
2 · · ·g(r/d)

r/d ;π) and (h
(1)
1 h

(2)
2 · · ·h(r/d)

r/d ;π) ∈ Wn,r are conjugate
if and only ifgi andhi are conjugate inWn−1,r .

(b) For anyg ∈ Wn−1,r , 1 � k, l � r, the elements(g(l);π) and(g(k);π) are conjugate.

Fig. 9. A treeT and its companion treeCT .



546 R.C. Orellana et al. / Advancesin Applied Mathematics 33 (2004) 531–547

ns of
ns.
the

t
ss

d

e.

is
e
e

he

lasses
f

(c) Every element of the form(g;π), whereg ∈ (Wn−1,r )
r and the order ofπ is d , is

conjugate to some element of the form(h
(1)
1 h

(2)
2 · · ·h(r/d)

r/d ;π).
(d) Let ι be the identity inZ/rZ andg ∈ Wn−1,r . (g; ι) is conjugate to(h; ι) if and only if

there is a permutationπ ∈ Z/rZ such thatgi is conjugate tohπ−1(i) in Wn−1,r .

Note. In Section 2 we computed a formula for the number of irreducible representatio
Wn,r and in Section 3 we gave a bijection betweenr-trees and irreducible representatio
Therefore, sinceWn,r is a finite group, the number of irreducible representations is
same as the number of conjugacy classes.

Using Lemma 4.3 we now proceed to show how we can user-trees to index the
conjugacy classes ofWn,r . By Lemma 4.3, we have that if{ci} is a complete se
of conjugacy class representatives ofWn−1,r , then a complete set of conjugacy cla
representatives forWn,r is

⋃
π∈Z/rZ

ord(π)=d

{(
c
(1)
i1

c
(2)
i2

· · ·c(r/d)
ir/d

;π
)}

,

wherecij ’s are conjugacy class representatives ofWn−1,r (not necessarily all distinct) an
ord(π) denotes the order ofπ .

Proposition 4.6. There is a one-to-one correspondence betweenr-trees of heightn and
conjugacy classes ofWn+1,r .

Proof. The proof is by induction onn. Forn = 1,W1,r = Z/rZ = 〈z = (1 2 · · · r)〉, that is
the group generated by ther-cyclez. For 1� k � r we have the following correspondenc

zk ←→ k•

For n > 1, assume that the conjugacy classes ofWn,r are labeled byr-trees of height
n− 1 in such a way that treeTi corresponds to the conjugacy class represented byci . Then
the conjugacy classes ofWn+1,r are labeled byr-trees as follows:

Consider a conjugacy class(c(1)
i1

c
(2)
i2

· · ·c(r/d)

ir/d
;π), whereπ = zk for some 1� k � r

is of order d and z is as above. Ther-tree corresponding to this conjugacy class
constructed recursively. Label the root withk. On ther children of the root, attach th
treesTci1

, Tci2, . . . , Tcir/d
from left to right on the firstr/d vertices, then attach the sam

trees in the same order for the nextr/d children of the root, and continue attaching t
trees in this order a total ofd times. The tree constructed is anr tree. Since we know
that every conjugacy class has this form, this implies that two distinct conjugacy c
will correspond to distinct trees. Furthermore, the number ofr-trees and the number o
conjugacy classes are the same. This provides a bijection.�
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