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In this paper, the geometric structure, especially the Lie-group related properties, of
unit dual quaternion is investigated. The exponential form of unit dual quaternion and
its approximate logarithmic mapping are derived. Correspondingly, Lie-group and Lie-
algebra on unit dual quaternions and the approximate logarithms are explored, respectively.
Afterwards, error and metric based on unit dual quaternion are given, which naturally
result in a new kinematic control model with unit dual quaternion descriptors. Finally,
as a case study, a generalized proportional control law using unit dual quaternion is
developed.
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1. Introduction

A unit dual quaternion is a composition of a unit quaternion and a translational vector using Plücker coordinate. It can
represent an arbitrary transformation (including rotation and translation) in 3-D (three-dimensional) space globally without
singularity. In some comparative studies, see e.g. [1–3] and the references therein, it is reported that among different tools
for describing transformation, such as HTM (homogeneous transformation matrix), quaternion/vector pair, Lie-algebra and
alike, unit dual quaternion offers the most compact and computationally efficient screw transformation formalism. So far,
the dual quaternion has turned out to be a useful tool in many research areas, such as computer-aided geometric design [4],
image-based localization [5], hand-eye calibration [6], manipulators control [7] and navigation [8].

Till now, the most popular representation tool for transformation is still SE(3), which is a composition of all HTMs [9].
Many advantages of SE(3), especially in control design, lie in its geometric structure as a Lie-group. For example, a unified
framework of mechanical control is established on the geometric structure of SE(3) in [10]; the generalized proportional-
derivative control law is conducted in [11] based on the relationship between SE(3) and its Lie-algebra se(3). Recently,
the unit dual quaternion has also been applied in control design, such as in [12–14] for transformation control. However,
the geometric structure of unit dual quaternions is seldom revealed.

In this study, parallel to the work in [11], we will explore the geometric structure of unit dual quaternions; moreover,
as an application, the kinematic model and control law design are also discussed. To our best knowledge, this is the first
attempt to employ Lie-group related geometric structures on unit dual quaternions by providing the exponential form of
unit dual quaternion and its logarithm, and deriving an approximate logarithmic mapping for unit dual quaternion. Further
we prove that the set of unit dual quaternions is a Lie-group and the set of the approximate logarithmic mappings is its
corresponding Lie-algebra. These results provide a new Lie-group and geometric viewpoint to understand the meanings of
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Fig. 1. Geometry of rotation: a new frame N is obtained by a frame O rotation about a unit axis n with angle 0 � ϑ < 2π .

unit dual quaternions, which are certainly non-trivial. On another hand, based on the explored properties, a classical control
scheme, the proportional control law, is implemented into the unit dual quaternion Lie-group. Compared with the conven-
tional decoupling methods on transformation control, the proposed scheme provides a unified solution without requiring
decoupling to deal with the attitude and position control problem simultaneously with a global representation. Further,
the control model and control method are both rooted in the derived mathematical foundation on unit dual quaternion
in this paper, which makes it different to the existing results, such as the work in [12]. It is also worth pointing out that
the proof of the stability for the control law is with a different method compared with that in [12].

The rest of this paper is organized as follows. Section 2 develops some geometric properties of unit dual quaternions,
namely, the exponential form of unit dual quaternion and the corresponding approximate logarithmic mapping, Lie-group,
Lie-algebra, left-invariant error, and metric on unit dual quaternion are all discussed. To provide a case study in control
design, the kinematic control model from the left-invariant error is derived in Section 3, and then the generalized propor-
tional control law based on dual quaternion’s logarithmic mapping is designed by making use of the relationship between
Lie-group and Lie-algebra. Simulations are provided in Section 4 to validate the proposed control law with the urban search
and rescue simulation (USARSim) platform and quad-rotor model. The last section concludes the paper.

Notations. We employ 0 simply to denote the scalar zero. Three-dimensional vector (0,0,0)T , dual number 0 + ε0 and
dual vector (0,0,0)T + ε(0,0,0)T are denoted by 0, 0̂ and 0̂, respectively. We denote unit quaternion [1,0,0,0] and unit
dual quaternion [1,0,0,0] + ε[0,0,0,0] by I and Î, respectively. If not otherwise stated, a (dual) vector is denoted by the
boldface, and its corresponding (dual) vector quaternion is denoted by the normal type, for example, v = [0, v] or v̂ = [0̂, v̂].

2. Geometric structure

This section focuses on introducing the geometric structure of unit dual quaternions. Readers are referred to Appendix A
for more details about the definitions and properties of unit dual quaternion.

2.1. Exponential and logarithm

A unit quaternion can be used to describe a rotation. For the frame rotation about a unit axis n with angle 0 � ϑ < 2π
(see Fig. 1), there is a unit quaternion

q =
[

cos

(
ϑ

2

)
, sin

(
ϑ

2

)
n

]
(1)

relating a fixed vector expressed in the original frame rN with the same vector expressed in the new frame r O by rN =
q∗ ◦ r O ◦ q, where r O = [0, r O ] and rN = [0, rN ] are two vector quaternions.

The unit quaternion in (1) can be represented in exponential form, that is q = e[0, ϑ
2 n] . Correspondingly, the logarithm of

a unit quaternion in (1) is ln q = [0, ϑ
2 n] = θ

2 , where θ = [0, θ ] = [0, ϑn] is a vector quaternion [15].
A unit dual quaternion can be used to represent a transformation in 3-D space. Considering a rotation q succeeded by

a translation pb , according to the Chasles Theorem (refer to Theorem 2.11 in [9]), this transformation is equivalent to a
screw motion, which is a rotation about a unit axis n with angle 0 � ϑ < 2π combined with a translation d parallel to n
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Fig. 2. Geometry of screw motion: every screw motion can be modeled as a rotation with angle 0 � ϑ < 2π about a unit axis n and a subsequent
translation d along n.

illustrated in Fig. 2. Obviously, the Plucker coordinate of the rotational axis n is

n̂ = n + ε(c × n), (2)

where c = 1
2 (pb − dn + cot( ϑ

2 )n × pb) is the vector from the original position to the rotational center.1 The above transfor-
mation can be represented by a unit dual quaternion

q̂ =
[

cos
θ̂

2
, sin

θ̂

2
n̂
]

= q + ε

2
q ◦ pb, (3)

where θ̂ = ϑ + εd is the dual angle of the screw [8]. Conversely, the screw motion can be generated by a screw [n, v],
where v = c × n + μn and μ = d/ϑ [9]. Thus the Plucker coordinate of this screw motion is

Ĵ = n + εv = n + ε(c × n + μn). (4)

Correspondingly, considering the dual quaternion representation (3) and the Plucker coordinate (4), we have

Lemma 1. The exponential form of unit dual quaternion in (3) is q̂ = e
ϑ
2 Ĵ = e[0̂, 1

2 θ̂ n̂] , where Ĵ = [0̂, Ĵ ].

Proof. In this proof, we denote v̂n = v̂ ◦ · · · ◦ v̂︸ ︷︷ ︸, where v̂ is a dual quaternion. Substituting (2) into (4), we obtain Ĵ =
(1 + εμ)n̂. Therefore, we have

Ĵ = [
0̂, (1 + εμ)n̂

]
, (5)

Ĵ 2 = [
0̂, (1 + εμ)n̂

] ◦ [
0̂, (1 + εμ)n̂

] = [−(1 + 2εμ), 0̂
]
, (6)

Ĵ 3 = [−(1 + 2εμ), 0̂
] ◦ [

0̂, (1 + εμ)n̂
] = [

0̂,−(1 + 3εμ)n̂
]
, (7)

Ĵ 4 = [
0̂,−(1 + 3εμ)n̂

] ◦ [
0̂, (1 + εμ)n̂

] = [
(1 + 4εμ), 0̂

]
, (8)

Ĵ 5 = [
(1 + 4εμ), 0̂

] ◦ [
0̂, (1 + εμ)n̂

] = [
0̂, (1 + 5εμ)n̂

]
, (9)

· · · .
According to the Taylor’s series expansion, we have

e
ϑ
2 Ĵ = 1 + ϑ

2
Ĵ +

(
ϑ

2
Ĵ

)2 1

2! +
(

ϑ

2
Ĵ

)3 1

3! +
(

ϑ

2
Ĵ

)4 1

4! +
(

ϑ

2
Ĵ

)5 1

5! + · · · .

Using (5)–(9), we obtain

1 Superscripts b and s relate to the body-frame (which is attached to the rigid-body) and the spatial-frame (which is relative to a fixed (inertial)
coordinate frame) respectively throughout this paper. The concepts of body-frame and spatial-frame come from [9].
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e
ϑ
2 Ĵ =

(
1 −

(
ϑ

2

)2

+
(

ϑ

2

)4 1

4! − · · ·
)

+
(

ϑ

2
−

(
ϑ

2

)3 1

3! +
(

ϑ

2

)5 1

5! − · · ·
)

n̂

− εμ
ϑ

2

(
ϑ

2
−

(
ϑ

2

)3 1

3! +
(

ϑ

2

)5 1

5! − · · ·
)

+ εμ
ϑ

2

(
1 −

(
ϑ

2

)2

+
(

ϑ

2

)4 1

4! − · · ·
)

n̂

= cos
ϑ

2
+ sin

ϑ

2
n̂ + ε

d

2

(
− sin

ϑ

2
+ cos

ϑ

2
n̂
)

= cos
θ̂

2
+ sin

θ̂

2
n̂ = q̂.

Further, using (4) and μϑ = d, we obtain

ϑ

2
Ĵ = 1

2

(
ϑn + ε

(
(c × n)ϑ + dn

)) = 1

2
(ϑ + εd)

(
n + ε(c × n)

) = 1

2
θ̂ n̂,

and therefore complete the proof. �
A similar Clifford algebra exponential is discussed in [16]. According to Lemma 1, we can obtain the logarithmic mapping

of a unit dual quaternion.

Lemma 2. Let ln Î = [0̂, 0̂]. For a unit dual quaternion defined by (3), its logarithmic mapping is

ln q̂ = ϑ

2
Ĵ =

[
0̂,

1

2
θ̂ n̂

]
. (10)

Proof. The result can be concluded directly by observing the fact that ln Î = [0̂, 0̂] and the result in Lemma 1. �
The representation of the unit dual quaternion’s logarithmic mapping in (10) is not intuitive, due to the complexities

of n̂ or Ĵ . It is not convenient to use this logarithmic mapping directly in many applications, such as control design. In
many existing literature concerning the designing of controllers and observers for systems on SO(3), instead of using the
actual logarithm of unit quaternion, an approximate function that is quick and easy to compute algebraically is adopted
[17–19].

Similarly, we give an approximate and simple representation for a unit dual quaternion’s logarithmic mapping by explor-
ing the geometric significance of (10).

Let us go back to Fig. 2. First, we make
−→
I I ′ ⊥ c , where I is the rotational center of arc Ô O ′ and I ′ is on the line

−−−→
O O ′ .

Clearly,
−→
I I ′ ⊥ n too. Denote r = |c|. Then we obtain (c × n) = r

−→
I I ′/|−→I I ′|, which implies the norm of (c × n)ϑ is rϑ (or arc

Ô O ′) and vector (c × n)ϑ is parallel to
−→
I I ′ . When ϑ → 0, we have rϑ → |−−−→

O O ′| and the direction of
−→
I I ′ is to the direction of−−−→

O O ′ too, i.e., (c × n)ϑ → −−−→
O O ′ . Further, from (4), we have

Ĵϑ = ϑn + ε
(
(c × n)ϑ + dn

)
. (11)

By replacing (c × n)ϑ in (11) with
−−−→
O O ′ , we can get

Ĵϑ ≈ (
ϑn + ε

(−−−→
O O ′ + dn

)) = ϑn + εpb.

Correspondingly, we have the following definition for unit dual quaternion’s logarithmic mapping.

Definition 1. An approximate logarithmic mapping for the unit dual quaternion represented in (3) is defined by

ln q̂ = 1

2

(
θ + εpb), (12)

which is a dual vector quaternion with θ = [0, θ] = [0, ϑn] and pb = [0, pb].

2.2. Lie-group and Lie-algebra

Denote the sets of unit quaternions and corresponding logarithms by Q u and V, respectively. It is proven in [20] that Q u

is a Lie-group and V is the Lie-algebra of Q u . Note that we employ D Q u to denote the set of unit dual quaternions in the
sequel.

Theorem 3. D Q u is a Lie-group under dual quaternion multiplication.
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Proof. The proof is composed of two steps. First, we prove that D Q u is a group.

1. Identity element. Clearly, Î is the identity element of D Q u .
2. Inverse element. The conjugate of a unit dual quaternion is its inverse element in D Q u .
3. Closure. For any q̂1 and q̂2 ∈ D Q u , using q̂1 ◦ q̂∗

1 = q̂2 ◦ q̂∗
2 = Î, we have (q̂1 ◦ q̂2) ◦ (q̂1 ◦ q̂2)

∗ = q̂1 ◦ q̂2 ◦ q̂∗
2 ◦ q̂∗

1 = Î, which
indicates q̂1 ◦ q̂2 is also in D Q u .

4. Associate. For any q̂1, q̂2 and q̂3 ∈ D Q u , it can be verified directly that (q̂1 ◦ q̂2) ◦ q̂3 = q̂1 ◦ (q̂2 ◦ q̂3), which indicates
associate law holds in D Q u .

Therefore, D Q u is a group under ‘◦’.
Second, we prove that D Q u is a manifold. For any q̂ = qr + εqd ∈ D Q u , we have q̂ ◦ q̂∗ = qr ◦ q∗

r + ε(qr ◦ q∗
d + q∗

r ◦ qd) = Î,
which indicates qr ◦ q∗

r = I and q∗
r ◦ qd = [0, t], where [0, t] is a vector quaternion. Consequently, we know qr and qd can be

expressed by qr ∈ Q u and qd = [0, t] ◦ qr . It is well known that Q u is diffeomorphic to manifold S3 [21], thus we conclude
that Q u is a manifold with three dimensions. So, qr and qd are both manifolds with three dimensions, and D Q u is a
manifold with six dimensions.

Finally, for any q̂1 and q̂2 ∈ D Q u , denote F (q̂1, q̂2) = q̂1 ◦ q̂−1
2 . Clearly, F (q̂1, q̂2) is C∞ .

Therefore, based on the above discussions, we can conclude that D Q u is a Lie-group under dual quaternion multiplica-
tion. �

The space formed by all logarithmic mappings of unit dual quaternions defined in (12) is denoted by V̂. Clearly, V̂ is
equivalent to the set of all dual vector quaternions. Given any two dual vector quaternions v̂1 and v̂2 ∈ V̂, we define ‘[ ]’
operator as

[v̂1, v̂2] = v̂1 ◦ v̂2 − v̂2 ◦ v̂1.

With the newly defined ‘[ ]’ operator, we have

Theorem 4. V̂ with operator ‘[ ]’ is the Lie-algebra of the Lie-group D Q u.

Proof. We conclude this result by firstly proving that V̂ with operator ‘[ ]’ is a Lie-algebra, and then showing that V̂ is
isomorphic to the tangent space of Lie group D Q u at identity Î.

For any λ1 and λ2 ∈ R and for all v̂1, v̂2 and v̂3 ∈ V̂, we can obtain the following properties:

1. Bilinear.

[λ1 v̂1 + λ2 v̂2, v̂3] = λ1 v̂1 ◦ v̂3 + λ2 v̂2 ◦ v̂3 − λ1 v̂3 ◦ v̂1 − λ2 v̂3 ◦ v̂2

= λ1[v̂1, v̂3] + λ2[v̂2, v̂3].
2. Antisymmetric.

Let v̂1 = vr1 + εvd1 and v̂2 = vr2 + εvd2. According to the multiplication between dual quaternions (see (A.9) in
Appendix A), we have

[v̂1, v̂2] = (vr1 ◦ vr2 − vr2 ◦ vr1) + ε(vd1 ◦ vr2 − vr2 ◦ vd1 + vr1 ◦ vd2 − vd2 ◦ vr1).

Further, according to the quaternion multiplication (see (A.3) in Appendix A), we have

[v̂1, v̂2] = 2[0, vr1 × vr2] + 2ε[0, vd1 × vr2 + vr1 × vd2].
Clearly, we have [v̂1, v̂2] = −[v̂2, v̂1].

3. Jacobi identity.[
v̂1, [v̂2, v̂3]

] = v̂1 ◦ [v̂2, v̂3] − [v̂2, v̂3] ◦ v̂1

= v̂1 ◦ v̂2 ◦ v̂3 − v̂1 ◦ v̂3 ◦ v̂2 − v̂2 ◦ v̂3 ◦ v̂1 + v̂3 ◦ v̂2 ◦ v̂1.

Similarly, we obtain[
v̂2, [v̂3, v̂1]

] = v̂2 ◦ v̂3 ◦ v̂1 − v̂2 ◦ v̂1 ◦ v̂3 − v̂3 ◦ v̂1 ◦ v̂2 + v̂1 ◦ v̂3 ◦ v̂2,[
v̂3, [v̂1, v̂2]

] = v̂3 ◦ v̂1 ◦ v̂2 − v̂3 ◦ v̂2 ◦ v̂1 − v̂1 ◦ v̂2 ◦ v̂3 + v̂2 ◦ v̂1 ◦ v̂3.

Therefore, we have [v̂1, [v̂2, v̂3]] + [v̂2, [v̂3, v̂1]] + [v̂3, [v̂1, v̂2]] = 0.

Therefore the ‘[ ]’ operator is a Lie-bracket and V̂ is a Lie-algebra.
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We employ Te(D Q u) to denote the tangent space of Lie group D Q u at identity Î. For any q̂ ∈ D Q u and the corresponding
element T q̂ in Te(D Q u), we have

T q̂ = ˙̂q|q̂=Î = 1

2
q̂ ◦ ξb

∣∣∣∣
q̂=Î

= 1

2
ξb

∣∣∣∣
q̂=Î

.

Therefore Te(D Q u) is the space composing of all ξb . Further, the twist ξb is represented by [0̂, ξb] with

ξb = ωb + ε
(

ṗb + ωb × pb),
which is also a dual vector quaternion. Thus Te(D Q u) is isomorphic to V̂.

It is well known that a Lie algebra is the tangent space of a Lie group at identity [22]. So, we can conclude that V̂ with
operator ‘[ ]’ is the Lie-algebra of the Lie-group D Q u . �
Definition 2 (Adjoint transformation). For a unit (dual) quaternion q ∈ Q u or q̂ ∈ D Q u , and a unit (dual) vector quaternion
v ∈ V or v̂ ∈ V̂, the adjoint transformation is

Adq v = q ◦ v ◦ q−1 = q ◦ v ◦ q∗ or Adq̂ v̂ = q̂ ◦ v̂ ◦ q̂−1 = q̂ ◦ v̂ ◦ q̂∗.

2.3. Norm, error, and metric

For the logarithmic mapping of a unit dual quaternion defined by (12), we give a norm definition on V̂, that is

Definition 3. The norm of the logarithmic mapping (12) is defined by

‖ln q̂‖ = α‖θ‖ + β
∥∥pb

∥∥, (13)

where ‖ · ‖ is the standard 2-norm, α and β are positive real numbers.

This definition is very similar to the norm definition in se(3) in [23]. It is easy to validate that (13) satisfies the norm
definition.

Consider unit dual quaternions q̂ defined by (3) and q̂d defined by

q̂d = qd + ε

2
qd ◦ pb

d. (14)

We can describe the dual quaternion error using a multiplicative dual quaternion as

q̂e = f l(q̂, q̂d) = q̂∗ ◦ q̂d. (15)

Clearly, for any new unit dual quaternion q̂a ∈ D Q u , we have f l(q̂a ◦ q̂, q̂a ◦ q̂d) = f l(q̂, q̂d), which is left-invariant. Similar
verification shows that f l(q̂, q̂d) is not right-invariant. We called such error left-invariant error.

Lemma 5. For q̂ in (3) and q̂d in (14), the left-invariant error q̂e defined by (15) can be rewritten by

q̂e = qe + ε

2
qe ◦ pb

e , (16)

where qe = q∗ ◦ qd and pb
e = pb

d − Adq∗
e

pb.

Proof. Substituting (3) and (14) into (15), we have

q̂e =
(

q + ε

2
q ◦ pb

)∗
◦

(
qd + ε

2
qd ◦ pb

d

)
= q∗ ◦ qd + ε

2
q∗ ◦ qd ◦ (

pb
d − Ad(q∗◦qd)∗ pb).

Together with qe = q∗ ◦ qd and pb
e = pb

d − Adq∗
e

pb , we complete the proof. �
Denote θb

e = 2 ln qe . According to (12) and (16), we obtain

ln q̂e = 1

2

(
θb

e + εpb
e

)
. (17)
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Definition 4 (Left-invariant metric). For unit dual quaternions q̂ and q̂d , based on left-invariant error (16), we define

dl(q̂, q̂d) = 2‖ln q̂e‖ = α
∥∥θb

e

∥∥ + β
∥∥pb

e

∥∥, (18)

where α and β are positive real numbers.

Lemma 6. Definition 4 is a left-invariant metric.

Proof.

1. Definition 4 is well defined as dl(q̂, q̂d) = 0 if and only if q̂d = q̂.
2. Using q̂ = q + 1

2 q ◦ pb and q̂d = qd + ε
2 qd ◦ pb

d , we have dl(q̂d, q̂) = 2α‖ln (q∗
d ◦ q)‖ + β‖pb − Adqe pb

d‖ = 2α‖ln q∗
e ‖ +

β‖−Adq∗
e

pb
e‖ = 2α‖ln qe‖ + β‖pb

e‖ = dl(q̂, q̂d), hence Definition 4 is symmetric.
3. Definition 4 satisfies the triangle inequality as for any new q̂a ∈ D Q u , we have

dl(q̂, q̂d) = 2α
∥∥ln

(
q∗ ◦ qd

)∥∥ + β
∥∥pb

d − Ad(q∗◦qd)∗ pb
∥∥

= 2α
∥∥ln

(
q∗ ◦ qa ◦ q∗

a ◦ qd
)∥∥ + β

∥∥pb
d − Ad(q∗

a◦qd)∗ pb
a + Ad(q∗

a◦qd)∗
(

pb
a − Ad(q∗◦qa)∗ pb)∥∥

� 2α
∥∥ln

(
q∗ ◦ qa

)∥∥ + β
∥∥pb

a − Ad(q∗◦qa)∗ pb
∥∥ + 2α

∥∥ln
(
q∗

a ◦ qd
)∥∥ + β

∥∥pb
d − Ad(q∗

a◦qd)∗ pb
a

∥∥
= dl(q̂, q̂a) + dl(q̂a, q̂d).

Moreover, it is clear that dl(q̂, q̂d) is left-invariant as q̂e is left-invariant. Therefore, we can conclude that Definition 4 is
a left-invariant metric. �
Remark 1. Considering q̂ = q + ε

2 ps ◦ q and q̂d = qd + ε
2 ps

d ◦ qd represented in spatial-frame, we can also describe the dual
quaternion error by q̂er = f r(q̂, q̂d) = q̂d ◦ q̂∗ . Clearly, q̂er is right-invariant rather than left-invariant, which is therefore called
right-invariant error. Similarly, q̂er can be written in the form of

q̂er = qer + ε

2
ps

e ◦ qer, (19)

where qer = qd ◦ q∗ and ps
e = ps

d − Adqer ps . Let θ s
e = 2 ln qer , we have ln q̂er = 1

2 (θ s
e + εAdq∗

er
ps

e). Correspondingly, the right-
invariant metric can be defined by dr(q̂, q̂d) = ‖ln q̂er‖ = α‖θ s

e‖ + β‖ps
e‖, where α and β are positive real numbers.

3. Case study: Kinematic based control

Almost all the work referring rigid-body transformation could be refreshed by employing the above discussions on unit
dual quaternions. As a case study, the kinematic control problem is discussed in the following.

3.1. Kinematic control model

Physically left-invariance reflects the invariance of the metric with respect to choice of the body-frame, and the right-
invariance reflects the invariance with respect to the spatial-frame [23]. Consider the following current configuration q̂
defined in (3) with kinematic equation (A.12) and (A.14), and target configuration defined in (14) with kinematic equation

˙̂qd = 1

2
q̂d ◦ ξb

d , (20)

ξb
d = ωb

d + ε
(

ṗb
d + ωb

d × pb
d

)
. (21)

On the basis of left-invariant error defined in (16), we can derive the following kinematic control model in body-frame:

Theorem 7 (Kinematic control model in body-frame). Taking q̂ and q̂d as the current configuration and target configuration, respec-
tively, the kinematic control model from (16) in body-frame is expressed by

˙̂qe = 1

2
q̂e ◦ ξb

e , (22)

where ξb
e is the error twist in body-frame in the form of

ξb
e = ξb

d − Adq̂∗
e
ξb = [

0,ωb
e

] + ε
[
0, ṗb

e + ωb
e × pb

e

]
(23)

with ωb
e = ωd − Adq∗ωb and pb

e = pb − Adq∗ pb.

e d e
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Proof. Differentiating both sides of (15), we obtain

˙̂qe = ˙̂q∗ ◦ q̂d + q̂∗ ◦ ˙̂qd. (24)

Substituting (A.12) and (20) into (24), we have ˙̂qe = − 1
2 ξb ◦ q̂∗ ◦ q̂d + 1

2 q̂∗ ◦ q̂d ◦ ξb
d = 1

2 q̂e ◦ (ξb
d − Adq̂∗

e
ξb). From (23), we have

˙̂qe = 1
2 q̂e ◦ ξb

e and

ξb
e = ξb

d − q̂∗
e ◦ ξ ◦ q̂e

= ωb
d − Adq∗

e
ωb + ε

((
ṗb

d + ωb
d × pb

d

) − Adq∗
e

(
ṗb + ωb × pb) − Adq∗

e
ωb × pb

e

)
= ωb

e + ε
((

ṗb
d − Adq∗

e
pb × ωb

e − Adq∗
e

ṗb) + (
ωb

d × pb
d − ωb

e × Adq∗
e

pb − Adq∗
e

(
ωb × pb) − Adq∗

e
ωb × pb

e

))
.

Using pb
e = pb

d − Adq∗
e

pb yields

ξb
e = ωb

e + ε
((

ṗb
d − Adq∗

e
pb × ωb

e − Adq∗
e

ṗb) + (
ωb

d × pb
d − Adq∗

e
ωb × pb

d − ωb
e × Adq∗

e
pb)).

By direct computations, we can verified that ṗb
d − Adq∗

e
pb × ωb

e − Adq∗
e

ṗb = ṗb
e and ωb

d × pb
d − Adq∗

e
ωb × pb

d − ωb
e × Adq∗

e
pb =

ωb
e × pb

e . Thus, it is obtained

ξb
e = ωb

e + ε
(

ṗb
e + ωb

e × pb
e

)
.

Hence, we complete the proof. �
3.2. Generalized proportional control law on D Q u

The control input of kinematic control model (22)–(23) is ξb
e . We assume ξb

d and q̂e are known in prior, then the actual

control input is ξb , which consists of angular velocity ωb and linear velocity ṗb . Note that we have proven that D Q u is a
Lie-group and V̂ is its Lie-group in Section 2. By using these Lie-group and Lie-algebra, the generalized proportional control
law is proposed as follows.

Theorem 8 (Generalized proportional control law). For kinematic control model (22)–(23), the generalized proportional control law

ξb
e = −2k̂ · ln q̂e (25)

exponentially stabilizes configuration q̂ to configuration q̂d globally, where k̂ = kr + εkd is a dual vector quaternion with each nonzero
component greater than zero, and symbol ‘·’ is the dot production between two dual vector quaternions.

Proof. For qe = q∗ ◦ qd given in (16), it is easy to obtain that q̇e = 1
2 qe ◦ ωb

e by direct computations. Further, with the acid

of (1), it is obtain ωb
e = 2q∗

e ◦ q̇e = [0, ϑ̇ene + sin(ϑe)ṅe − 2 sin2( ϑe
2 )ne × ṅe]. Thus, we obtain(

θb
e

)T
ωb

e = (
θb

e

)T
ϑ̇ene = (

θb
e

)T
θ̇

b
e . (26)

Substituting (23) and (17) into (25), we obtain

ωb
e + ε

(
ṗb

e + ωb
e × pb

e

) = −(kr + εkd) · (θb
e + εpb

e

)
. (27)

Let kr = (kr1,kr2,kr3)
T and kd = (kd1,kd2,kd3)

T . Considering the definition of dot production in (A.10), from (27), we can
obtain{

ωb
e = −Krθ

b
e ,

ṗb
e = −Kd pb

e − ωb
e × pb

e ,
(28)

where Kr = diag(kr1,kr2,kr3) and Kd = diag(kd1,kd2,kd3), respectively.
Consider the left-invariant metric defined in (18) as the Lyapunov function candidate V with states θb

e and pb
e . Clearly,

V is positive definite, and when ‖θb
e‖ → ∞ and ‖pb

e‖ → ∞, we have V → ∞ too.
Differentiating (18) and using (26) and (28) yields

V̇ = 2α
(
θb

e

)T
θ̇b

e + 2β
(

pb
e

)T
ṗb

e = −2α
(
θb

e

)T
Krθ

b
e − 2β

(
pb

e

)T
Kd pb

e − 2β
(

pb
e

)T (
ωb

e × pb
e

)
= −2α

(
θb

e

)T
Krθ

b
e − 2β

(
pb

e

)T
Kd pb

e ,

which is negative definite.
Finally, let kmin = min (kr1,kr2,kr3,kd1,kd2,kd3), we have V̇ � −2kmin(α‖θb

e‖+β‖pb
e‖) = −2kmin V . Thus, control law (25)

guarantees configuration q̂ exponentially converging to configuration q̂d globally with converging rate e−2kmin . �
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Remark 2. From right-invariant error (19), the kinematic control model in spatial-frame can be derived as

˙̂qer = 1

2
ξ s

e ◦ q̂er, (29)

ξ s
e = ξ s

d − Adq̂er
ξ s = ωs

e + ε
(

ṗs
e + ps

e × ωs
e

)
, (30)

where ωs
e = ωs

d − Adqer ω
s and ps

e = ps
d − Adqer ps . Based on (29) and (30), the similar generalized proportional control law in

spatial-frame can also be conducted.

Remark 3. Control law (25) is a unified one. When q̂d is a constant, it serves as a regulation law. When q̂d is moving, a track-
ing law is achieved. Moreover, unit dual quaternion based control laws provide a harmony between rotation and translation,
which can control attitude and position globally without singularity and with concise notions. A similar logarithmic feed-
back based control law on SE(3) is proposed in [11], where the control law is conducted on the basis of 4 × 4 HTM. In this
study, an approximate logarithmic mapping of unit dual quaternion, rather than matrix, is used to design control law, which
leads to control design being more easy and accessible.

4. Simulations on USARSim

Simulations are provided to verify the proposed control law (25) on the Urban Search And Rescue Simulation (USARSim)
platform with a quad-rotor model (refer to http://usarsim.sourceforge.net/wiki/index.php/Main_Page for details of USARSim
and quad-rotor model).

The workspace of quad-rotor is isomorphic to SO(2) ⊗ R3. We assume that the rotating axis is z-axis, thus the current
configuration and the target configuration can be represented by

q̂ =
[

cos
γ

2
,0,0, sin

γ

2

]
+ ε

2

[
cos

γ

2
,0,0, sin

γ

2

]
◦ [0, x, y, z],

and

q̂d =
[

cos
γd

2
,0,0, sin

γd

2

]
+ ε

2

[
cos

γd

2
,0,0, sin

γd

2

]
◦ [0, xd, yd, zd],

respectively, where γ and γd are related to SO(2), (x, y, z) and (xd, yd, zd) are related to R3. For simplicity, q̂ and q̂d are
described by (γ , x, y, z) and (γd, xd, yd, zd), respectively. We can control the angular velocity γ̇ and the linear velocity
(ẋ, ẏ, ż)T of quad-rotor in body-frame, i.e., the control input is its twist in body-frame.

The target configuration is designed by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γd = 0.1t + π

3
,

xd = −0.1t + 8,

yd = 0.2t − 46.67,

zd = 25.

(31)

The original configuration of quad-rotor is set to be (0,9.75m,−46.67m,20m). We employ control law (25) to control a
quad-rotor to track target configuration (31). The parameter k̂ in (25) is set to be (0,0,0.5) + ε(1,1,1) in simulations. Then
the simulation results are shown in Figs. 3 to 5.

Fig. 3 shows the evolutions of the current trajectories in (γ , x, y, z) with respect to the target trajectories. Fig. 4 shows
the current configuration with respect to the target configuration. Fig. 5 shows the evolution of errors, defined by (18)
with α = 1 and β = 2, versus time. In these figures, all current trajectories in (γ , x, y, z) converge to target trajectories
asymptotically, and the current configuration converges to the target configuration too. Thus, control law (25) tracks the
target configuration well.

5. Conclusion

A new type of rigid-body transformation group, unit dual quaternion Lie-group, is investigated in this study. From the
derived exponential form of a unit dual quaternion, the properties of Lie-group D Q u and its Lie-group V̂ are revealed,
which provide a new way of research on rigid-body’s transformation. Correspondingly, by utilizing the established Lie-group
structure, how kinematic model and control design can be implemented for general rigid-body motion are developed as
well.

Appendix A. Mathematical preliminaries

Basic notions about quaternion, dual number, and dual quaternion are reviewed. More details can be found in, for exam-
ple, [5,8,12].

http://usarsim.sourceforge.net/wiki/index.php/Main_Page
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Fig. 3. Trajectories of control law (25) in (γ , x, y, z) directions versus time.

Fig. 4. Current configuration with respect to target configuration.
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Fig. 5. Tracking errors versus time.

A.1. Quaternion

A quaternion was invented by Hamilton as an extension of a complex number to R4 in 1860. Formally, a quaternion q
can be defined by

q = [s, v], (A.1)

where s is a scalar (called the scalar part), and v is a three-dimensional vector (called the vector part). Obviously, a three-
dimensional vector can be treated equivalently as a quaternion with vanishing real part, called the vector quaternion.

The conjugate of a quaternion represented by (A.1) is q∗ = [s,−v]. Let λ be a scalar, the scalar production of a quater-
nion (A.1) is λq = [λs, λv]. For two quaternions q1 = [s1, v1] and q2 = [s2, v2], the addition and the multiplication operations
are, respectively, defined by

q1 + q2 = [s1 + s2, v1 + v2], (A.2)

q1 ◦ q2 = [
s1s2 − v T

1 v2, s1 v2 + s2 v1 + v1 × v2
]
. (A.3)

It is should be noted that the quaternion multiplication is associative and distributive but not commutative.
The multiplicative inverse element of a quaternion q is q−1 = 1/(q ◦ q∗) ◦ q∗ . If q ◦ q∗ = I, then q is called unit quaternion.

For a unit quaternion, q−1 = q∗ .
The kinematic equations of a unit quaternion are

q̇ = 1

2
ωs ◦ q or q̇ = 1

2
q ◦ ωb, (A.4)

where ωs and ωb are the angular velocity in spatial-frame and the angular velocity in body-frame, respectively.

A.2. Dual number

Dual numbers were invented by Clifford in 1873 and further developed by Study in 1891. A dual number is defined by

ẑ = a + εb with ε2 = 0, but ε �= 0, (A.5)

where a and b are real numbers, called the real part and the dual part, respectively, and ε is nilpotent such as
( 0 1

0 0

)
. The

conjugate of a dual number (A.5) is ẑ∗ = a − εb. The scalar production of a dual number (A.5) is λẑ = λa + ελb, where λ is
a scalar.

By definition, for two dual numbers ẑ1 = a1 + εb1 and ẑ2 = a2 + εb2, the following operations hold

ẑ1 + ẑ2 = (a1 + a2) + ε(b1 + b2) and ẑ1 ẑ2 = (a1a2) + ε(a1b2 + b1a2).

It should be noted that the production of a dual number and its conjugate is ẑẑ∗ = (a + εb)(a − εb) = a2.
Dual vectors are a generalization of dual numbers whose real and dual parts are both three-dimensional vectors. By

definition, for two dual vectors v̂1 = vr1 + εvd1 and v̂2 = vr2 + εvd2, we have
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v̂1 v̂2 = v T
r1 vr2 + ε

(
v T

d1 vr2 + v T
r1 vd2

)
,

v̂1 × v̂2 = vr1 × vr2 + ε(vd1 × vr2 + vr1 × vd2).

A.3. Dual quaternion

A dual quaternion is a quaternion with dual number components, i.e., q̂ = [ŝ, v̂], where ŝ is a dual number and v̂ is a
dual vector. A dual quaternion also can be treated as a dual number with the quaternion components, which is

q̂ = qr + εqd, (A.6)

where qr and qd are both quaternions. The conjugate of a dual quaternion q̂ in (A.6) is

q̂∗ = q∗
r + εq∗

d . (A.7)

For two dual quaternions q̂1 = qr1 + εqd1 and q̂2 = qr2 + εqd2, the addition and the multiplication are

q̂1 + q̂2 = qr1 + qr2 + ε(qd1 + qd2), (A.8)

q̂1 ◦ q̂2 = qr1 ◦ qr2 + ε(qr1 ◦ qd2 + qd1 ◦ qr2), (A.9)

respectively. According to (A.7) and (A.9), it is obtained (q̂1 ◦ q̂2)
∗ = q̂∗

2 ◦ q̂∗
1.

The multiplicative inverse element of dual quaternion is q̂−1 = 1/(q̂ ◦ q̂∗) ◦ q̂∗ . If q̂ ◦ q̂∗ = Î, then the dual quaternion q̂ is
called unit dual quaternion. For a unit dual quaternion, we have q̂−1 = q̂∗ .

Obviously, a dual vector can be treated equivalently as a dual quaternion with vanishing real part, called dual vector
quaternion. For two dual vector quaternions k̂ = kr + εkd = [0,kr1,kr2,kr3] + ε[0,kd1,kd2,kd3] and v̂ = [0, vr] + ε[0, vd], the
dot production of k̂ and v̂ is defined by

k̂ · v̂ = [0, Kr vr] + ε[0, Kd vd], (A.10)

where Kr = diag(kr1,kr2,kr3) and Kd = diag(kd1,kd2,kd3), which are both 3 × 3 diagonal matrices with diagonal entries
kr1,kr2,kr3 and kd1,kd2,kd3, respectively.

The kinematic equations of a unit dual quaternion are

˙̂q = 1

2
ξ s ◦ q̂, (A.11)

˙̂q = 1

2
q̂ ◦ ξb, (A.12)

where

ξ s = ωs + ε
(

ṗs + ps × ωs), (A.13)

ξb = ωb + ε
(

ṗb + ωb × pb), (A.14)

in which ξ s and ξb are called twists, specially, ξ s is called twist-in-spatial-frame, and ξb is called twist-in-body-frame.

References

[1] J. Funda, R.H. Taylor, R.P. Paul, On homogeneous transformations, quaternions, and computational efficiency, IEEE Trans. Robot. Autom. 6 (3) (1990)
382–388.

[2] J. Funda, R.P. Paul, A computational analysis of screw transformations in robotics, IEEE Trans. Robot. Autom. 6 (3) (1990) 348–356.
[3] N.A. Aspragathos, J.K. Dimitros, A comparative study of three methods for robot kinematics, IEEE Trans. Syst. Man Cybern., Part B, Cybern. 28 (2) (1998)

135–145.
[4] A. Purwar, Q.J. Ge, On the effect of dual weights in computer aided design of rational motions, J. Mech. Des. 127 (5) (2005) 967–972.
[5] J.S. Goddard, Pose and motion estimation from vision using dual quaternion-based extended Kalman filtering, PhD thesis, The University of Tennessee,

1997.
[6] K. Daniilidis, Hand-eye calibration using dual quaternions, Int. J. Robot. Res. 18 (3) (1999) 286–298.
[7] H.-L. Pham, V. Perdereau, B.V. Adorno, P. Fraisse, Position and orientation control of robot manipulators using dual quaternion feedback, in: Proceedings

of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 2010, pp. 658–663.
[8] Y.X. Wu, X.P. Hu, D.W. Hu, J.X. Lian, Strapdown inertial navigation system algorithms based on dual quaternions, IEEE Trans. Aerosp. Electron.

Syst. 41 (1) (2005) 110–132.
[9] R.M. Murray, Z. Li, S.S. Sastry, An Mathematical Introduction to Robotic Manipulation, CRC Press, 1994.

[10] F. Bullo, A.D. Lewis, Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems, Springer, New
York, 2004.

[11] F. Bullo, R. Murray, Proportional derivative (PD) control on the euclidean group, in: European Control Conference, Rome, Italy, 1995.
[12] D. Han, Q. Wei, Z. Li, W. Sun, Control of oriented mechanical systems: A method based on dual quaternion, in: Proceedings of the 17th IFAC World

Congress, Seoul, Korea, 2008, pp. 3836–3841.



1364 X. Wang et al. / J. Math. Anal. Appl. 389 (2012) 1352–1364
[13] X. Wang, C. Yu, Feedback linearization regulator with coupled attitude and translation dynamics based on unit dual quaternion, in: Proceedings of the
2010 IEEE Multi-Conference on Systems and Control, Pacifico Yokohoma, Japan, 2010, pp. 2380–2384.

[14] X. Wang, C. Yu, Unit-dual-quaternion-based PID control scheme for rigid-body transformation, in: Proceedings of the 18th IFAC World Congress, Milano,
Italy, 2011, pp. 9296–9301.

[15] M.-J. Kim, M.-S. Kim, A compact differential formula for the first derivative of a unit quaternion curve, J. Vis. Comput. Animat. 7 (1) (1996) 43–57.
[16] A. Perez-Gracia, J.M. McCarthy, Kinematic synthesis of spatial serial chains using clifford algebra exponentials, J. Mech. Eng. Sci. 220 (7) (2006) 953–968.
[17] J.T.-Y. Wen, K. Kreutz-Delgado, The attitude control problem, IEEE Trans. Automat. Control 36 (19) (1991) 1148–1162.
[18] P. Tsiotras, Further passivity results for the attitude control problem, IEEE Trans. Automat. Control 43 (11) (1998) 1597–1600.
[19] A. Tayebi, Unit quaternion-based output feedback for the attitude tracking problem, IEEE Trans. Automat. Control 53 (6) (2008) 1516–1520.
[20] D. Han, Q. Wei, Z. Li, Attitude control based on the lie-group structure of unit quaternions, in: Proceedings of the 26th Chinese Control Conference,

Zhangjiajie, Hunan, China, 2007, pp. 326–331.
[21] J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag, New York, USA, 1994.
[22] J. Alexander Kirillov, An Introduction to Lie Groups and Lie Algebras, Cambridge University Press, Cambridge, UK, 2008.
[23] F.C. Park, Distance metrics on the rigidbody motions with applications to mechanism design, Trans. ASME 117 (3) (1995) 48–54.


	The geometric structure of unit dual quaternion with application in kinematic control
	1 Introduction
	2 Geometric structure
	2.1 Exponential and logarithm
	2.2 Lie-group and Lie-algebra
	2.3 Norm, error, and metric

	3 Case study: Kinematic based control
	3.1 Kinematic control model
	3.2 Generalized proportional control law on DQu

	4 Simulations on USARSim
	5 Conclusion
	Appendix A Mathematical preliminaries
	A.1 Quaternion
	A.2 Dual number
	A.3 Dual quaternion

	References


