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Abstract

In this paper we present first and second order sufficient conditions for strict local minim
orders 1 and 2 to vector optimization problems with an arbitrary feasible set and a twice direct
differentiable objective function. With this aim, the notion of support function to a vector proble
introduced, in such a way that the scalar case and the multiobjective case, in particular, are co
The obtained results extend the multiobjective ones to this case. Moreover, specializing to a
set defined by equality, inequality, and set constraints, first and second order sufficient condit
means of Lagrange multiplier rules are established.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Classical optimality conditions for differentiable programming problems with c
straints are basic results in many fields, such as optimization theory, control theo
study of stability and sensitivity in mathematical programming, the convergence
gorithms, the best approximation problem. . . They are also a basic support for practical
applications in numerical computation, operations research, engineering, etc.
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First and second order necessary optimality conditions for programs in abstract s
with R-valued or vector-valued functions, have been provided by many authors. A
those we may refer to Hoffmann and Kornstaedt [11], Ben-Tal and Zowe [1], Li
mann [16], Tang [19], Cominetti [5], Maruyama [17]. Of these, only in [1,19] sec
order sufficient conditions are established for differentiable programs. Borwein [4
establishes a sufficient condition for twice Fréchet differentiable programs with eq
and set constraints. In differentiable multiobjective programming (all the spaces are
dimensional) we refer to [3,15] and references therein. Ward [20] and Studniarsk
study necessary and sufficient conditions for strict minima of orderm in nondifferentiable
scalar programs.

In [15], the authors, extending some of Hestenes’s ideas to multiobjective (f :Rn →
R

p) programs, have developed a theory of first and second order sufficient conditio
strict local Pareto (the ordering cone isR

p
+) minimality of orders 1 and 2 forf twice

Fréchet differentiable. Following in this line, we try to generalize the results obtained
to vector optimization problems of the type (2.1), wheref is twice directionally differen-
tiable (according to Definition 2.2), not necessarily twice Fréchet differentiable, an
partial order inY is given by a convex cone. With this purpose, the concept of sup
function to a vector problem is introduced, containing, in particular, the multiobjective
scalar cases. The obtained results generalize the classical ones for the scalar case
ample, the results collected in [9, Sections 4.6 and 4.7]), some results contained in [1
some results provided by other authors, such as Borwein [4] or Ben-Tal and Zowe [1,
vector or multiobjective problems. Furthermore, specializing to a feasible set defin
equality, inequality, and set constraints, first and second order sufficient conditions
tablished. Finally, we remark that these sufficient conditions are close to different ex
necessary conditions.

2. Notations and preliminaries

LetX be a normed space andM a subset ofX. As usual we denote byB(x0, δ) the open
ball centered atx0 and radiusδ, by intM (clM) the interior (closure) of the setM and by
coneM the cone generated byM. The topological dual space toX is X∗. If λ ∈ X∗ and
x ∈ X, we will useλx instead ofλ(x) or the also usual〈λ,x〉. If L1 andL2 are mappings
we will write L2L1 for the compositionL2 ◦ L1.

The positive polar cone toM is M+ = {λ ∈ X∗: λx � 0, ∀x ∈ M} and the strictly
positive polar cone isMs+ = {λ ∈ X∗: λx > 0, ∀x ∈ M \ {0}}.

We are interested in the following general vector optimization problem:

min
{
f (x): x ∈ M

}
, (2.1)

wheref :X → Y , Y is a normed space, andM ⊂ X is arbitrary.
Throughout this paper,D ⊂ Y is a convex closed pointed cone with nonempty inter

which defines the partial order inY .
Let us recall that the pointx0 ∈ M is a local minimum for problem (2.1), denotedx0 ∈

lmin(f,M), if there exists a neighborhoodU of x0 such that

M ∩ U ∩ Nf = ∅, (2.2)
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whereNf = {x ∈ X: f (x)− f (x0) ∈ −D \ {0}}. If, in particular,Y = R andD = R+, the
usual notion of local minimum is obtained.

Checking (2.2) is not easy and, consequently, approximations toM and toNf at the
point x0 are usually employed. One of the most used approximations is the tangen
(Definition 2.1). In its turn, if the sets are determined by constraint functions (asNf )
we usually use the linearized cones, which are defined by directional derivatives (D
tion 2.2) of the involved functions.

Definition 2.1. Let M ⊂ X andx0 ∈ clM. The tangent (contingent) cone toM atx0 is

T (M,x0) =
{
v ∈ X: ∃tn → 0+, ∃xn ∈ M such that lim

n→∞
xn − x0

tn
= v

}
.

It is well known thatv ∈ T (M,x0), with ‖v‖ = 1, if and only if there exists a sequen
xn → x0, with xn ∈ M \ {x0}, such that(xn − x0)/‖xn − x0‖ → v.

Definition 2.2. Let f :X → Y andx0, v ∈ X.

(a) The directional derivative off atx0 in the directionv is

df (x0, v) = lim
(t,u)→(0+,v)

f (x0 + tu)− f (x0)

t
.

(b) The Dini derivative off atx0 in the directionv is

Df (x0, v) = lim
t→0+

f (x0 + tv) − f (x0)

t
.

(c) The second order directional derivative off at x0 in the directionv is

d2f (x0, v) = lim
(t,u)→(0+,v)

f (x0 + tu) − f (x0)− t df (x0, u)

t2/2
.

(d) The second order Dini derivative off atx0 in the directionv is

D2f (x0, v) = lim
t→0+

f (x0 + tv) − f (x0)− t Df (x0, v)

t2/2
.

(e) We say thatf is directionally differentiable atx0 if df (x0, v) exists for allv ∈ X, and
f is twice directionally differentiable atx0 if d2f (x0, v) exists for allv ∈ X.

Derivative (d) has been used by Hiriart-Urruty and Seeger [10], (c) has been us
Ben-Tal and Zowe [2], and (d), considering “lim inf” instead of “lim,” by Studniarski [1
in these two last cases for stating sufficient optimality conditions.

If f is Fréchet differentiable atx0, its Fréchet derivative is denoted by∇f (x0). If it
exists, we have∇f (x0)v = df (x0, v). If f is twice Fréchet differentiable atx0, its sec-
ond Fréchet derivative is denoted by∇2f (x0) that we consider as a continuous biline
application fromX × X into Y . Thus, forv ∈ X, ∇2f (x0)(v, v) is a vector inY .

It is well known that if a functionf is directionally differentiable atx0, thendf (x0, ·)
is continuous onX [7, Theorem 3.2] andf is continuous atx0 [7, p. 28]. In the next
proposition, the continuity of the second derivative is proved.
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Proposition 2.3. Let us suppose that forf :X → Y its second directional derivativ
d2f (x0, v) exists for allv ∈ X. Then the functiond2f (x0, ·) is continuous onX.

Proof. Suppose thatd2f (x0, ·) is not continuous at somev ∈ X. Then there existε > 0
andvn → v such that∥∥d2f (x0, vn)− d2f (x0, v)

∥∥ � ε, ∀n ∈ N.

Since

lim
k→∞

f (x0 + tkvn)− f (x0)− tk df (x0, vn)

t2k /2
= d2f (x0, vn)

for eachn ∈ N and for each sequencetk → 0+, we can find a sequenceαn → 0+ such that∥∥∥∥f (x0 + αnvn)− f (x0)− αn df (x0, vn)

α2
n/2

− d2f (x0, v)

∥∥∥∥ � ε

2

for all n. But this is a contradiction, because the expression in the left side of the ineq
tends to 0 whenn → ∞. ✷

It is also known that iff is Lipschitzian on a neighborhood ofx0 and the Dini derivative
Df (x0, v) exists, then the directional derivativedf (x0, v) also exists and they are the sam
This statement is not valid for second order derivatives, as one can show withf :R2 → R

given byf (x, y) = |y − x2| (which is Lipschitzian),x0 = (0,0) andv = (1,0), because
D2f (x0, v) = 2 andd2f (x0, v) does not exist. On the other hand, obviously, ifd2f (x0, v)

exists, thenD2f (x0, v) also exists and they are the same. Another result on equality o
second derivatives is provided in the next proposition.

Proposition 2.4. (i) Let f :X → Y be Fréchet differentiable on a neighborhood ofx0 and
suppose that∇f (·) is stable atx0, i.e., there arek > 0 andδ > 0 such that∥∥∇f (x)− ∇f (x0)

∥∥ � k‖x − x0‖, ∀x ∈ B(x0, δ). (2.3)

If D2f (x0, v) exists, thend2f (x0, v) also exists and they are equal.
(ii) If f :X → Y is twice Fréchet differentiable atx0, then

d2f (x0, v) = ∇2f (x0)(v, v), ∀v ∈ X.

Proof. (i) Taking into account the definitions ofD2f (x0, v) andd2f (x0, v), it is enough
to prove that

lim
(t,u)→(0+,v)

f (x0 + tu) − f (x0 + tv) − t∇f (x0)(u− v)

t2/2
= 0. (2.4)

The mean value theorem establishes that∥∥f (z)− f (y)− ∇f (x0)(z − y)
∥∥ � ‖z − y‖ sup

x∈[y,z]
∥∥∇f (x)− ∇f (x0)

∥∥.
Applying this inequality toz = x0 + tu andy = x0 + tv and taking into account (2.3), w
deduce
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∥∥f (x0 + tu) − f (x0 + tv) − t∇f (x0)(u− v)
∥∥

� t‖u − v‖ sup
x∈[y,z]

∥∥∇f (x)− ∇f (x0)
∥∥ � kt‖u − v‖ sup

x∈[y,z]
‖x − x0‖.

Now,x = y + θ(z−y)= x0 + tv+ θt (u− v) with θ ∈ [0,1], and asu → v we can assum
thatu ∈ B(v, ε) for someε > 0. Therefore,

sup
x∈[y,z]

‖x − x0‖ � t sup
θ∈[0,1]

∥∥v + θ(u− v)
∥∥ � t

(‖v‖ + ε
)
.

Consequently,∥∥f (x0 + tu) − f (x0 + tv) − t∇f (x0)(u− v)
∥∥ � kt2‖u − v‖(‖v‖ + ε

)
.

From here, we get (2.4).
(ii) It follows from Proposition 1.1 of Studniarski [18].✷
Let us consider the vector optimization problem (2.1). The following notion introd

in [12, Definition 3.1] is basic for the development of this paper.

Definition 2.5. Let m � 1 be an integer. We say that the pointx0 ∈ M is a strict local
minimum of orderm for problem (2.1), denotedx0 ∈ strl(m,f,M), if there existα > 0
and a neighborhoodU of x0 such that(

f (x)+ D
) ∩ B

(
f (x0), α‖x − x0‖m

) = ∅, ∀x ∈ M ∩ U \ {x0}.

We have that every strict local minimum of orderm is also of orderj , for all j � m,
and every strict local minimum of orderm is a local minimum, that is, strl(m,f,M) ⊂
lmin(f,M) (see [12]).

This notion extends the usual notion of strict minimizer of orderm [20, Definition 1.1]
in scalar programming.

The next lemma provides a characterization for a point that is not a strict local min
of orderm, which will be very useful in arguments by reduction to the absurd. Its p
follows immediately from Definition 2.5. Proposition 2.7 establishes a property of the
minima related to the composition with a continuous linear application.

Lemma 2.6. Consider problem(2.1). x0 /∈ strl(m,f,M) if and only if there exist sequenc
xn ∈ M ∩B(x0,1/n) \ {x0} anddn ∈ D such that

bn := f (xn)− f (x0)+ dn ∈ B

(
0,

1

n
‖xn − x0‖m

)
.

Proposition 2.7. Let Ȳ be a normed space,̄D ⊂ Ȳ the convex cone that provides tōY a
partial order, f :X → Y a function, andψ :Y → Ȳ a positive(ψ(D) ⊂ D̄) continuous
linear application. Ifx0 ∈ strl(m,ψf,M), thenx0 ∈ strl(m,f,M).

Proof. By assumption, there exist a neighborhoodU of x0 andα > 0 such that(
ψf (x)+ D̄

) ∩ B
(
ψf (x0), α‖x − x0‖m

) = ∅, ∀x ∈ M ∩ U \ {x0}. (2.5)
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Sinceψ is linear and continuous, there existsβ > 0 such thatψ(BY (0,1)) ⊂ BȲ (0, β)
and, consequently,

ψ
(
BY (0, r)

) ⊂ BȲ (0, rβ), ∀r > 0, (2.6)

whereBY andBȲ denote balls inY andȲ , respectively.
Let us prove that

(
f (x)+ D

) ∩ B

(
f (x0),

α

β
‖x − x0‖m

)
= ∅, ∀x ∈ M ∩ U \ {x0}.

Suppose that there existx ∈ M ∩ U \ {x0} andd ∈ D such that

f (x)+ d − f (x0) ∈ B

(
0,

α

β
‖x − x0‖m

)
.

Then, from (2.6) we deduce thatψf (x) + ψ(d) − ψf (x0) ∈ BȲ (0, α‖x − x0‖m) with
ψ(d) ∈ D̄, contradicting (2.5). ✷

We are going to introduce the remaining necessary notation.
Let W andZ be normed spaces,g :X → W andh :X → Z two functions, andQ ⊂ X

andK ⊂ W two arbitrary sets. Usually, when one is trying to state necessary condi
Q andK are convex andK, furthermore, a cone, but now we do not need these req
ments. LetS be the set defined by the constraints

S = {
x ∈ X: g(x) ∈ −K, h(x) = 0

}
. (2.7)

In many instances we can provide more precise information on optimality conditions
the feasible setM of problem (2.1) has a special form. It is very common to cons
thatM = S ∩ Q, and so we have three types of constraints: inequality, equality, an
constraints. We will suppose thatf , g, andh are directionally differentiable atx0.

In finite-dimensional spaces, the linearized cone is defined using the active comp
of g at x0. Now it is not possible to define it this way, and instead, the linearized coneS

atx0 is defined by

C(S,x0) = {
v ∈ X: dg(x0, v) ∈ cl cone

(−K − g(x0)
)
, dh(x0, v) = 0

}
.

Obviously, it is a closed cone not necessarily convex.
For the functionf we can define two linearized cones, the first one open and the se

one closed, as follows:

C0(f, x0) = {
v ∈ X: df (x0, v) ∈ − intD

}

and

C(f,x0) = {
v ∈ X: df (x0, v) ∈ −D

}
.

Lastly, we enunciate two lemmas for subsequent reference. The second one is an
sion of Result 4.2 of Corley [6] that can be seen in [14].

Lemma 2.8. Let M ⊂ X be a set with nonempty interior andλ ∈ M+ \ {0}. If x ∈ intM,
thenλx > 0.
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Proof. Though it is a well-known result (see, for example, [19, Lemma 3.3]), we prov
proof based on optimality conditions. Ifλx = 0, thenx is a minimum of the (differentiable
functionλ on the setM, and sincex ∈ intM we have that its Fréchet derivative atx is zero,
∇λ(x) = 0. But since the Fréchet derivative of a continuous linear application is equ
itself, we deduce that∇λ(x) = λ = 0, in contradiction to the assumption.✷
Lemma 2.9. Let f :X → Y be directionally differentiable atx0 ∈ M ⊂ X. If x0 ∈
lmin(f,M) thenT (M,x0)∩C0(f, x0) = ∅. In particular, if Y = R, we havedf (x0, v) � 0
for all v ∈ T (M,x0).

3. Support functions

In the next definition the notion of support function to a general vector problem
troduced.

Definition 3.1. Let f :X → Y , M ⊂ X, x0 ∈ M, F :X → R be directionally differentiable
at x0 andλ ∈ D+. We will say that the pair(λ,F ) is a local support forf at x0 on M if
the following conditions hold:

(1) F(x) � λf (x), ∀x ∈ M ∩ B(x0, δ) for someδ > 0;
(2) F(x0) = λf (x0);
(3) dF(x0, v) � 0, ∀v ∈ T (M,x0);
(4) λ �= 0.

We will say that(λ,F ) is a (global) support if condition (1) is satisfied for allx ∈ M, and
will say that it is a weak local support if conditions (1)–(3) are satisfied.

This definition obviously contains a scalarization process.

Remark 3.2. (1) If X = R
n, Y = R

p , D = R
p
+, F is Fréchet differentiable and we repla

(3) by (3′) ∇F(x0) = 0, then Definition 3.1 becomes Definition 3.1 of [15]. If, in particul
p = 1 (i.e.,Y = R), this definition is equivalent to stating thatλ−1F is a support (in the
Hestenes sense [9, p. 217]) forf .

(2) If the Fritz John conditions for the setM = S ∩ Q are satisfied, whereQ is convex
andS is given by (2.7) (assuming thatf , g, andh are directionally differentiable with
convex derivative), that is, there existλ ∈ Y ∗, µ ∈ W∗, ν ∈ Z∗ all nonzero such that

λ ∈ D+, µ ∈ K+, µg(x0) = 0, (3.1)

λdf (x0, v) +µdg(x0, v) + ν dh(x0, v) � 0, ∀v ∈ T (Q,x0), (3.2)

then, lettingF be the Lagrangian function,

F = λf + µg + νh, (3.3)

we have that(λ,F ) is a weak support forf atx0 onS∩Q and the proof is easy. Obviousl
if conditions (3.1) and (3.2) hold withλ �= 0 (Kuhn–Tucker conditions),(λ,F ) is a support.
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The next proposition states basic properties satisfied if a support exists. Note th
first property is the first order necessary optimality condition (Lemma 2.9).

Proposition 3.3. Letf :X → Y be directionally differentiable atx0 ∈ M ⊂ X.

(a) If (λ,F ) is a local support forf at x0 onM, then

T (M,x0)∩ C0(f, x0) = ∅.
(b) If (λ,F ) is a weak local support forf at x0 on M, F is twice directionally differ-

entiable atx0, 0 ∈ lmin(dF (x0, ·),M − x0) and there existsv ∈ T (M,x0) such that
d2F(x0, v) > 0, thenλ �= 0, that is,(λ,F ) is a local support.

Proof. (a) Letϕ(x) = λf (x) − F(x). Conditions (1)–(3) of Definition 3.1 are equivale
to the following:

(1) ϕ(x)� 0, ∀x ∈ M ∩ B(x0, δ);
(2) ϕ(x0) = 0;
(3) dF(x0, v) = λdf (x0, v) − dϕ(x0, v) � 0 for all v ∈ T (M,x0).

Conditions (1) and (2) imply thatx0 ∈ lmin(ϕ,M). Applying Lemma 2.9 it follows tha
dϕ(x0, v) � 0, ∀v ∈ T (M,x0). Taking into account condition (3), we deduce that

λdf (x0, v) � 0, ∀v ∈ T (M,x0). (3.4)

Reasoning “ad absurdum,” suppose that there existsv ∈ T (M,x0) ∩ C0(f, x0). Then,
df (x0, v) ∈ − intD. Sinceλ ∈ D+ andλ �= 0, by Lemma 2.8 we haveλdf (x0, v) < 0,
contradicting (3.4).

(b) We have thatv = limn→∞ vn for some sequencesvn ∈ X and tn → 0+ such that
xn := x0+ tnvn ∈ M. Suppose thatλ = 0. With the notation of part (a), nowϕ(x) = −F(x).
Hence,dϕ(x0, ·) = −dF(x0, ·) and d2ϕ(x0, v) = −d2F(x0, v) < 0. Furthermore, sinc
ϕ(x) � 0, ∀x ∈ M ∩ B(x0, δ), ϕ(x0) = 0, and−dϕ(x0, xn − x0) = dF(x0, xn − x0) � 0,
∀n ∈ N (by assumption), it follows that

d2ϕ(x0, v) = lim
n→∞

ϕ(x0 + tnvn)− ϕ(x0)− dϕ(x0, xn − x0)

t2n/2
� 0,

which is a contradiction. ✷

4. First order sufficient conditions

Theorem 4.1 and Corollary 4.3 below provide first order sufficient conditions for s
local minimality of order 1 (the first one also necessary conditions). To prove the s
one we need a lemma. In the remainder of the work, we assume that the spaceX is finite-
dimensional.

Theorem 4.1. Let us suppose thatx0 ∈ M ⊂ X andf is directionally differentiable atx0.
Then,T (M,x0)∩ C(f,x0) = {0} if and only ifx0 ∈ strl(1, f,M).
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Proof. Let us suppose thatx0 /∈ strl(1, f,M), then, by Lemma 2.6, there exist sequen
xn ∈ M ∩B(x0,1/n) \ {x0} anddn ∈ D such that

f (xn)− f (x0)+ dn = bn ∈ B

(
0,

1

n
‖xn − x0‖

)
. (4.1)

Without loss of generality, sinceX is finite-dimensional, we can assume that

lim
n→∞

xn − x0

‖xn − x0‖ = v

for somev ∈ T (M,x0) with ‖v‖ = 1. Dividing in (4.1) by‖xn − x0‖ and taking the limit,
we have

lim
n→∞

(
f (xn)− f (x0)

‖xn − x0‖ + dn

‖xn − x0‖
)

= 0.

Since the first term within the limit converges todf (x0, v), we have that the second ter
also converges to a certain vectord ∈ D becauseD is closed. Therefore,df (x0, v) = −d ∈
−D, and consequentlyv ∈ T (M,x0)∩ C(f,x0) = {0}, which is a contradiction.

Now let us see the converse. Letx0 ∈ strl(1, f,M). By definition there existα > 0 and
a neighborhoodU of x0 such that(

f (x)+ D
) ∩ B

(
f (x0), α‖x − x0‖

) = ∅, ∀x ∈ M ∩U \ {x0}. (4.2)

Suppose that there existsv ∈ T (M,x0) ∩ C(f,x0), v �= 0. We can suppose that‖v‖ = 1.
Sincev belongs to the tangent cone, there exists a sequencexn ∈ M \ {x0} converging to
x0 such that limn→∞((xn − x0)/tn) = v, beingtn = ‖xn − x0‖. Sincef is directionally
differentiable, we deduce that limn→∞((f (xn)− f (x0))/tn) = df (x0, v) ∈ −D because
v ∈ C(f,x0). Setdf (x0, v) = −d0 ∈ −D. For the previousα > 0, there existsn0 ∈ N such
that (f (xn)− f (x0))/tn ∈ −d0 + B(0, α) for all n � n0. Hence,f (xn) + tnd0 ∈ f (x0) +
B(0, αtn), which is in contradiction to (4.2). ✷

This theorem generalizes Theorem 4.6.3 of Hestenes [9] and, partially, Corolla
in [13], in which it is assumedY = R

p andD = R
p
+. Notice that in the converse the finit

dimensionality ofX is not used.
If the coneD has a compact base, from this theorem we deduce, taking into ac

Theorem 4.5 in [14], that every strict local minimum of order 1 is a local proper Borw
efficient solution of type 2 (see [14]).

Lemma 4.2. Let S be given by(2.7), Q ⊂ X, x0 ∈ S ∩ Q, and g and h directionally
differentiable atx0. Then

T (S ∩ Q,x0) ⊂ C(S,x0)∩ T (Q,x0).

Proof. SinceT (S ∩ Q,x0) ⊂ T (S, x0)∩ T (Q,x0), it is enough to prove that

T (S, x0) ⊂ C(S,x0).

By definition of the tangent cone, givenv ∈ T (S, x0) there exist sequencestn → 0+
andxn ∈ S such that limn→∞((xn − x0)/tn) = v. Sinceg is directionally differentiable
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it follows that limn→∞((g(xn)− g(x0))/tn) = dg(x0, v). Now, (g(xn) − g(x0))/tn ∈
cone(−K − g(x0)), and therefore,dg(x0, v) ∈ cl cone(−K − g(x0)).

In a similar way,dh(x0, v) = 0 is proved since in this caseh(xn) = h(x0) = 0 for all
n ∈ N. Consequently,v ∈ C(S,x0). ✷

The next result follows immediately from Theorem 4.1 and the lemma above.

Corollary 4.3. LetS be given by(2.7), Q ⊂ X, x0 ∈ S ∩ Q, andf , g, andh directionally
differentiable atx0. If C(S,x0) ∩ T (Q,x0)∩ C(f,x0) = {0}, thenx0 ∈ strl(1, f, S ∩ Q).

In Theorem 4.4 and Corollary 4.5, sufficient conditions for strict minimality base
the notion of support function are provided, the first one for an arbitrary set and the s
one for a set defined by the three kinds of constraints.

Theorem 4.4. Letf be directionally differentiable atx0 ∈ M ⊂ X. If

(a) (λ,F ) is a local support forf at x0 onM and
(b) T (M,x0)∩ [C(f,x0) \ C0(f, x0)] = {0},

thenx0 ∈ strl(1, f,M).

Proof. Condition (b) is equivalent to

T (M,x0)∩C(f,x0)∩ C0(f, x0)
c = {0}. (4.3)

By Proposition 3.3,T (M,x0)∩C0(f, x0) = ∅, hence,T (M,x0)∩C0(f, x0)
c = T (M,x0).

Therefore, taking into account (4.3), it follows thatT (M,x0) ∩ C(f,x0) = {0}. By Theo-
rem 4.1,x0 ∈ strl(1, f,M). ✷
Corollary 4.5. LetS be given by(2.7), Q ⊂ X, x0 ∈ S ∩ Q, andf , g, andh directionally
differentiable atx0. If (Kuhn–Tucker) conditions(3.1)and(3.2),λ �= 0 hold andC(S,x0)∩
T (Q,x0)∩ [C(f,x0) \ C0(f, x0)] = {0}, thenx0 ∈ strl(1, f, S ∩ Q).

Proof. By Remark 3.2(2), ifF is the Lagrangian function given by (3.3),(λ,F ) is a sup-
port forf at x0 onS ∩Q, and then it suffices to apply Lemma 4.2 and Theorem 4.4.✷

Let us remark that this corollary generalizes Theorem 7.2 of Hestenes [9, Chap
and, partially (there a superstrict minimum is obtained), Corollary 4.1 in [15]. Notice
convexity forQ or for the derivatives is not needed.

5. Second order sufficient conditions

In this section, different second order sufficient conditions for strict local minimali
order 2 are provided.

The following theorem establishes a sufficient condition for a strict local minimu
order 2 in a problem with an arbitrary feasible set.



506 B. Jiménez, V. Novo / J. Math. Anal. Appl. 284 (2003) 496–510

that
a

i-

eg-

lts

].
hem
Theorem 5.1. LetM ⊂ X, x0 ∈ M, andf :X → Y directionally differentiable atx0. If for
everyv ∈ T (M,x0) ∩ C(f,x0) \ {0} there exists(λ,F ), weak local support forf at x0
onM, withF twice directionally differentiable atx0 such that

0 ∈ lmin
(
dF(x0, ·),M − x0

)
, (5.1)

andd2F(x0, v) > 0, thenx0 ∈ strl(2, f,M).

Proof. Suppose thatx0 /∈ strl(2, f,M). Then, by Lemma 2.6, there exist sequencesxn ∈
M ∩B(x0,1/n) \ {x0} anddn ∈ D such that

f (xn)− f (x0)+ dn = bn ∈ B

(
0,

1

n
t2n

)
, (5.2)

wheretn = ‖xn − x0‖. Choosing a subsequence, if necessary, we can assume that

lim
n→∞

xn − x0

tn
= v ∈ T (M,x0) with ‖v‖ = 1.

Dividing in (5.2) bytn and taking the limit we obtain (as in the proof of Theorem 4.1)
df (x0, v) ∈ −D. Therefore,v ∈ T (M,x0) ∩ C(f,x0) \ {0}. By assumption, there exists
weak local support(λ,F ) such that (5.1) holds andd2F(x0, v) > 0.

Now, applying to (5.2) the continuous linear functionλ we get

λf (xn)− λf (x0)+ λdn = λbn,

which can be written

F(x0 + tnvn)− F(x0)− tn dF (x0, vn)+ ϕ(xn)+ dF(x0, xn − x0)+ λdn = λbn,

wherevn = (xn − x0)/tn andϕ = λf − F , the function defined in the proof of Propos
tion 3.3. Dividing byt2n/2 and taking the limit we obtain

lim
n→∞

F(xn)− F(x0)− tn dF (x0, vn)

t2n/2
+ lim

n→∞
ϕ(xn)+ dF(x0, xn − x0)+ λdn

t2n/2
= 0.

As the first limit exists and is equal tod2F(x0, v), then the second one exists and is nonn
ative sinceϕ(x) � 0 for all x ∈ M ∩ B(x0, δ), dF(x0, xn − x0) � 0 by (5.1), andλdn � 0
becauseλ ∈ D+. It follows thatd2F(x0, v) � 0, which is a contradiction. ✷
Remark 5.2. (1) If T (M,x0) ∩ C(f,x0) = {0}, by Theorem 4.1,x0 ∈ strl(1, f,M), and,
therefore, alsox0 ∈ strl(2, f,M).

(2) Notice thatf is not required to be twice directionally differentiable.
(3) By virtue of Proposition 3.3,λ has to be different from 0. This applies to resu

from now on.

This theorem generalizes Theorem 4.6.4 of Hestenes [9] and Theorem 5.1 in [15
In the following proposition, which is evident, we provide two conditions, each of t

implying (5.1).
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Proposition 5.3. Two sufficient conditions for(5.1) to hold are the following:

(i) F is Fréchet differentiable with∇F(x0) = 0;
(ii) dF(x0, u) � 0, ∀u ∈ T (M,x0), and(M − x0)∩ B(0, δ) ⊂ T (M,x0) for someδ > 0.

Notice that ifF is directionally differentiable atx0 anddF(x0, v) = 0 for all v ∈ X,
thenF is Fréchet differentiable [8, p. 266].

As a consequence of Theorem 5.1 we obtain the next corollary, in which the exis
of a support function is reduced to finding a multiplier.

Corollary 5.4. LetM ⊂ X, x0 ∈ M, andf :X → Y twice directionally differentiable atx0.
If for everyv ∈ T (M,x0)∩ C(f,x0) \ {0} there existsλ ∈ D+ such that

0 ∈ lmin
(
λdf (x0, ·),M − x0

)
(5.3)

andλd2f (x0, v) > 0, thenx0 ∈ strl(2, f,M).

Proof. We defineF(x) = λf (x)− λdf (x0, x − x0) for all x ∈ X. Let us see that(λ,F ) is
a weak local support forf at x0 onM satisfying (5.1).

In fact, the conditionF(x) � λf (x) for x ∈ M ∩ B(x0, δ) is clear becauseλf (x) −
F(x) = λdf (x0, x − x0) � 0 by (5.3). The conditionF(x0) = λf (x0) is also clear. Find
the directional derivative ofF ,

dF(x0,w) = lim
(t,u)→(0+,w)

F (x0 + tu) − F(x0)

t

= lim
(t,u)→(0+,w)

λf (x0 + tu) − λf (x0)− λdf (x0, tu)

t
= 0

becauseλ is linear and continuous anddf (x0, ·) is positively homogeneous and cont
uous. With this, (5.1) and condition (3) of Definition 3.1 are satisfied. Finally, it is
easy to verify thatd2F(x0, v) = λd2f (x0, v) > 0, and so we can apply Theorem 5.1
conclude. ✷

Although Corollary 5.4 is simple to apply, Theorem 5.1 is more general, as it ca
shown with the following data:f (x, y)= (x + 2y2, y − y2), M = {(x, y): −x − y2 � 0},
D = R

2+, andx0 = (0,0). We have thatF(x, y) = y2, with λ = (1,0), is a support sat
isfying the conditions of Theorem 5.1 on the vectors ofT (M,x0) ∩ C(f,x0) \ {0} =
{(0, y): y < 0}, sox0 ∈ strl(2, f,M). But, there is noλ satisfying the hypotheses of Coro
lary 5.4.

In the following results we study other sufficient conditions in which the support f
tion does not change with the vector.

Proposition 5.5. Letf :X → Y twice directionally differentiable atx0 ∈ M ⊂ X. Suppose
that one of the following conditions is satisfied:

(i) There existsλ ∈ D+ such that(5.3)holds and

λd2f (x0, v) > 0, ∀v ∈ T (M,x0)∩ C(f,x0) \ {0};
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(ii) There existsλ ∈ Ds+ such that(5.3)holds and

λd2f (x0, v) > 0, ∀v ∈ T (M,x0)∩ Kerdf (x0, ·) \ {0}.

Thenx0 ∈ strl(2, f,M).

Proof. Case (i) follows from Corollary 5.4.
(ii) Let us prove thatT (M,x0)∩C(f,x0) = T (M,x0)∩ Kerdf (x0, ·).
Choosev ∈ T (M,x0) ∩ C(f,x0), thendf (x0, v) ∈ −D. Suppose thatdf (x0, v) �= 0;

then sinceλ ∈ Ds+ one hasλdf (x0, v) < 0. On the other hand, if we defineϕ(x) =
λdf (x0, x − x0) we havedϕ(0, u)= λdf (x0, u), ∀u ∈ X, and as 0∈ lmin(ϕ,M − x0) by
(5.3), it follows thatdϕ(0, u) � 0 for all u ∈ T (M − x0,0) = T (M,x0) by Lemma 2.9.
In particular,λdf (x0, v) = dϕ(0, v) � 0, and we have a contradiction. According
v ∈ Kerdf (x0, ·).

Now, part (i) applies and we obtain the result.✷
In the following proposition another possibility withλ ∈ D+ is considered.

Proposition 5.6. Let f :X → Y be twice directionally differentiable atx0 ∈ M ⊂ X,
Ȳ a normed space equipped with the order induced by the convex coneD̄ ⊂ Ȳ and
λ ∈ D+. Suppose that there exist a positive continuous linear applicationψ :Y → Ȳ

and λ̄ ∈ D̄s+ satisfyingλ = λ̄ψ and such that(5.3) holds andλd2f (x0, v) > 0, ∀v ∈
T (M,x0) ∩ Kerψ df (x0, ·) \ {0}. Thenx0 ∈ strl(2, f,M).

Proof. Settingf0 = ψf , then, by assumption, we have 0∈ lmin(λ̄ df0(x0, ·),M − x0)

and λ̄ d2f0(x0, v) > 0, ∀v ∈ T (M,x0) ∩ Kerf0(x0) \ {0}. By Proposition 5.5,x0 ∈
strl(2, f0,M), and by Proposition 2.7,x0 ∈ strl(2, f,M). ✷

This proposition is especially interesting ifY = R
p and the coneD is polyhedral,D =

{y ∈ R
p: Ay � 0} beingA :Rp → R

k linear, becauseψ = A, with D̄ = R
k+, satisfies the

hypotheses in a natural way.

Corollary 5.7. Let X = R
n, Y = R

p , D = R
p
+, andf :Rn → R

p be twice directionally
differentiable atx0 ∈ M ⊂ R

n. If there existsλ ∈ R
p
+ such that(5.3)holds and

λd2f (x0, v) > 0,

∀v ∈ T (M,x0) ∩ {
v ∈ R

n: λi dfi(x0, v) = 0, i = 1, . . . , p
}
, v �= 0,

thenx0 ∈ strl(2, f,M).

Proof. Rearranging, we can suppose, without loss of generality, that

λ = (λ1, . . . , λk,0, . . . ,0) with k � 1 andλ1 > 0, . . . , λk > 0.

In Proposition 5.6 we chooseψ :Rp → R
k given byψ(y1, . . . , yp) = (y1, . . . , yk), D̄ =

R
k+, andλ̄ = (λ1, . . . , λk), which allow us to conclude.✷
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If in particular,p = 1, we deduce the following corollary for scalar optimization, t
in spite of its simplicity (especially iff is twice Fréchet differentiable) we have not fou
in the literature.

Corollary 5.8. Let f :Rn → R be twice directionally differentiable atx0 ∈ M ⊂ R
n. If

0 ∈ lmin(df (x0, ·),M −x0) andd2f (x0, v) > 0, ∀v ∈ T (M,x0)∩Kerdf (x0, ·)\ {0}, then
x0 ∈ strl(2, f,M).

As an illustrative example, considerf (x, y) = y + x2 − y2, M = {(x, y) ∈ R
2: y �

sin2(1/x) if x �= 0, y � 0 if x = 0} andx0 = (0,0). Obviously, Corollary 5.8 applies.
If M = R

n, Theorem 3.2 of Ben-Tal and Zowe [2] follows from this corollary tak
into account Proposition 2.4.

Next the general result, Theorem 5.1, is applied to the case in whichM = S ∩Q comes
defined by inequality, equality and set constraints.

Theorem 5.9. LetS be given by(2.7),Q ⊂ X, andf,g,h twice directionally differentiable
at x0 ∈ S ∩Q. If for everyv ∈ C(S,x0)∩ T (Q,x0)∩C(f,x0) \ {0} there exist(λ,µ, ν) ∈
D+ ×K+ ×Z∗ such that callingL = λf + µg + νh the following conditions hold:

(a) µg(x0) = 0;
(b) 0∈ lmin(dL(x0, ·), S ∩ Q− x0);
(c) d2L(x0, v) > 0.

Thenx0 ∈ strl(2, f, S ∩ Q).

Proof. Let F(x) = L(x)− dL(x0, x − x0), ∀x ∈ X. It is proved, as in another occasion
that(λ,F ) is a weak local support forf atx0 onS∩Q with dF(x0, ·) = 0 (condition (a) is
needed to verify thatF(x0) = λf (x0)). On the other hand,d2F(x0, v) = d2L(x0, v) > 0,
so Theorem 5.1 allows us to conclude becauseT (S ∩Q,x0) ⊂ C(S,x0)∩ T (Q,x0). ✷

If g is not considered,Y = R, D = R+, andf andh are twice Fréchet differentiable
Theorem 9.2 of Borwein [4] follows from the previous theorem.

If f , g, andh are ofC1 class on a neighborhood ofx0, this theorem is close to Coro
lary 3.1 of Maruyama [17], in which second order necessary conditions are stat
scalar programs. Notice that for this class of functions it can be proved thatd2f (x0, v) =
2f (2)(x0, v,0), this last derivative being the (parabolic) derivative used by Maruyama
Definition 2.2].

If in particularQ = X, we deduce the following corollary.

Corollary 5.10. Let S be given by(2.7), x0 ∈ S, and f,g,h twice Fréchet differen
tiable atx0. If for everyv ∈ C(S,x0) ∩ C(f,x0) \ {0} there exists a Lagrangian functio
L = λf + µg + νh such that(λ,µ, ν) ∈ D+ × K+ × Z∗, µg(x0) = 0, ∇L(x0) = 0, and
∇2L(x0)(v, v) > 0, thenx0 ∈ strl(2, f, S).
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If we take into account that every strict local minimum of order 2 is a strict minim
this corollary together with Corollary 4.3 (for differentiable functions) become Th
rem 11.1 of Ben-Tal and Zowe [1]. Notice, as these authors point out in Example 1,
X is not finite-dimensional, the result is not valid.
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