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Abstract

In this paper we present first and second order sufficient conditions for strict local minima of
orders 1 and 2 to vector optimization problems with an arbitrary feasible set and a twice directionally
differentiable objective function. With this aim, the notion of support function to a vector problem is
introduced, in such a way that the scalar case and the multiobjective case, in particular, are contained.
The obtained results extend the multiobjective ones to this case. Moreover, specializing to a feasible
set defined by equality, inequality, and set constraints, first and second order sufficient conditions by
means of Lagrange multiplier rules are established.
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1. Introduction

Classical optimality conditions for differentiable programming problems with con-
straints are basic results in many fields, such as optimization theory, control theory, the
study of stability and sensitivity in mathematical programming, the convergence of al-
gorithms, the best approximation problem...They are also a bapjwost for practical
applications in numerical computation, operations research, engineering, etc.

* Corresponding author.
E-mail addresseshjimenl@encina.pntic.mec.es (B. Jiménez), vnovo@ind.uned.es (V. Novo).

0022-247X/$ — see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0022-247X(03)00337-8


https://core.ac.uk/display/81946448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

B. Jiménez, V. Novo / J. Math. Anal. Appl. 284 (2003) 496-510 497

First and second order necessary optimality conditions for programs in abstract spaces,
with R-valued or vector-valued functions, have been provided by many authors. Among
those we may refer to Hoffmann and Kornstaedt [11], Ben-Tal and Zowe [1], Linne-
mann [16], Tang [19], Cominetti [5], Maruyama [17]. Of these, only in [1,19] second
order sufficient conditions are established for differentiable programs. Borwein [4] also
establishes a sufficient condition for twice Fréchet differentiable programs with equality
and set constraints. In differentiable multiobjective programming (all the spaces are finite-
dimensional) we refer to [3,15] and references therein. Ward [20] and Studniarski [18]
study necessary and sufficient conditions for strict minima of ardir nondifferentiable
scalar programs.

In [15], the authors, extending some of Hestenes’s ideas to multiobjegtivR"(—

RP) programs, have developed a theory of first and second order sufficient conditions for
strict local Pareto (the ordering coneHEj) minimality of orders 1 and 2 forf twice
Fréchet differentiable. Following in this line, we try to generalize the results obtained there
to vector optimization problems of the type (2.1), wherés twice directionally differen-

tiable (according to Definition 2.2), not necessarily twice Fréchet differentiable, and the
partial order inY is given by a convex cone. With this purpose, the concept of support
function to a vector problem is introduced, containing, in particular, the multiobjective and
scalar cases. The obtained results generalize the classical ones for the scalar case (for ex-
ample, the results collected in [9, Sections 4.6 and 4.7]), some results contained in [15], and
some results provided by other authors, such as Borwein [4] or Ben-Tal and Zowe [1,2], for
vector or multiobjective problems. Furthermore, specializing to a feasible set defined by
equality, inequality, and set constraints, first and second order sufficient conditions are es-
tablished. Finally, we remark that these sufficient conditions are close to different existing
necessary conditions.

2. Notationsand preliminaries

Let X be a normed space aMl a subset of. As usual we denote bB(xo, §) the open
ball centered atg and radius, by intM (cl M) the interior (closure) of the séff and by
coneM the cone generated hy. The topological dual space % is X*. If A € X* and
x € X, we will useix instead ofi(x) or the also usualr, x). If L1 andL> are mappings,
we will write LyL1 for the compositiorLoo L.

The positive polar cone taf is M+ = {L € X*: Ax > 0, Vx € M} and the strictly
positive polar cone i3/*T = {A € X*: Ax >0, Vx € M \ {0}}.

We are interested in the following general vector optimization problem:

min{ f (x): x € M}, (2.1)

wheref: X — Y, Y is a normed space, ard C X is arbitrary.

Throughout this papel) C Y is a convex closed pointed cone with nonempty interior,
which defines the partial order in.

Let us recall that the poiniy € M is a local minimum for problem (2.1), denoteg
Imin( f, M), if there exists a neighborhodd of xg such that

MNUNNy =0, (2.2)
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whereNy = {x € X: f(x) — f(x0) € =D\ {0}}. If, in particular,Y =R andD =R, the
usual notion of local minimum is obtained.

Checking (2.2) is not easy and, consequently, approximations &md toN at the
point xg are usually employed. One of the most used approximations is the tangent cone
(Definition 2.1). In its turn, if the sets are determined by constraint functionsv(gs
we usually use the linearized cones, which are defined by directional derivatives (Defini-
tion 2.2) of the involved functions.

Definition 2.1. Let M C X andxg € cl M. The tangent (contingent) cone i at xg is

. — X
T (M, xo) = {v € X: 3t, — 07, 3x, € M such that lim 220 =v}.
n—oo

In

Itis well known thatv € T (M, xg), with |Jv]| = 1, if and only if there exists a sequence
Xp — x0, With x, e M \ {xo}, such tha(xn —x0)/l1xn — xo0ll = v.

Definition 2.2. Let f: X — Y andxp, v € X.

(a) The directional derivative of atxg in the directiornw is

df (xo,v) = lim fxo+1tu) — f(xo).
(t,u)—(0t,v) t

(b) The Dini derivative off atxg in the directiorw is
f(xo+1tv) — f(x0)
; .
(c) The second order directional derivativefofit xg in the directionv is
: f(xo+1u) — f(xo) —tdf(xo,u)
d?f(xo,v)= lim )
fxo.v) (t.1)— (OF,v) 12/2

Df (xo,v) = lim
t—0t

(d) The second order Dini derivative gfat xg in the directiorw is
J(xo+1v) — f(x0) —t Df (x0,v)
12/2 '
(e) We say thay is directionally differentiable atg if df (xo, v) exists for allv € X, and
f is twice directionally differentiable afy if 42 f (xo, v) exists for allv € X.

D? f(xg,v) = lim
t—0t

Derivative (d) has been used by Hiriart-Urruty and Seeger [10], (c) has been used by
Ben-Tal and Zowe [2], and (d), considering “liminf” instead of “lim,” by Studniarski [18],
in these two last cases for stating sufficient optimality conditions.

If f is Fréchet differentiable aty, its Fréchet derivative is denoted BYf (xo). If it
exists, we havéV f (xp)v = df (xo, v). If f is twice Fréchet differentiable abp, its sec-
ond Fréchet derivative is denoted B f (xo) that we consider as a continuous bilinear
application fromX x X into Y. Thus, forv € X, V2 f(x0)(v, v) is a vector inY.

It is well known that if a functionf is directionally differentiable atg, thendf (xo, -)
is continuous onX [7, Theorem 3.2] andf is continuous atcg [7, p. 28]. In the next
proposition, the continuity of the second derivative is proved.
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Proposition 2.3. Let us suppose that fof : X — Y its second directional derivative
d? f (xo, v) exists for allv € X. Then the functiod? f (xo, -) is continuous or¥.

Proof. Suppose tha#? f (xo, -) is not continuous at somee X. Then there exist > 0
andv, — v such that

|d? f (x0, va) — d?f (x0, v)|| =6, VneN.
Since

I S (xo+ trvn) — f(x0) — tk df (xo, vn)
m >
k— 00 t /2

= dzf(XOa Up)

for eachn € N and for each sequenge— 0™, we can find a sequeneg — 0" such that

J (xo+anvp) — f(x0) — an df (x0, va)
aZ/2

for all n. But this is a contradiction, because the expression in the left side of the inequality

tends to O whem — co. O

— d?f (x0,v)

&
Z3

Itis also known that iff is Lipschitzian on a neighborhood ef and the Dini derivative
Df (xo, v) exists, then the directional derivatid¢ (xo, v) also exists and they are the same.
This statement is not valid for second order derivatives, as one can shovy with— R
given by f(x, y) = |y — x?| (which is Lipschitzian)xo = (0, 0) andv = (1, 0), because
D? f (x0, v) = 2 andd? f (xo, v) does not exist. On the other hand, obviouslgaf (xo, v)
exists, thenD? f (xo, v) also exists and they are the same. Another result on equality of the
second derivatives is provided in the next proposition.

Proposition 2.4. (i) Let f: X — Y be Fréchet differentiable on a neighborhoodwgfand
suppose thaV f(-) is stable atxo, i.e., there arék > 0 andé§ > 0 such that
|V @)=V fxo)| <klx —xoll, Vx € B(xo,8). (2.3)

If D2 f(x0, v) exists, them/? f (xo, v) also exists and they are equal.
(i) If f:X — Y is twice Fréchet differentiable af, then

d?f(xo0,v) = V2 f(x0)(v,v), VveX.

Proof. (i) Taking into account the definitions @?2 f (xo, v) andd? f (xo, v), it is enough
to prove that
im fro+tu) — f(xo+1v) —tVf(xo) —v) _

0. 2.4
(t,u)— (OF,v) t2/2 (2.4)

The mean value theorem establishes that
[f@) = fO) =V z—y|<lz—yl S[UD]HVf(x) -V fxo)|.
xX€ly,z

Applying this inequality taz = xo + tu andy = xo + tv and taking into account (2.3), we
deduce
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| £ (xo+ tu) — f(xo+ 1) — 1V f(x0) (u — v)
<tllu—v|l sup |Vf(x) =V fxo)| <ktllu—v] sup |lx — xol.
x€ly,z] x€ly,z]
Now,x = y+6(z—y) =xo+1tv+0t(u—v)with 6 € [0, 1], and ast — v we can assume
thatu € B(v, ¢) for somes > 0. Therefore,

sup flx —xoll <7 sup [v+60@u—v)| <r(llv]l +e).
xely,z] 0€[0,1]

Consequently,
| £ o+ tu) — f(xo+1v) — 1V f(x0) (u — v) | < ke?[lu — v]| (V]| +¢).

From here, we get (2.4).
(i) It follows from Proposition 1.1 of Studniarski [18].O

Let us consider the vector optimization problem (2.1). The following notion introduced
in [12, Definition 3.1] is basic for the development of this paper.

Definition 2.5. Let m > 1 be an integer. We say that the poigte M is a strict local
minimum of ordermn for problem (2.1), denotedy € strl(m, f, M), if there existe > 0
and a neighborhootl of xg such that

(f(x)+ D) N B(f(xo), allx —xol™) =0, ¥xeMNU\ {xo).

We have that every strict local minimum of orderis also of orderj, for all j > m,
and every strict local minimum of ordet is a local minimum, that is, sih, f, M) C
Imin(f, M) (see [12]).

This notion extends the usual notion of strict minimizer of orddgf0, Definition 1.1]
in scalar programming.

The next lemma provides a characterization for a point that is not a strict local minimum
of orderm, which will be very useful in arguments by reduction to the absurd. Its proof
follows immediately from Definition 2.5. Proposition 2.7 establishes a property of the strict
minima related to the composition with a continuous linear application.

Lemma 2.6. Consider problenf2.1). xo ¢ strl(m, f, M) if and only if there exist sequences
Xn € M N B(xo,1/n) \ {xo} andd,, € D such that

1
by = f(xn) — f(x0) +dy € B<0’ ;”xn - x0||m>-

Proposition 2.7. Let Y be a normed space) C Y the convex cone that provides Yoa
partial order, f: X — Y a function, andy :Y — Y a positive(y/(D) C D) continuous
linear application. Ifxg € stri(m, ¥ f, M), thenxg € strl(m, f, M).

Proof. By assumption, there exist a neighborh@daf xo ande > 0 such that

(Wf(x) + D) N B(¥f (x0), allx —xol™) =0, VxeMNU\ {xo}. (2.5)
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Since is linear and continuous, there exigts> 0 such thaty (By (0, 1)) C By (0, B)
and, consequently,

¥ (By(0.r)) C By(0,rB), Vr>0, (2.6)

whereBy and By denote balls irY andY, respectively.
Let us prove that

(fx)+D)N B(f(xo), %Hx - xo||'") =0, YxeMnU\ {xo}.

Suppose that there existe M N U \ {xo} andd € D such that

Jx)+d— f(xo) € B<0, %le - xo||m>~

Then, from (2.6) we deduce thatf (x) + ¥ (d) — ¥ f(x0) € By (0, a|lx — xo[™) with
¥ (d) € D, contradicting (2.5). O

We are going to introduce the remaining necessary notation.

Let W andZ be normed spaceg, X — W andh: X — Z two functions, and) C X
andK C W two arbitrary sets. Usually, when one is trying to state necessary conditions,
Q andK are convex an&, furthermore, a cone, but now we do not need these require-
ments. LetS be the set defined by the constraints

S={xeX: g(x)e—K, h(x)=0}. (2.7)

In many instances we can provide more precise information on optimality conditions when
the feasible seM of problem (2.1) has a special form. It is very common to consider
that M = S N Q, and so we have three types of constraints: inequality, equality, and set
constraints. We will suppose th#t g, andh are directionally differentiable aiy.

In finite-dimensional spaces, the linearized cone is defined using the active components
of g atxg. Now it is not possible to define it this way, and instead, the linearized cafie to
at xg is defined by

C(S, x0) = {v € X: dg(xo,v) € clcong—K — g(x0)), dh(xo,v)=0}.

Obviously, it is a closed cone not necessarily convex.
For the functionf we can define two linearized cones, the first one open and the second
one closed, as follows:

Co(f, x0) = {v € X: df (x0,v) € —intD}

and
C(f.x0)={veX: df(xo.,v) € —=D}.

Lastly, we enunciate two lemmas for subsequent reference. The second one is an exten-
sion of Result 4.2 of Corley [6] that can be seen in [14].

Lemma 2.8. Let M C X be a set with nonempty interior anide M* \ {0}. If x e int M,
thenix > 0.
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Proof. Thoughitis awell-known result (see, for example, [19, Lemma 3.3]), we provide a
proof based on optimality conditions.Ak = 0, thenx is a minimum of the (differentiable)
functiona on the sefV/, and sincex € int M we have that its Fréchet derivativexais zero,
Va(x) = 0. But since the Fréchet derivative of a continuous linear application is equal to
itself, we deduce thaZ1(x) = A = 0, in contradiction to the assumptiont

Lemma 29. Let f:X — Y be directionally differentiable atktgo € M C X. If xo €
Imin(f, M) thenT (M, xo) N Co(f, x0) = @. In particular, if Y = R, we haveif (xg, v) >0
forallv e T (M, xo).

3. Support functions

In the next definition the notion of support function to a general vector problem is in-
troduced.

Definition 3.1.Let f: X — Y, M C X, xo0 € M, F : X — R be directionally differentiable
atxo andx € D*. We will say that the paiti, F) is a local support forf atxg on M if
the following conditions hold:

(1) F(x) <Af(x),¥x € M N B(xg, 8) for somes > O;
(2) F(x0) =Af(x0);

(8) dF(xp,v) >20,Yv e T(M, xo0);

(4) % 0.

We will say that(A, F) is a (global) support if condition (1) is satisfied for alk M, and
will say that it is a weak local support if conditions (1)—(3) are satisfied.

This definition obviously contains a scalarization process.

Remark 3.2. () If X=R", Y =RP, D = Ri, F is Fréchet differentiable and we replace
(3) by (3) VF(x0) =0, then Definition 3.1 becomes Definition 3.1 of [15]. If, in particular,
p =1 (i.e.,Y =R), this definition is equivalent to stating that!F is a support (in the
Hestenes sense [9, p. 217]) for

(2) If the Fritz John conditions for the s#f = S N Q are satisfied, wher@ is convex
and S is given by (2.7) (assuming that, g, andh are directionally differentiable with
convex derivative), that is, there exist Y*, u € W*, v € Z* all nonzero such that

reDV, ueK™, ugxo) =0, (3.1

rdf (x0,v) + pdg(xo, v) +vdh(xg,v) >0, YveT(Q,xo), (3.2)
then, lettingF be the Lagrangian function,

F =M\ +pug+vh, (3.3)

we have thath, F) is a weak support fof atxgonSn Q and the proofis easy. Obviously,
if conditions (3.1) and (3.2) hold with # 0 (Kuhn—Tucker conditionsja, F) is a support.
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The next proposition states basic properties satisfied if a support exists. Note that the
first property is the first order necessary optimality condition (Lemma 2.9).

Proposition 3.3. Let f : X — Y be directionally differentiable ato € M C X.

(@) If (A, F) is a local support forf at xg on M, then
T (M, xo0) N Co( f, x0) = 9.

(b) If (1, F) is a weak local support fof at xo on M, F is twice directionally differ-
entiable atxg, 0 € Imin(d F (xg, -), M — xg) and there exist® € T (M, xg) such that
d?F (xq, v) > 0, thenx #£ 0, that is, (1, F) is a local support.

Proof. (a) Letg(x) = Af(x) — F(x). Conditions (1)—(3) of Definition 3.1 are equivalent
to the following:

(1) ¢(x)=0,Vx € M N B(xo,8);
(2) p(x0) =0;
(3) dF(xp,v) =Adf(x0,v) —dp(xg,v) >0forallveT(M,xp).

Conditions (1) and (2) imply thatp € Imin(gp, M). Applying Lemma 2.9 it follows that
do(xg,v) > 0,Vv e T(M, xo). Taking into account condition (3), we deduce that

rdf(xo,v) >0, YveT(M,xp). (3.4)

Reasoning “ad absurdum,” suppose that there existsT (M, xg) N Co(f, xo0). Then,
df(xg,v) € —intD. Sincel € DT andX # 0, by Lemma 2.8 we havedf (xo, v) <0,
contradicting (3.4).

(b) We have thab = lim,,_, , v, for some sequencas € X ands, — 0T such that
Xp = x0+1t,v, € M. Suppose that = 0. With the notation of part (a), nog(x) = — F (x).
Hence,d¢(xo, -) = —d F (xo, -) and d?¢(xq, v) = —d?F (xq,v) < 0. Furthermore, since
¢(x) > 0,Vx € M N B(xo,§), p(xg) =0, and—de(xg, x, — x0) = dF(x0, x, — x0) =0,
Vn € N (by assumption), it follows that

@ (x0 + tyvp) — @(x0) — do(x0, Xp — X0) >0

dzfp(xo, v) = lim
n—o0

which is a contradiction. O

4. First order sufficient conditions

Theorem 4.1 and Corollary 4.3 below provide first order sufficient conditions for strict
local minimality of order 1 (the first one also necessary conditions). To prove the second
one we need a lemma. In the remainder of the work, we assume that theXspafirite-
dimensional.

Theorem 4.1. Let us suppose thah € M C X and f is directionally differentiable ato.
Then,T (M, xo) N C(f, xg) = {0} if and only ifxg € strl(1, f, M).
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Proof. Let us suppose that ¢ strl(1, f, M), then, by Lemma 2.6, there exist sequences
xn € M N B(xp, 1/n) \ {xo0} andd,, € D such that

1
f(xn)_f(x0)+dn:bn€B(Os ;”xn_xO”)' (4.1)

Without loss of generality, sincg is finite-dimensional, we can assume that

Xn — X0

| _— =
n—=00 |lx, — xol|
for somev € T (M, xo) with |v|| = 1. Dividing in (4.1) by|lx, — xo|| and taking the limit,
we have

lim <f(xn) — f(x0) 4 dy ) _

n=>00\ |lxn — xoll llxn — xoll

Since the first term within the limit convergesdg (xo, v), we have that the second term
also convergesto a certain vectbe D because is closed. Thereforelf (xo, v) = —d €
—D, and consequently € T (M, xo) N C(f, xo) = {0}, which is a contradiction.

Now let us see the converse. bete stri(1, f, M). By definition there exis& > 0 and
a neighborhood’ of xg such that

(f(x)+ D) N B(f(x0), allx —xoll) =@, ¥xeMNU\ {xo). (4.2)

Suppose that there exists= T (M, xo) N C(f, x0), v # 0. We can suppose th@b| = 1.
Sincewv belongs to the tangent cone, there exists a sequeneeV \ {xo} converging to
xo such that lim_ o ((x, — x0)/t,) = v, beingz, = ||x, — xol|. Since f is directionally
differentiable, we deduce that ljm o ((f (x,) — f(x0))/t,) = df (x0, v) € —D because
v e C(f, x0). Setdf (xo, v) = —dp € —D. For the previous > 0, there existag € N such
that(f (x,) — f(x0))/t, € —do + B(0, ) for all n > ng. Hence,f (x,) + t,do € f(x0) +
B(0, at,), which is in contradiction to (4.2). O

This theorem generalizes Theorem 4.6.3 of Hestenes [9] and, partially, Corollary 3.2
in [13], in which it is assumed =R” andD = Rﬂ’r. Notice that in the converse the finite-
dimensionality ofX is not used.

If the coneD has a compact base, from this theorem we deduce, taking into account
Theorem 4.5 in [14], that every strict local minimum of order 1 is a local proper Borwein
efficient solution of type 2 (see [14]).

Lemma 4.2. Let S be given by(2.7), O C X, xo € SN Q, and g and i directionally
differentiable atxg. Then
(SN Q,x0) CC(S,x0) NT(Q, x0).

Proof. SinceT (SN Q,xp) C T(S,x0) NT(Q, xo0), itis enough to prove that
T(S,xp) C C(S, x0).

By definition of the tangent cone, givane T(S, xg) there exist sequences — 0"
andx, € S such that lim_ - ((x, — x0)/t,) = v. Sinceg is directionally differentiable
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it follows that lim, oo ((g(xn) — g(x0))/t) = dg(xo,v). Now, (g(x,) — g(x0))/tn €
cond—K — g(xp)), and thereforedg (xg, v) € clcong—K — g(xo)).

In a similar way,dh(xo, v) = 0 is proved since in this casgx,) = h(xg) = 0 for all
n € N. Consequentlyy € C(S, xp). O

The next result follows immediately from Theorem 4.1 and the lemma above.

Corollary 4.3. Let S be given by(2.7), 0 Cc X, xo € SN Q, and f, g, andk directionally
differentiable atg. If C(S, x0) N T(Q, x0) N C(f, x0) = {0}, thenxg € strl(1, f, SN Q).

In Theorem 4.4 and Corollary 4.5, sufficient conditions for strict minimality based on
the notion of support function are provided, the first one for an arbitrary set and the second
one for a set defined by the three kinds of constraints.

Theorem 4.4. Let f be directionally differentiable ato € M C X. If

(@) (A, F) is alocal support forf at xp on M and
(b) T(M, x0) N[C(f, x0) \ Co(f,x0)]= {0},

thenxg € strl(1, f, M).

Proof. Condition (b) is equivalent to
T(M, x0) N C(f, x0) N Co(f, x0)" ={0}. (4.3)

By Proposition 3.37' (M, xo) N Co( f, x0) = ¥, hence I (M, xo) N Co(f, x0)° = T (M, xo).
Therefore, taking into account (4.3), it follows thH&tM, xo) N C(f, xo) = {0}. By Theo-
remd4.lxgestrl(l, f,M). O

Corollary 4.5. Let S be given by2.7), 0 Cc X, x0 € SN Q, and f, g, andk directionally
differentiable atvg. If (Kuhn—Tuckeyrconditiong3.1)and(3.2), A # 0hold andC(S, xg) N
T(Q, x0) N[C(f, x0) \ Co(f, x0)] = {0}, thenxo € strl(1, £, SN Q).

Proof. By Remark 3.2(2), ifF is the Lagrangian function given by (3.3),, F) is a sup-
port for f atxo on SN Q, and then it suffices to apply Lemma 4.2 and Theorem 4i4.

Let us remark that this corollary generalizes Theorem 7.2 of Hestenes [9, Chapter 4]
and, partially (there a superstrict minimum is obtained), Corollary 4.1 in [15]. Notice that
convexity forQ or for the derivatives is not needed.

5. Second order sufficient conditions

In this section, different second order sufficient conditions for strict local minimality of
order 2 are provided.

The following theorem establishes a sufficient condition for a strict local minimum of
order 2 in a problem with an arbitrary feasible set.
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Theorem 5.1. LetM C X, xo € M, and f : X — Y directionally differentiable akg. If for
everyv € T(M, xo) N C(f, xp) \ {0} there existqx, F), weak local support forf at xg
on M, with F twice directionally differentiable atp such that

0€|min(dF(x0, -),M—xo), (5.1
andd?F (xo, v) > 0, thenxg € strl(2, £, M).

Proof. Suppose thatg ¢ strl(2, f, M). Then, by Lemma 2.6, there exist sequences
M N B(xg, 1/n) \ {xo} andd,, € D such that

1
fGn) — fxo)+dy=by € B(Oa ;t,?), (5.2)
wheret, = ||x,, — xol|. Choosing a subsequence, if necessary, we can assume that

Xn —

lim

n—o00

t 0 v eT (M, x0) with v = 1.
n
Dividing in (5.2) by, and taking the limit we obtain (as in the proof of Theorem 4.1) that
df (xo,v) € —D. Thereforep € T(M, x0) N C(f, xo) \ {0}. By assumption, there exists a
weak local supporti, F) such that (5.1) holds ant? F (xo, v) > 0.

Now, applying to (5.2) the continuous linear functibmve get

)‘f(xn) - )‘f(XO) + Adp, = Aby,
which can be written
F(xo+ tyvp) — F(x0) — ta dF (x0, vp) + @(xy) + d F (x0, X, — x0) + Adp = Aby,

wherev, = (x, — x0)/t, andgp = Af — F, the function defined in the proof of Proposi-
tion 3.3. Dividing byz?/2 and taking the limit we obtain

lim F(xp) — F(x0) — th dF (x0, vy) + lim @ (xp) +dF(x0, xn — x0) + Ady

2 2 =0.
n—00 [’1/2 n—00 [’1/2

As the first limit exists and is equal ' F (xo, v), then the second one exists and is nonneg-
ative sincep(x) > 0 for all x € M N B(xg, ), d F (xg, x, — x0) = 0 by (5.1), and\d,, >0
because. € D*. It follows thatd?F (xo, v) < 0, which is a contradiction. O

Remark 5.2. (1) If T(M, x0) N C(f, xo0) = {0}, by Theorem 4.1xg € strl(1, f, M), and,
therefore, alsayg € strl(2, f, M).

(2) Notice thatf is not required to be twice directionally differentiable.

(3) By virtue of Proposition 3.3). has to be different from 0. This applies to results
from now on.

This theorem generalizes Theorem 4.6.4 of Hestenes [9] and Theorem 5.1 in [15].
In the following proposition, which is evident, we provide two conditions, each of them

implying (5.1).
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Proposition 5.3. Two sufficient conditions fa5.1)to hold are the following

() F is Fréchet differentiable witlV F (xg) = 0;
(iiy dF(xo,u)>0,YueT(M,xo),and(M — xp) N B(0, ) C T(M, xo) for somes > 0.

Notice that if F is directionally differentiable atg andd F(xo,v) =0 for all v € X,
thenF is Fréchet differentiable [8, p. 266].

As a consequence of Theorem 5.1 we obtain the next corollary, in which the existence
of a support function is reduced to finding a multiplier.

Corollary5.4.LetM C X,xp€ M, andf: X — Y twice directionally differentiable atp.
If for everyv e T (M, xg) N C(f, x0) \ {0} there exists. € DT such that

0 € Imin(Adf (xo, ), M — xq) (5.3)
andx d? f (xo, v) > 0, thenxg € strl(2, £, M).

Proof. We defineF (x) = Af (x) — Adf (xo, x — xo) forall x € X. Let us see thatr, F) is
a weak local support fof atxg on M satisfying (5.1).

In fact, the conditionF(x) < Af(x) for x € M N B(xp, §) is clear becausgf (x) —
F(x) = Adf (xo0,x — x0) = 0 by (5.3). The conditiorF' (xg) = Af (xo) is also clear. Find
the directional derivative of’,

F(xo+tu) — F(x0)

dF(xo.w)=  lim
(t,u)— (0, w) t
— im Af (xo+tu) — Af (x0) — Adf (xo, tu) 0
T (tu)—(0F,w) t o

because. is linear and continuous antlf (xg, -) is positively homogeneous and contin-
uous. With this, (5.1) and condition (3) of Definition 3.1 are satisfied. Finally, it is also
easy to verify that/?F (xo, v) = A d?f(xo, v) > 0, and so we can apply Theorem 5.1 to
conclude. O

Although Corollary 5.4 is simple to apply, Theorem 5.1 is more general, as it can be
shown with the following dataf (x, y) = (x + 2y2, y — y2), M = {(x, y): —x — y2 <0},
D = R%r, andxg = (0,0). We have thatF(x, y) = y2, with » = (1,0), is a support sat-
isfying the conditions of Theorem 5.1 on the vectorsTafM, xg) N C(f, xp) \ {0} =
{(0, y): y <0}, soxp € strl(2, f, M). But, there is na. satisfying the hypotheses of Corol-
lary 5.4.

In the following results we study other sufficient conditions in which the support func-
tion does not change with the vector.

Proposition 5.5. Let f: X — Y twice directionally differentiable ato € M C X. Suppose
that one of the following conditions is satisfied

(i) There exists. € D such that(5.3)holds and
Adzf(xo, v) >0, VveT(M,xp) NC(f, xo)\{0};



508 B. Jiménez, V. Novo / J. Math. Anal. Appl. 284 (2003) 496-510

(i) There exists. € D’ such that(5.3) holds and
Ad?f(xo,v) >0, YveT(M,xo) NKerdf(xo,-)\ {0}

Thenxg € strl(2, f, M).

Proof. Case (i) follows from Corollary 5.4.

(ii) Let us prove thatl' (M, xo) N C(f, xo) = T (M, xo) NKerdf (xp, -).

Choosev € T(M, xg) N C(f, xo), thendf (xg, v) € —D. Suppose thad f (xo, v) # O;
then sincer € D*T one hasidf(xo, v) < 0. On the other hand, if we defing(x) =
Adf (xo, x —x0) we havedo(0, u) = Adf (xg,u), Yu € X, and as G Imin(p, M — xo) by
(5.3), it follows thatde(0,u) > 0 for allu € T(M — x0,0) = T (M, x0) by Lemma 2.9.
In particular, A df (xg, v) = de(0,v) > 0, and we have a contradiction. Accordingly,
v € Kerdf (xo, -).

Now, part (i) applies and we obtain the result

In the following proposition another possibility withe DT is considered.

Proposition 5.6. Let f: X — Y be twice directionally differentiable atp € M C X,
Y a normed space equipped with the order induced by the convex bogeY and
A € D*. Suppose that there exist a positive continuous linear applicafio — Y
and » € D°T satisfyingh = 2y and such tha{(5.3) holds andx d?f (xo,v) > 0, Yv €
T(M, xo) NKery df (xo,-) \ {0}. Thenxg € strl(2, f, M).

Proof. Setting fo = ¥ f, then, by assumption, we havecdmin(x dfo(xo, -), M — xq)
and 1 d? fo(xo,v) > 0, Yv € T(M,xg) N Ker fo(xo) \ {0}. By Proposition 5.5,x9 €
strl(2, fo, M), and by Proposition 2.%p € strl(2, f, M). O

This proposition is especially interestingiif= R” and the coné is polyhedral.D =
{y e RP: Ay >0} beingA:R” — R linear, becausg = A, with D = RX | satisfies the
hypotheses in a natural way.

Corollary 5.7. Let X =R", Y =R”, D =R”, and f :R" — R” be twice directionally
differentiable atvg € M C R”. If there exists\ € Rﬁ’r such that(5.3)holds and

kdzf(xo, v) >0,
YveT(M,x0) Nf{veR" xidfi(xo,v) =0, i=1,...,p}, v#0,
thenxg € strl(2, f, M).

Proof. Rearranging, we can suppose, without loss of generality, that
A=(A1,..., A, 0,...,00 withk>1andr1>0,..., A >0.

In Proposition 5.6 we choosg :R” — R¥ given byy(y1,....y,) = (v1..... m), D =
RA, andx = (A1, ..., Ax), which allow us to conclude. O
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If in particular, p = 1, we deduce the following corollary for scalar optimization, that
in spite of its simplicity (especially iff is twice Fréchet differentiable) we have not found
in the literature.

Corollary 5.8. Let f:R" — R be twice directionally differentiable atp € M c R". If
0 € Imin(df (xo, -), M — xo) andd? f (xo, v) > 0, Vv € T (M, xo) NKerdf (xo, -) \ {0}, then
xo € Strl(2, f, M).

As an illustrative example, considgix, y) = y + x2 — y2, M = {(x,y) e R% y >
sirf(1/x) if x #0, y > 0 if x = 0} andxg = (0, 0). Obviously, Corollary 5.8 applies.

If M =R", Theorem 3.2 of Ben-Tal and Zowe [2] follows from this corollary taking
into account Proposition 2.4.

Next the general result, Theorem 5.1, is applied to the case in wiiichS N Q comes
defined by inequality, equality and set constraints.

Theorem 5.9. Let S be given by(2.7), O C X, andf, g, h twice directionally differentiable
atxge SN Q. Ifforeveryv € C(S, xp) N T(Q, x0) N C(f, x0) \ {0} there exist(x, u, v) €
DT x Kt x Z* such that callingL = Af + ug + vh the following conditions hotd

(@) ngxo) =0;
(b) O0elImin(dL(xo,-), SN Q — xo);
(c) d?L(xg,v) > 0.

Thenxg € strl(2, f, SN Q).

Proof. Let F(x) = L(x) — dL(xp,x — x0), Vx € X. It is proved, as in another occasions,
that(x, F) is a weak local support fof atxg on SN Q with d F(xgp, -) = 0 (condition (a) is
needed to verify thaF (xo) = Af (x0)). On the other hand{2F (xg, v) = d?L(xq, v) > 0,

so Theorem 5.1 allows us to conclude becdlié&N Q, xg) C C(S,x0) NT(Q, x0). O

If g is not consideredy =R, D =R, and f and# are twice Fréchet differentiable,
Theorem 9.2 of Borwein [4] follows from the previous theorem.

If f,g,andh are ofC* class on a neighborhood ®§, this theorem is close to Corol-
lary 3.1 of Maruyama [17], in which second order necessary conditions are stated for
scalar programs. Notice that for this class of functions it can be proved*ifaio, v) =
2f @ (xp, v, 0), this last derivative being the (parabolic) derivative used by Maruyama [17,
Definition 2.2].

If in particular Q = X, we deduce the following corollary.

Corollary 5.10. Let S be given by(2.7), xo € S, and f, g, h twice Fréchet differen-
tiable atxg. If for everyv € C(S, xo) N C(f, xo) \ {0} there exists a Lagrangian function
L =Af + ug + vh such that(x, u,v) € D¥ x K+ x Z*, ug(xo) =0, VL(xg) =0, and
V2L(x0)(v, v) > 0, thenxg € strl(2, f, ).
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If we take into account that every strict local minimum of order 2 is a strict minimum,
this corollary together with Corollary 4.3 (for differentiable functions) become Theo-
rem 11.1 of Ben-Tal and Zowe [1]. Notice, as these authors point out in Example 1, that if
X is not finite-dimensional, the result is not valid.
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