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A B S T R A C T

Purpose: The purpose of this study was to determine the long-term surgical outcomes of magnetic

resonance imaging (MRI)-negative, fluorodeoxyglucose positron emission tomography (FDG-PET)-

positive patients with temporal lobe epilepsy (TLE) and compare them with those of patients with mesial

temporal sclerosis (MTS).

Methods: One hundred forty-one patients with TLE who underwent anterior temporal lobectomy were

included in the study. The surgical outcomes of 24 patients with unilateral temporal hypometabolism on

FDG-PET without an epileptogenic lesion on MRI were compared with that of patients with unilateral

temporal hypometabolism on FDG-PET with MTS on MRI (n = 117). The outcomes were compared using

Engel’s classification at 2 years after surgery. Clinical characteristics, unilateral interictal epileptiform

discharges (IEDs), histopathological data and operation side were considered as probable prognostic

factors.

Results: Class I surgical outcomes were similar in MRI-negative patients and the patients with MTS on

MRI (seizure-free rate at postoperative 2 years was 79.2% and 82% in the MRI-negative and MTS groups,

respectively). In univariate analysis, history of febrile convulsions, presence of unilateral IEDs and left

temporal localization were found to be significantly associated with seizure free outcome. Multivariate

analysis revealed that independent predictors of a good outcome were history of febrile convulsions and

presence of unilateral IEDs.

Conclusion: Our results suggest that epilepsy surgery outcomes of MRI-negative, PET positive patients

are similar to those of patients with MTS. This finding may aid in the selection of best candidates for

epilepsy surgery.

� 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Temporal lobe epilepsy (TLE) is one of the most medical
treatment-resistant type of focal epilepsy in adults and surgical
treatment may help approximately 70% of the patients become
seizure free [1–3]. In the preoperative assessment of TLE cases, it is
important that neuroradiological findings support the clinical and
electrophysiological studies in identifying the epileptic focus.

The most frequent histopathological finding in TLE patients is
mesial temporal sclerosis (MTS). The sensitivity and specificity of
cranial magnetic resonance imaging (MRI) is quite high, about 80–
97% [4,5]. Hippocampal sclerosis (HS) detected by MRI is among
served.
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the most important positive predictive factors known to affect
postoperative outcome [6–8]. While MTS is seen in 58–72% of TLE
cases, it has been determined that MRI is normal in approximately
16% of the cases [5,9,10].

Although it has been reported in recent years that 3 T MRI
provides 20–48% increase in providing new or additional
information in comparison to 1–1.5 T MRI, other neuroimaging
methods are required in the preoperative assessment of MRI-
normal cases [11,12]. Therefore, fluorodeoxyglucose (FDG)-posi-
tron emission tomography (PET) is routinely used in many epilepsy
centers for preoperative assessment to identify the epileptic focus.
PET is a type of nuclear medicine imaging with multiple purposes,
and gives information both on local and general brain metabolism.
Glucose metabolism is the most frequently measured parameter
and 18 F-FDG is the most commonly used molecule for this
purpose. As a characteristic finding of epilepsy, there is a regional
decrease in glucose uptake (hypometabolism) during interictal
period. The definitive cause of hypometabolism is not known. The
general opinion is that cerebral hypometabolism reflects neuronal
cell loss; however, in fact, rather than the real structural area,
cerebral dysfunction is caused by decreased synaptic input and
electrical activity arising from the dysfunctional cortex. Therefore,
hypometabolism extends far beyond the margins of the epileptic
focus in the temporal lobe. In the light of this information, it can be
concluded that hypometabolism on PET scan shows dysfunctional
neural network [13].

FDG-PET scans localize the seizure focus correctly in 85–90% of
TLE patients. Regional hypometabolism is also identified in FDG-
PET scans of 60–82% of MRI-negative patients [14–16]. At the same
time, FDG-PET is useful in predicting surgical outcome. In a large
meta-analysis, it was found that while ipsilateral hypometabolism
showed a predictive value of 86% for good surgical outcome, the
corresponding value was between 71% and 80% in patients with
normal MRI findings [13]. Although the underlying physiopathol-
ogy in these cases is not completely enlightened, it has been put
forward that it is a different syndrome from MTS that can be
surgically treated [5,17].

Although it is considered that the surgical outcomes of MRI-
normal cases are worse than that of patients with MTS, the studies
performed in recent years support the fact that if PET, electroen-
cephalography (EEG) and the results of other preoperative
assessments are consistent and identify a single focus, this group
has similar results to MTS group. It has also been reported in many
series that MRI-normal cases have better surgical outcomes in
comparison to patients with MTS [13–18].

The purpose of this study was to determine the long-term
surgical outcomes of MRI-negative, FDG-PET-positive TLE patients
and compare them with those of patients with MTS.

2. Material and methods

Patients who were diagnosed with medically refractory TLE and
underwent standard anterior temporal lobectomy (ATL) between
2006 and 2013 at Gazi University Medical Faculty Epilepsy Center
were retrospectively evaluated. Among 167 patients aged more
than 17 years, 141 cases with a postoperative follow-up period of
at least 2 years and unilateral temporal hypometabolism on FDG-
PET scan were included in the study. The same preoperative
assessment protocol was used in all patients. The present study
was approved by the Institutional Ethical Board of Gazi University
Faculty of Medicine and performed in accordance with the ethical
standards laid down in the 1964 Declaration of Helsinki.

As the first step of preoperative assessment, a detailed clinical
and medical history of the patients was obtained, and all the
patients underwent physical and neurological examination.
Afterwards, all cases were monitored with scalp electrodes and
additional anterior temporal electrodes using international 10–20
electrode system on 32-channel EEG until a sufficient number of
typical seizures were recorded. If the rate of interictal epileptiform
discharges (IEDs) were �80% in EEG recordings in one temporal
lobe, the IEDs were considered unilateral. Temporal lobe localiza-
tion and right/left lateralization of the patients were determined
by correlating with ictal clinical signs and ictal and interictal EEG.

In all cases, cranial MRI was performed with temporal lobe
epilepsy protocol using superconducting magnets with multichan-
nel head coils in the supine position. While 1.5 T MRI (GE SIGNA
EXCITE, Milwaukee, USA) was used in imaging in the first years of
the study, assessments were performed by 3 T MRI (Siemens
MagnetomVerio, Erlangen, Germany) in the last 4 years. Temporal
lobe epilepsy protocol included axial and sagittal T1 weighted,
axial T2 weighted, oblique coronal FLAIR perpendicular to the long
axis of both hippocampi, and 3D inversion recovery (IR). The whole
brain volumetric series were acquired using a 3D IR technique with
a slice of 1 mm thickness, zero interslicegap, 256 � 222 matrix
size, and a single signal average. T2 weighted oblique axial images
through the long axis of both hippocampi consisting of 20 slices
werealso obtained with 3 mm slice thickness and 0.75 mm
interslice gap. All images were evaluated by experienced
neuroradiologists.

Standard brain FDG-PET imaging protocol was used in all cases.
The reconstruction of PET images was performed using FORE-
OSEM iterative reconstruction method. Imaging was performed
using Discovery ST (GE Medical Systems, Milwaukee, WI, USA) PET/
CT camera system. Trans-axial and coronal PET images were
prepared considering the AC/PC (anterior commissure/posterior
commissure) line, and additional transverse sections were
obtained according to temporal lobe plane. PET images were
evaluated visually by 2 experienced nuclear medicine specialists
independently without any knowledge on patients, surgery and
follow-up results. Statistical parametric mapping (SPM) analysis
was performed, if necessary. Consequently, FDG-PET images were
classified into groups having right or left temporal hypometabo-
lism. Cases with normal, bilateral or extratemporal PET findings
were excluded. Patients with discordance regarding hypometa-
bolism between ictal EEG and PET were also excluded.

All cases underwent psychiatric and neuropsychological
assessment before surgery. None of the patients had a psychiatric
disorder that was a definite contraindication for surgery, such as
acute psychosis. Patients who were diagnosed with depression and
anxiety disorder were followed-up with antidepressant therapy.
All patients were administered a battery of neuropsychological
tests by a neuropsychologist. Patients who were scheduled for
surgery underwent WADA test or fMRI. Recently, fMRI rather than
WADA was used reliably in most of the patients in our routine
clinical practice, as is used in many epilepsy centers.

The results of preoperative assessment protocols were dis-
cussed in a multidisciplinary council, and if clinical and semiologi-
cal findings, interictal and ictal EEG activities, and neuroimaging
and neuropsychological assessments were consistent with each
other and localize a single focus, surgery decision was made and
the surgical technique was determined. ATL was performed for all
patients by the same surgeon at the Department of Neurosurgery
in our hospital. Standard anterior temporal resection was
performed in all patients.

In the postoperative period, the patients were evaluated in
terms of seizure state and antiepileptic drug (AED) use at 2 and 6
months, and thereafter once a year by the same epileptologist. In
accordance with the AED withdrawal protocol of our clinic, the
same drug treatment was continued for 6 months postoperatively
in all patients. One of the AEDs was discontinued in patients who
were seizure-free at the end of 6 months, by gradually decreasing
the dose of the drug. Thereafter, the dose of the second drug was



Table 1
Demographic and baseline characteristics of the study patients.

PET+/MRIS MTS p value

n = 24 n = 117

Age 29.2 � 7.38 28.6 � 8.85 0.452

Gender 0.415

Female 13 (54.2) 69 (59)

Male 11 (45.8) 48 (41)

Mean duration of

epilepsy, years

0.218

<11 7 (29.2) 30 (25.6)

11–20 8 (33.3) 60 (51.3)

>20 9 (37.5) 27 (23.1)

FC 9 (37.5) 72 (61.5) 0.030
Side of surgery 0.045

Left 7 (29.2) 72 (61.5)

Right 17 (70.8) 45 (38.5)

Seizure 0.308

CPS + SGTCS 21 (87.5) 94 (80.3)

CPS 3 (12.5) 23 (19.7)

EEG-IEDs 0.045
Bilateral 9 (37.5) 24 (17.0)

Unilateral 15 (10.6) 93 (66)

Pathological data

HS (�) 5 (20.8) 9 (7.7) 0.050
HS (+) 19 (79.2) 108 (92.3)

Bold characteristics are statistically significant values.
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also decreased, and all medications were stopped at the end of the
2nd year.

Engel seizure classification was used in the evaluation of
postoperative outcomes [19] (Class I: free of disabling seizures,
Class II: rare disabling seizures, Class III: worthwhile improvement,
Class IV: no worthwhile improvement). For the analysis, the
seizure-free group (Engel I) was compared with the group having
seizures (Engel II, III, IV). The seizure state of the cases was
followed up at 6 months, 1 and 2 years, and once a year after that.

2.1. Data collection

Various preoperative prognostic variables that may have an
effect on predicting postoperative success were identified. These
were age, gender, preoperative epilepsy duration, seizure type (the
presence of secondary generalized tonic clonic seizures), temporal
lobe lateralization, the presence of complicated febrile convulsions
(FC), ipsilateral temporal IEDs, and the presence of unilateral HS on
cranial MRI. Postoperative AED use and histopathological data
were also recorded.

2.2. Statistical analysis

Data analyses were performed using the Statistical Package for
the Social Sciences (SPSS Inc., Chicago, IL, USA) version 16.0 for
Windows. Data were expressed as mean � standard deviation for
continuous variables and as number and percentages for categorical
variables. The mean differences between the groups were analyzed by
Student’s t-test. Categorical data were evaluated by Pearson’s chi-
square or Fisher’s exact test, where applicable. A univariate logistic
regression analysis was used to evaluate the potential prognostic
factors having significant effects on surgical outcome. Any variable
with a p value of <0.25 was accepted as a candidate for the
multivariable model along with all variables of known prognostic
clinical importance. In order to identify the best predictive factors, the
factors that were found to be significant were included in a
multivariate logistic regression model. Odds ratios, 95% confidence
interval (CI) and the Wald statistics for each independent variable
were also calculated for a seizure-free outcome at 2 years after the
surgery and at the last follow-up. A p value of <0.05 was considered
statistically significant.

3. Results

The demographic and clinical characteristics of 141 cases are
presented in Table 1. The number of MRI-negative and MRI-
positive cases was 24 (16.8%) and 117 (83%), respectively, and
these cases were compared. While 1.5 T MRI was used for 45 cases,
3 T MRI was used for the remaining 96 cases. The number of MRI-
negative cases was 9 (20%) by 1.5 T MRI and 15 (15.6%) by 3 T MRI;
no significant difference was determined between the two groups
(p = 0.648). Moreover, there was also no significant difference in
terms of surgical results between the cases who underwent1.5 T
MRI and 3 T MRI (p = 0.145).

FDG-PET images revealed that unilateral temporal hypometa-
bolism was on the left in 79 (56%) cases, and on the right in 62 cases
(44%).

While 127 (90.1%) of 141 cases were HS-positive, 14 (9.9%) of
them were HS-negative. Pathological examination of MRI-negative
patients revealed the following; 10 cases had HS (41.6%), 3 (12.5%)
cases had cortical dysplasia (CD), 3 (12.5%) had tumors, 6 (25%) had
gliosis and 2 (8.3%) cases had normal MRI findings.

While 79.2% of the patients were seizure-free in postoperative 2
years in the MRI-negative group, 82.2% of the patients were seizure-
free in the MRI-positive group, and there was no statistically
significant difference between the two groups (p = 0.748). In detail
evaluation of the cases, 17 (70.8%) cases of the MRI-negative group
and 86 (73.5%) cases of the MRI-positive group were seizure- and
aura-free. Furthermore, mean age, gender distribution, seizure type,
and seizure duration were similar in MRI-negative and positive
groups at postoperative 2 years (p > 0.05). History of FC, unilateral
IEDs, HS, and left temporal lobe localization were significantly
frequent in the MRI-positive group when compared to the MRI-
negative group (p = 0.03, p = 0.045, p = 0.05, and p = 0.045, respec-
tively). Five cases were performed invasive monitoring with
subdural strip and grids in the MRI-negative group. There was no
statistically significant difference in terms of surgical outcomes
between cases that underwent invasive EEG monitoring or not
(p = 0.192).

Univariate logistic regression analysis was used to evaluate
whether potential factors had a statistically significant effect on
postoperative outcome. This analysis was performed separately for
the PET-positive/MRI-negative and MTS groups. The results of
univariate logistic regression analysis of factors that may have an
effect on seizure-freedom (Engel I) of cases that were followed-up
for at least two years are presented in Table 2. The positive
predictive factors of seizure freedom after surgery were history of
FC, unilateral IEDs, and left temporal localization.

These variables having a prognostic effect according to single
variable logistic regression analysis were entered into multivariate
logistic regression model (Table 3). According to the results of final
analysis, left temporal localization had no effect on seizure-
freedom and only the presence of unilateral IEDs and history of
complicated FC were found to be the independent prognostic
factors predicting good surgical outcome

4. Discussion

In the present study, we reported the surgical outcomes of MRI-
negative PET-positive cases. Our results suggest that MRI-negative,
PET-positive cases also benefit from surgical treatment. At
postoperative 2 years, 79.2% of the cases were Engel class I. When
these results were compared with that of MTS group that is known
to have good surgical outcome, again similar results were achieved.
Our results support the other studies that reported quite high
postoperative seizure-free rates in MRI-negative PET-positive



Table 2
Univariate analysis of variables at postoperative 2 years for seizure-free outcome.

PET+/MRIS MTS

SF (n = 19) NSF (n = 5) p value OR (95% CI) SF (n = 96) NSF (n = 21) p value OR (95% CI)

Age, years 28.3 � 4.35 27.4 � 2.54 0.645 0.99 (0.95–1.03) 28.9 � 3.37 27.0 � 5.73 0.489 0.98 (0.93�1.03)

Gender 0.585 1.15 (0.55–2.42) 0.150 1.60 (0.64–2.81)

Female 10 (41.7) 3 (12.5) 54 (46.2) 15 (12.8)

Male 9 (37.5) 2 (8.3) 42 (35.9) 6 (5.1)

Side of operation 0.146 1.00 (0.90–1.09) 0.044 2.44 (1.02–5.10)

Left 7 (29.2) – 54 (46.2) 18 (15.4)

Right 12 (50) 5 (20.8) 42 (35.9) 3 (2.6)

Seizure 0.479 1.05 (0.90–1.44) 0.366 1.67 (0.69–4.22)

CPS + SGTCS 16 (66.7) 5 (20.8) 76 (65) 18 (15.4)

CPS 3 (12.5) – 20 (17.1) 3 (2.6)

EEG-IEDs 0.047 0.20 (0.08–0.96) <0.001 3.27 (1.20–8.10)

Bilateral 5 (20.8) 4 (16.7) 10 (8.5) 12 (10.3)

Unilateral 14 (58.3) 1 (4.2) 86 (73.5) 9 (7.7)

Duration of epilepsy

< 11 5 (20.8) 2 (8.3) 0.201 1.05 (0.23–4.04) 25 (21.4) 5 (4.3) 0.978 1.50 (0.70–3.55)

11–20 8 (33.3) – 49 (41.9) 11 (9.4)

>20 6 (25) 3 (12.5) 22 (18.8) 5 (4.3)

Pathological data 0.270 1.68 (0.60–3.55) 0.506 1.60 (0.50–4.92)

HS (�) 3 (12.5) 2 (8.3) 7 (6.0) 2 (1.7)

HS (+) 16 (66.7) 3 (12.5) 89 (76.1) 19 (16.2)

FC 10 (41.7) – 0.047 1.56 (1.05–2.30) 67 (57.3) 5 (4.3) <0.001 3.17 (1.20–7.82)

Bold characteristics are statistically significant values.

Data are presented as mean � standard deviation or number (%), where appropriate.

OR: odds ratio, CI: confidence interval; SF: seizure-free; NSF: non seizure-free; CPS: complex partial seizure; SGTCS: secondarily generalized tonic-clonic seizure; EEG:

electroencephalography; IEDs: interictal epileptiform discharges; MRI: magnetic resonance imaging; HS: hippocampal sclerosis; FC: febrile convulsion; FDG-PET:

fluorodeoxyglucose-positron emission tomography.
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cases [5,17,20]. In these studies, MRI-negative PET-positive cases
were compared with MTS cases and were found to have similar
seizure-free rates as was in our study. While MRI is the most
important diagnostic factor in preoperative assessments of
resistant TLE cases, it has been shown that only FDG-PET was
successful in predicting surgical outcome [21].

There are also studies and meta-analysis reporting much worse
surgical outcomes in non lesional TLE cases compared to MTS
group in the literature [3,22]. It was reported in these studies that
the best predictive factors were positive PET results and consistent
EEG and PET results, however, as is in our study, MRI-negative PET
positive sub-group was not compared with MTS group. Another
meta-analysis stated that ipsilateral PET hypometabolism in
preoperative assessments is a good indicator for surgical outcome
and is more valuable if MRI is normal [13].

The preoperative approach in MRI-negative patients is another
topic of discussion. These cases are recommended to undergo
preoperative invasive EEG monitoring in many centers. However,
in the recent years especially after the widespread clinical use of
FDG-PET, this understanding is changing. It has been previously
known that seizure onset on scalp and invasive EEG is correlated
with unilateral hypometabolism on PET [23]. Among cases
undergoing invasive EEG monitoring, surgical outcomes of PET-
positive cases are better. Invasive EEG monitoring is gold standard
when there are difficulties or conflicts in noninvasive assessments
[24–27]. The demonstration that excellent surgical outcomes are
Table 3
Multivariate stepwise logistic regression analysis at 2 years after epilepsy surgery for 

OR 95% CI 

Lower limit 

Unilateral IED 223.857 6.030 

FC 33.098 3.526 

Left temporal localization 1.422 0.189 

Bold characteristics are statistically significant values.

OR: odds ratio, CI: confidence interval; IED: interictal epileptiform discharge; FC: febri
achieved in TLE cases, if IED and ictal EEG findings on noninvasive
EEG are consistent with PET findings has led to a new
understanding [15,28,29]. In the light of this information, the
need for invasive EEG during preoperative assessments is
decreasing and thus high cost and complication risk is minimized.
It was observed in our study that there was no difference in the
surgical outcomes of patients who had undergone invasive EEG
recording or not. Therefore, in our center, if clinical data, scalp ictal
and interictal EEG and FDG-PET findings of resistant TLE cases were
consistent with each other and localize a single focus, the patients
were considered as surgical candidates without performing an
invasive intervention.

The underlying physiopathology in MRI-negative, PET-positive
TLE cases remain unclear. It has been previously reported that
when FDG-PET findings and pathology results of MTS cases are
evaluated together, hypometabolism is not correlated with the
degree of hippocampal cell loss [30]. Similarly, HS and degree of
temporal atrophy on MRI scans of MTS cases were not correlated
with the topography of hypometabolism on FDG-PET [31]. The
major importance of the degree of focal hypometabolism on FDG-
PET is its role in predicting good surgical outcome [32]. Temporal
hypometabolism is not associated with the degree of hippocampal
damage measured by MRI or evaluated by histopathological
examinations, because the degree of hypometabolism does not
change in mild, moderate or severe damages. Therefore, even if
MRI is normal or shows mild hippocampal abnormality, PET may
seizure-free outcome.

Wald p

Upper limit

311.049 8.610 0.003
310.720 9.380 0.002

10.716 0.117 0.733

le convulsion.
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show significant hypometabolism. In conclusion, although FDG-
PET is quite effective in localizing the epileptic region, it can be
considered that it is not sensitive in reflecting HS severity [26].

Different theories are proposed on the underlying pathology.
These cases are reported to be associated with small temporal pole
encephaloceles or microscopic cortical dysplasia [33,34]. In
another research, PET hypometabolism in MRI-negative cases
was not associated with HS but with hippocampal structural
abnormalities (gliosis, heterotopic neurons) [35]. Another re-
searcher group claimed that the absence of hippocampal atrophy
in MRI-negative patients was caused by the presence of neocortical
abnormalities in the lateral temporal lobe rather than in the mesial
region. Furthermore, they proposed that these cases represent a
different entity than MTS showing good response to surgical
treatment [17].

In many studies performed to date, the probability of seizure
free outcome in cases after TLE surgery was based on histopa-
thology and MRI findings. In a very recent large-scale study
performed on medical treatment resistant TLE cases, a new
pathological classification was recommended for HS. Different
from the current classification, ‘‘No-HS/gliosis only’’ classification
is recommended for cases without HS but with normal neurons
and reactive gliosis [36]. Likewise, in our study, while the majority
of the cases had HS, lower number of histopathologies like tumors,
CD, arteriovenous malformations (AVM) and nonspecific gliosis
were observed.

Our results demonstrated that history of FCs and IEDs were the
most important clinical factors affecting postoperative seizure-free
state. Likewise, some studies have previously demonstrated that
FC has a positive predictive value on surgical outcome [37,38].
Observing good surgical outcomes in the presence of history of
febrile seizures might be attributed to a relation with MTS.
Although there is no precise evidence that prolonged FC is a risk
factor for mesial temporal sclerosis, there is an unquestionable
strong relationship between these two conditions. It has been
hypothesized that FS also influences expression and/or function of
other ion channels that are known to control hippocampal
excitability. Pronounced changes have been already found in
hippocampal excitatory and inhibitory ligand-gated ion channels.
It has been suggested that seizure-induced changes in gamma-
aminobutyric acid -A receptor (GABAAR)-mediated neurotrans-
mission may compromise the gatekeeper function of the dentate
gyrus and contribute to hippocampal hyperexcitability accompa-
nying the process of epileptogenesis [39].

Although there was no difference in the frequency of IEDs
between the 2 groups in our study, unilateral IEDs were found to be
one of the most effective factors on outcome, and similar results
were also found in the literature [40,41]. Similar to our study,
independent of HS identified on MRI, electrophysiological studies
were previously shown to affect prognosis [42]. On the contrary,
some researchers determined that IEDs failed to predict long-term
outcome [43,44]. If unilateral IEDs are localized to the temporal
lobe operated and particularly if the localization degree is high,
they predict postoperative good results. Contrarily, diffuse
interictal discharges suggest diffuse irritative zone that shows
bad prognosis. A prospective study showed the seizure rates
increased by 80% in patients with �90% predominance on the
operation side in postoperative long-term follow-up, but seizure-
free rate was 54% if IEDs show lesser degrees of lateralization [45].
In case of detection a small interictal epileptogenic area
particularly localized in the anterior temporal area and in case
of a history of FC, despite quite successful surgical outcomes, long
seizure duration and presence of etiological factors such as history
of a head trauma or meningitis leading to diffuse lesions cause
secondary epileptogenesis, which results in bilateral IEDs and poor
prognosis [46,47]. Starting from this information, if MRI is normal
and findings indicating a diffuse lesion are determined in EEG,
invasive assessments are required.

Our study is limited due to its retrospective design; however,
this is true for numerous other surgical outcome studies.
Performing prospective studies on epilepsy surgery is difficult
because of individual decisions substituting randomization.
Although our series is quite large, the number of cases is limited
as MRI-negative PET-positive cases are a highly selected group.
Because, very strict rules were applied in terms of clinical,
electrophysiological, and neuroimaging methods in the preopera-
tive assessments, in the selection of this group of patients with
quite complicated diagnosis, and cases not conforming to these
rules were not considered as surgical candidates. Increase in the
number of studies on this topic in the future, will result in changes
in treatment strategies of MRI-negative patients and increase the
number of surgical cases. In order to obtain definitive results,
larger patient groups and a longer postoperative follow-up period
is necessary.

5. Conclusions

Our results support surgical treatment in MRI-normal PET-
positive TLE cases and approximately more than 2/3 of these cases
are seizure-free. This information will help to abandon the
presumption that surgery should not be performed in MRI-normal
cases. A single test is not adequate for precise surgical localization
in TLE patients, and the use of multiple tests together provides
higher precision localization and the tests verify each other.
Particularly, when EEG recordings, PET scan and neuropsychologi-
cal tests localize a single focus, surgical results are similar to that of
mesial TLE. Therefore, PET-positive MRI-negative cases are
different from classic HS cases, but this can be considered a
clinical syndrome having a similar good response to surgery. In this
way, it is possible to be successful in seizure control of a carefully
selected patient group.
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