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Abstract

In this Letter, we extend the Parikh–Wilczek tunnelling framework to calculate the emission rate of a particle with electric and magnetic charges.
We first reconstruct the electromagnetic field tensor and the Lagrangian of the field corresponding to the source with electric and magnetic charges.
Then, in the background of Kerr–Newman–Kasuya black hole spacetime, we calculate the emission spectrum of the outgoing particles with electric
and magnetic charges. For the sake of simplicity, we only consider the case that the rate of electric and magnetic charge of the emission particle
is constant and equals that of the black hole. In this case, the emission spectrum deviates from the pure thermal spectrum, but it is consistent with
an underlying unitary theory and takes the same functional form as that of uncharged massless particles. Finally, discussions about the result are
presented.
© 2007 Elsevier B.V.
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1. Introduction

Parikh–Wilczek’s tunnelling framework is a semiclassical method of calculating Hawking radiation, which was developed by
Kraus and Wilczek and elaborated upon by Parikh and Wilczek [1–4]. The most difference from that of Hawking’s original one is
that the energy conservation was enforced in their computation. Thus, a corrected spectrum, which deviates from the exact thermal
spectrum but consists with an underlying unitary theory, was obtained. Following this method, a number of static or stationary
rotating black holes were studied [5–19]. The same result, that is, Hawking radiation is no longer pure thermal, unitary theory is
satisfied and information is conserved, was obtained. In 2005 and 2006, Refs. [20–25] extended the method, and the emission rates
of massive particles and charged particles were calculated, respectively. In this Letter, we attempt to extend this method to calculate
the emission spectrum of charged and magnetized particles from the Kerr–Newman–Kasuya black hole. The major problem is
how to treat the electromagnetic field created by the electric and magnetic charges. For the spacetime of Kerr–Newman–Kasuya
black hole, electric and magnetic charges concentrate on the black hole, the outside of the hole is an electromagnetic vacuum.
We can take the hole as a conducting sphere [26], and without loss of generality, we think that the rate of the densities of the
electric and magnetic charges is constant. For the sake of simplicity, here we only consider the case that the rate of electric and
magnetic charge of the emission particle is constant and equals that of the black hole. In this case, we can introduce an equivalent
electromagnetic tensor, and rewrite the Lagrangian of the field. We find that the Lagrangian of the electromagnetic field can be
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expressed by a set of generalized coordinates Ãμ = (Ãt , Ã1, Ã2, Ã3). But these coordinates are cyclic coordinates. To eliminate
the freedoms corresponding to these coordinates, we modify the Lagrangian function and use Parikh–Wilczek’s method to get the
corrected emission spectrum. Throughout the Letter, the geometrized units (G ≡ c ≡ h̄ ≡ 1) are used.

2. Maxwell equation and Lagrangian function corresponding to the source with electric and magnetic charges

In the following discussion, we first investigate the Maxwell equation corresponding to the source with electric and magnetic
charges, and then write out the Lagrangian of the field.

For a source with electric and magnetic charge, the electromagnetic tensor is defined as

(1)Fμν = ∇νAμ − ∇μAν + G+
μν,

where G+
μν is the Dirac string term [27]. Maxwell equation can be rewriten as

(2)∇νF
μν = 4πρeu

μ,

(3)∇νF
+μν = 4πρgu

μ,

where F+μν is the dual tensor of Fμν , ρe and ρg are the densities of electric and magnetic charges, respectively, while uμ is the
4-velocity. In order to rewrite the Maxwell equations (2) and (3) to a simple form, we define a new real antisymmetric tensor

(4)F̃ μν = Fμν cosα + F+μν sinα,

where α denotes a real constant angle. From (2) and (3) we get

(5)∇νF̃
μν = 4π(ρe cosα + ρg sinα)uμ,

(6)∇νF̃
+μν = 4π(−ρe sinα + ρg cosα)uμ.

If we let

(7)ρe cosα + ρg sinα = ρh,

(8)−ρe sinα + ρg cosα = 0,

that is, ρe/ρg = cotα, then, the Maxwell equation can be written as

(9)∇νF̃
μν = 4πρhu

μ,

(10)∇νF̃
+μν = 0,

that is

(11)
∂

∂xν

(√−gF̃μν
) = 4π

√−gJμ,

where Jμ = ρhu
μ. Obviously, Eqs. (9)–(11) are similar to the Maxwell equation corresponding to the source with only electric

charges. As mentioned above, for the Kerr–Newman–Kasyer black hole spacetime, electric and magnetic charges concentrate on
the black hole. According to the No-hair Theorem, most of the information about the hole was lost. Without loss of generality, we
can take the hole as a conducting sphere and suppose that the densities of electric and magnetic charges satisfy Eqs. (7) and (8),
that is ρe/ρg = cotα, then we have

(12)Q2
h = Q2

e + Q2
g,

where Qe and Qg are the electric and magnetic charges of the hole, respectively, while Qh is the equivalent charge corresponding
to the density ρh. Similarly, we can construct the Lagrangian of the electromagnetic field as follows

(13)Lh = −1

4
F̃μνF̃

μν.

In Eq. (13) the corresponding generalized coordinates are

(14)Ãμ = (
Ãt , Ã1, Ã2, Ã3

)
,

which satisfy

(15)F̃μν = ∇νÃμ − ∇μÃν.
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3. Phase velocity and electromagnetic potential

The spacetime of the Kerr–Newman–Kasyer black hole can be written as the following [29,30]

ds2 = −
(

1 − 2Mr − (Q2
e + Q2

g)

ρ2

)
dt2

k + ρ2

Δ
dr2 + ρ2 dθ2 +

[(
r2 + a2) sin2 θ + (2Mr − (Q2

e + Q2
g))a

2 sin4 θ

ρ2

]
dϕ2

(16)− 2(2Mr − (Q2
e + Q2

g))a sin2 θ

ρ2
dtk dϕ,

where

(17)ρ2 ≡ r2 + a2 cos2 θ,

(18)Δ ≡ r2 + a2 + (
Q2

e + Q2
g

) − 2Mr.

Considering Eq. (12) the line element can be rewritten as

ds2 = −
(

1 − 2Mr − Q2
h

ρ2

)
dt2

k + ρ2

Δ
dr2 + ρ2 dθ2 +

[(
r2 + a2) sin2 θ + (2Mr − Q2

h)a
2 sin4 θ

ρ2

]
dϕ2

(19)− 2(2Mr − Q2
h)a sin2 θ

ρ2
dtk dϕ.

The event horizon r = rH is given by

(20)rH = M +
√

M2 − a2 − Q2
h,

and the 4-dimensional electromagnetic potential is

(21)Ãa = −ρ−2Qhr
[
(dt)a − a sin2 θ(dϕ)a

]
.

To calculate the emission rate, we should adopt a good behaved coordinate system at the event horizon.
Here, we take the Painlevé–Kerr–Newman–Kasuya coordinate system, and the line element in this coordinate system can be

obtained from Ref. [17]. Namely,

ds2 = ĝ00 dt2 + 2
√

ĝ00(1 − g11) dt dr + dr2 + [
ĝ00G(r, θ)2 + g22

]
dθ2 + 2ĝ00G(r, θ) dt dθ

(22)+ 2
√

ĝ00(1 − g11)G(r, θ) dr dθ,

where

(23)ĝ00 = − ρ2Δ

(r2 + a2)2 − Δa2 sin2 θ
,

(24)g11 = ρ2

Δ
,

(25)g22 = ρ2.

The components of the electromagnetic potential in the Painlevé–Kerr–Newman–Kasuya coordinate system is

(26)Ã0 = −ρ−2Qhr
[
1 − a
 sin2 θ

]
, Ã1 = Ã2 = 0.

From (26) we obtain the electromagnetic potential on the event horizon

(27)Ã0|rH = −Ṽ0 = − QhrH

r2
H + a2

, Ã1|rH = Ã2|rH = 0.

4. Emission rate

In our discussion, the outgoing particle is charged and magnetized. But, as mentioned above, we can treated it as an equivalent
electric charge qh. Similar to Ref. [21], we treat the equivalent charged particle as a de Broglie wave and we can easily obtain the
expression of ṙ . Namely,

(28)ṙ = vp = −1

2

ĝ00

ĝ01
= Δ

2

√
ρ2

(ρ2 − Δ)[(r2 + a2)2 − Δa2 sin2 θ ] .
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As described in Ref. [21], we should take into account the self-gravitation of the tunnelling particle with energy ω and equivalent
electric charge qh. That is, we should replace M and Qh with M − ω and Qh − qh in (22) and (28), respectively.

Considering the matter-gravity system which consists of the black hole and the electromagnetic field outside the hole, the
Lagrangian function of the matter-gravity system should be written as

(29)L = Lm + Lh,

where Lh = − 1
4 F̃μνF̃

μν is the Lagrangian function of the electromagnetic field corresponding to the generalized coordinates
Ãμ = (Ãt ,0,0) in the Painlevé–Kerr–Newman–Kasuya coordinate system [28]. When a equivalent charged particle tunnels out,
the system transit from one state to another. But from the expression of Lh we find that Ãμ = (Ãt ,0,0) is a cyclic coordinate.
Moreover, in the Painlevé–Kerr–Newman–Kasuya coordinate system, ϕ does not appear in the line element expressions (22). That
is to say, ϕ is also a cyclic coordinate to the Lagrangian function L. To eliminate these two freedoms completely, the action for the
classically forbidden trajectory should be written as

(30)S =
tf∫

ti

(
L − PÃt

˙̃At − Pϕϕ̇
)
dt,

which is related to the emission rate of the tunnelling particle by

(31)Γ ∼ e−2 ImS.

Therefore, the imaginary part of the action is

(32)ImS = Im

{ rf∫
ri

[
Pr − PÃt

˙̃At

ṙ
− Pϕϕ̇

ṙ

]
dr

}
= Im

{ rf∫
ri

[ (Pr ,PÃt
,Pϕ)∫

(0,0,0)

dP ′
r −

˙̃At

ṙ
dP ′̃

At
− ϕ̇

ṙ
dP ′

ϕ

]
dr

}
,

where PÃt
and Pϕ are the canonical momentums conjugate to Ãt and ϕ, respectively. Similar to Ref. [21], we treat the black hole

as a rotating sphere and consider the particle self-gravitation. Therefore,

(33)ϕ̇ = Ω ′
H ,

and

(34)J ′ = (
M − ω′)a = P ′

ϕ,

where Ω ′
H is the dragged angular velocity of the event horizon. The imaginary part of the action can be rewritten as

(35)ImS = Im

{ rf∫
ri

[ (Pr ,PÃt
,J−ωa)∫

(0,0,J )

dP ′
r −

˙̃At

ṙ
dP ′̃

At
− Ω ′

H

ṙ
dJ ′

]
dr

}
.

We now eliminate the momentum in favor of energy by using Hamilton’s equations

(36)ṙ = dH

dPr

∣∣∣∣
(r;Ãt ,PÃt

;ϕ,Pϕ)

= d(M − ω′)
dPr

= dM ′

dPr

,

(37)˙̃At = dH

dPÃt

∣∣∣∣
(Ãt ;r,Pr ;ϕ,Pϕ)

= V ′
0 dQ′

h

dPÃt

= (Qh − q ′
h)rH

r2
H + a2

· d(Qh − q ′
h)

dPÃt

.

Note that to derive (37) we have treated the black hole as a charged conducting sphere [26].
Substituting (36) and (37) into (35) and considering the self-gravitation of the outgoing particle, we have

(38)ImS = Im

rf∫
ri

[∫
2
√

(ρ2 − �′)[(r2 + a2)2 − �′a2 sin2 θ ]
�′√ρ2

(
dM ′ − Q′

hr
′
H

r ′2
H + a2

dQ′
h − Ω ′

H dJ ′
)]

dr,

where

(39)Δ′ = r2 + a2 + Q′2
h − 2M ′r = (

r − r ′+
)(

r − r ′−
)
,

(40)r ′± = (
M − ω′) ±

√(
M − ω′)2 − a2 − (

Qh − q ′ )2
,
h
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(41)ri = M +
√

M2 − a2 − Q2
h,

(42)rf = M − ω +
√

(M − ω)2 − a2 − (Qh − qh)2.

We see that r = r ′+ = (M −ω′)+
√

(M − ω′)2 − a2 − (Qh − q ′
h)

2 is a pole. The integral can be evaluated by deforming the contour
around the pole, so as to ensure that positive energy solution decay in time. Doing the r integral first we obtain

(43)ImS = −1

2

(M−ω,Qh−qh)∫
(M,Qh)

4π(M ′2 + M ′
√

M ′2 − a2 − Q′2
h − 1

2Q′2
h )√

M ′2 − a2 − Q′2
h

(
dM ′ − Q′

hr
′
H

r ′2
H + a2

dQ′
h − 
′

H dJ ′
)

dr.

Finishing the integration we get

ImS = π

[
M2 − (M − ω)2 + M

√
M2 − a2 − Q2

h − (M − ω)

√
(M − ω)2 − a2 − (Qh − qh)2 − 1

2

(
Q2

h − (Qh − qh)
2)]

(44)= −1

2
�SBH .

In fact, if we bear in mind that

(45)T ′ =
√

M ′2 − a2 − Q′2
h

4π(M ′2 + M ′
√

M ′2 − a2 − Q′2
h − 1

2Q′2
h )

,

we easily get

(46)
1

T ′
(
dM ′ − V ′

0 dQ′
h − 
′

H dJ ′) = dS′.

That is, (44) is a natural result of the first law of black hole thermodynamics.
The tunnelling rate is therefore

(47)Γ ∼ exp[−2 ImS] = e�SBH .

Obviously, the emission spectrum (47) deviates from the pure thermal spectrum but consists with an underlying unitary theory and
takes the same functional form as that of uncharged massless particles.

5. Discussions

5.1. The first law of black hole thermodynamics

In previous literature, the first law of black hole thermodynamics only consider the change of the electric charges. In our discus-
sion, the change of the magnetic charge is also taken into account, and the general form of the first law can be obtained easily.

In fact, from Eqs. (7) and (8) we have

(48)cosα dQe + sinα dQg = dQh,

(49)− sinα dQe + cosα dQg = 0.

Substituting (48) and (49) into (46) yields

(50)dS′
BH = 1

T ′ dM ′ − Ω ′

T ′ dJ ′ − V ′
e

T ′ dQ′
e − V ′

g

T ′ dQ′
g,

where

(51)V ′
e = QerH

r2
H + a2

,

(52)V ′
g = QgrH

r2
H + a2

.

Eq. (50) is the general differential form of the first law of black hole thermodynamics.



138 J. Zhang, J.-H. Fan / Physics Letters B 648 (2007) 133–138
5.2. Rediscussion on the information puzzle

Eq. (50) means that the emission process satisfies the first law of black hole thermodynamics. Similar discussion to Ref. [24] let
us know that in Parikh–Wilczek tunnelling framework, the emission process is treated as a reversible process. That is to say, Parikh–
Wilczek’s result that Hawking radiation satisfy the unitary theory and information about the hole is conserved is only suitable for
reversible precess. Considering that a black hole has a negative heat capacity, the black hole cannot get a thermal equilibrium with
the outside. Therefore, the process of the emission of particles from a black hole will be irreversible. That is, Parikh–Wilczek’s
tunnelling framework did not prove the information conservation in black hole radiation.
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