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LET G be a finitely presented infinite group which is semistable at infinity, let X be a finite complex whose 
fundamental group is G, and let o be a base ray in the universal covering space 2. Thefundamental group at co of 
G is the topological group x;(R, w) = I@ {nl (f - L) 1 L c 2 is compact}. We prove the following analogue of 
Hopf’s theorem on ends: x; (2, w) is trivial, or is infinite cyclic, or is freely generated by a non-discrete pointed 
compact metric space; or else the natural representatioa of G in rhe outer automorphisms of rr;(J?,w) has torsion 
kernel. A related manifold result is: Let G be torsion free (not necessarily finitely presented) and act as covering 
transformations on a connected manifold M so that the quotient of M by any infinite cyclic subgroup is non-compact; if 
M is semistable at co then the natural representation of G in the mapping class group of M is faithful. The latter 
theorem has applications in 3-manifold topology. Copyright 0 1996 Elsevier Science Ltd 

0. INTRODUCTION 

It is a classical theorem of Hopf [13] that if G is a finitely generated infinite group then 
the number of ends of G is 1,2 or co; equivalently, the abelian group H’(G, ZG) is 0, Z or 
@p Z. More recently, Farrell [6] proved that if G is finitely presented and contains an 
element of infinite order then the abelian group H*(G, ZG) is 0, Z or is infinitely generated; 
indeed, a result of ours, Addendum 4.11, allows the strengthened conclusion 0, Z or @y Z 
provided G is semistable at each end.’ This conclusion can be reinterpreted as a “higher end 
theorem”: let X be a finite connected CW complex with x1(X, u) E G; then Hopf s theorem 
says that the universal cover, x, has one, tpo or infinitely many “components at infinity”, 
and Farrell’s theorem says that the first cohomology of J? “at infinity” is 0 or Z or “large” 
(0; Z in the semistable case). 

In this paper we prove a al-version of the latter theorem. Picking a base ray o in 2, 
we consider the fundamental group at the end determined by w, a;@, w), i.e. 
I@” x1(x” - L,, o(n)), where {L,,} is an exhausting sequence of finite subcomplexes. This is 
an inverse limit of discrete groups but it has a natural topology which makes it a separable 
metrizable totally disconnected topological group. Recalling that the set, E(Y), of ends of 
a suitable locally compact space Y is, in a natural way, a compact totally disconnected 
metrizable space, one should not be surprised that ~l;(x, o) is to be taken with its topology. 

The flavor of our theorems is that n; (2, o) is trivial or Z or free of infinite rank or 
satisfies a fourth condition. But “free of infinite rank” must be understood in the topological 
sense: “freely generated” by an infinite compact metrizable space. This is made precise in 
Section 1. 

t Supported in part by NSF grant No. DMS-9005508 and NSF grant No. DMS-9304580. 
1 Terminology in this introduction is defined in subsequent sections. 
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We give topological and group theoretic versions of our results. 
I. Topology. The mapping class group of x”, denoted by A(_?), is the (discrete) group of 

ambient isotopy classes of self-homeomorphisms of x’. The weak mapping class group, 
WZ(d) is the (discrete) group of proper homotopy classes of self-homeomorphisms; it is 
a quotient of&(d). We say x” is strongly connected at co if any two proper rays in x” are 
properly homotopic; this implies x” has one end. The space r? is simply connected at co if 
d is strongly connected at co and 7~; (d, o) is trivial. 

THEQREM A. Let the infinite group G = nI (X, u), where X is a finite connected complex. If 

G has two ends, 71; (2, w) is trivial for any base ray w. Otherwise, one of the following holds: 

(i) 2 is simply connected at co; 
(ii) d is strongly connected at co, and rr; (2, co) is discrete and infinite cyclic; 
(iii) x” is strongly connected at co, and ~7 (2, co) isffeely generated by an infinite (pointed) 

compact metrizable space; 
(iv) letting p: G + WSZ(x”) denote the natural representation of G by covering transla- 

tions, every element of ker p hasJinite order in G. 

Note that when G is torsion free, (iv) simplifies to: 

(iv)’ the representation p is faithful. 

Theorem A is proved by assuming (iv) does not hold and showing that for any infinite 
cyclic subgroup J < ker p, rc;(R, co) is freely generated by the pointed space of ends 
(&?/.I), z) where R/J has either one, two or infinitely many ends; see Theorem 4.5. For the 
two-ended part, see Remark 4.6. 

Examples. For (i) take X = the 3-torus; for (ii) take X = the 2-torus; for (iii) take 
X = (S’ v S1) x S’; for (iv) take X = a Davis manifold (see Remark 4.7), which must satisfy 
(iv) since, although 2 is strongly connected at co, it does not satisfy (i)-(iii). 

We say that G is semistable at co if d is strongly connected at co; we recall in Section 1 
why this property only depends on G. It is unknown whether a finitely presented group with 
one end can fail to be semistable at co. We note: 

COROLLARY A’. If, in Theorem A, G is torsionfree and has one end but is not semistable at 

co then the representation p: G --) W&(R) is faithful. 

Obviously, K#V(x”) can be replaced by A(d) in these theorems. 
Theorem A and Corollary A’ follow from a more general result, Theorem 3.1, about the 

existence of free and properly discontinuous actions of the group of integers on suitable 
locally compact spaces. Another corollary of Theorem 3.1 is: 

THEOREM B. Let the torsion free group G act as a group of covering transformations on 
a connected manifold M so that, for every g E G, M/<g) is not compact. If M is not strongly 
connected at 03, then the natural representation p: G + A(M) is faithful. 
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Myers applies this is in [20] to get examples of contractible open 3-manifolds which 
non-trivially cover other open 3-manifolds but which do not cover closed 3-manifolds. He 

constructs an irreducible contractible open 3-manifold M which is not strongly connected 
at 00, and whose mapping class group has the property that the only torsion-free subgroups 
which are isomorphic to closed irreducible 3-manifold groups are groups for which it is 
known that the universal cover must be I@. If M were to cover a closed 3-manifold with 
fundamental group G, one could use Theorem B to embed G in 4!(M), thereby getting 
a contradiction. 

II. Group theory. Let Aut(rrf (x”, 0)) be the group of automorphisms of this topological 
group, and Inn(rr;(8,w)) the subgroup of inner automorphisms. As usual, write 
Out($ (8,~)) for the (discrete) group of outer automorphisms, i.e. Out = Aut/Inn. 

Here is our group theoretic result: 

THEOREM C. Let G = 7t1 (X, u) where X is a finite connected complex. Assume G is infinite 
and semistable at co. Then the isomorphism class of n; (J!?, w) (as a topological group) depends 

only on G, and one of the following holds: 

(i) 71; (X, w) is trivial; 
(ii) rr; (2, w) is discrete and infinite cyclic; 

(iii) rr;(Y?, o) is freely generated by an infinite (pointed) compact metrizable space; 

(iv) letting p: G + Out(n;(x”, w)) denote the natural representation of G induced by p, 
every element of ker p has finite order in G. 

Again, when G is torsion free, (iv) simplifies to: 

(iv)’ the representation p is faithful. 

Theorem C follows from Theorem 4.8. The examples given after Theorem A all apply 
here too. 

COROLLARY C’. If in Theorem C, G has a subgroup offinite index whose center contains 

an element of infinite order then (iu) does not hold. In fact, 7t;(d, o) is either trivial or infinite 
cyclic or@eely generated by a (pointed) Cantor set. 

This is proved at the end of Section 4. 

Examples. Let X1 = (S’ v S’) x S’, and let Xz be the mapping torus of a map S’ + S’ 
of degree n > 2. The corresponding fundamental groups are Gi = (Z*Z) x Z and 
Gz = (x, y lx-’ yx = y”), and Xi is a finite K(Gi, 1). Now, Gl has center and is torsion free 
so, by Corollary C’, Gl satisfies (iii) but not (iv). On the other hand, as the reader can check, 
G2 satisfies (iv), but also (iii). 

So we see that (iii) and (iv) in Theorem C may overlap: it would be interesting to 
understand the extent of this. But no other overlap can occur among the four conditions in 
Theorem C. In particular, using [24] we obtain: 

COROLLARY C”. If, in Theorem C, G contains an element of infinite order and is stable at 
CO (i.e. n? (x”, co) is discrete), neither (iii) nor (iv) holds, so n; (2, w) is either trivial or infinite 

cyclic. 
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This is a restatement of Theorem 5.3. 
All these theorems follow from our basic results, Theorems 3.1, 3.3 and 5.2, concerning 

free Z-actions. We will not repeat their statements here but we believe they are of interest in 

their own right. 

1. ENDS AND THE FUNDAMENTAL GROUP AT INFINITY 

We begin by recalling the theory of ends. Throughout this paper Y denotes a separable, 
locally compact, non-compact, metrizable, connected, locally connected topological space: 
the examples we have in mind are countable, connected, strongly* locally finite, infinite CW 
complexes. Let L1 c L2 c ... be compact subsets of Y, where Y = un L,, L, c int L,, 1, 

and every (path) component of Y - L, is unbounded (i.e. has non-compact closure). Then 
the resulting inverse sequence (rc,,( Y - L,)} of discrete finite spaces has a compact totally 
disconnected metrizable inverse limit space, E(Y), called the space of ends of Y. An end of 
Y is a point of this space. 

A proper ray in Y is a proper3 map o: [0, co) -+ Y. Two proper rays in Y determine the 

same end if their restrictions to N c [0, co) are properly homotopic. There is an obvious 
canonical bijection between the equivalence classes of proper rays so formed and the points 
of E(Y). We will call Y strongly connected at each end if any two proper rays which 
determine the same end are properly homotopic, and strongly connected at co if in addition 
Y has only one end. There are many well-known examples of one-ended spaces Y which are 
not strongly connected at co (e.g. Whitehead’s contractible open 3-manifolds). 

Pick a proper ray o as base ray. By reparametrizing o if necessary we can (and will 
always) assume w([n, co)) c Y - L, for all n. We obtain an inverse sequence 
9( Y, w) = {ni (Y - L,, w(n))} of fundamental groups, where the bonding morphism 

xc1 ( Y - L,+ 1, w(n + 1)) + n1 ( Y - L,, o(n)) is induced by inclusion using w J [n, n + l] as 
base path. Each of these fundamental groups is to be regarded as a discrete topological 
group and the inverse limit, nT( Y, o), is to be given the natural (possibly non-discrete) 
topology; i.e. take l@ in the category of separable metrizable totally disconnected topologi- 
cal groups. Thus topologized, ~‘1 (Y, w) is the fundamental group of Y at co bused at o. 

Up to canonical isomorphism 71; (Y, CD) is independent of the choice of finite complexes 
{L,}. However, dependence on o is more delicate. Certainly, if co1 is properly homotopic to 
o2 then n;( Y, ol) is isomorphic to rc; (Y, 02); one constructs an isomorphism using a proper 
homotopy between o1 and w2 in the same way as one shows that the fundamental groups of 
a space based at different base points in the same path component are isomorphic, using 
a path between the base points. But if o1 and o2 are not properly homotopic, it is not 
always true that 7~; (Y, w1) z 7~: (Y, q), even when o1 and o2 determine the same end. For 
a counterexample one can adapt a shape theoretic example of Borsuk (see [16, p. 1321 and 

PI). 
The preceding paragraph implies that if Y is strongly connected at each end then 

n; (Y, o) only depends (up to isomorphism) on the end determined by w. Only in this case is 
~‘1 (Y, o) a useful invariant. Otherwise, important fundamental group information at that 
end might not be detected by 7~;; for example, in the case of a Whitehead manifold, n; is 
trivial. Indeed, more complicated machinery exists to capture the relevant information in 

* The carrier of a cell in a CW complex in the smallest subcomplex (necessarily finite) containing that cell. A CW 
complex is strongly locally finite if the carriers of cells form a locally finite cover. The universal cover of a finite 
complex has this property, as does every locally finite simplicial complex. See [S] for more on this. 
3 A map is proper if the pre-image of every compact set is compact. 
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the general case (see Appendix). However, in this paper we will be dealing mostly with 

spaces which are strongly connected at each end, so n: is the right invariant for us. 
We say Y is simply connected at 00 if Y is strongly connected at cc and 7r;( Y, w) is 

trivial: this is equivalent to the usual definition. 
An inverse sequence of groups 9 = G1&G2 &... is semistable (or essentially epi- 

morphic or Mittag-Lefler) if Vm3n 2 m such that image (Gk + G,) is independent of k > n; 
B is essentially monomorphic if 3m such that Vn 2 m 3k 2 n such that kernel 
(Gk + G,) = kernel(Gk + G,); Y is stable (or essentially isomorphic) if both of these proper- 
ties hold. If every 4i is epic or manic or both then the corresponding property of Q holds. 
Conversely, if Y is semistable then 9 is pro-isomorphic (see Appendix) to a sequence of 
epimorphisms, and corresponding statements hold for the other two cases. 

PROPOSITION 1.1. 9( Y,o) is semistable if and only if Y is strongly connected at the end 

determined by o. ‘3( Y, co) is stable ifand only if Y is strongly connected at the end determined 
by o and rr; (Y, o) is discrete. 

Proof This is well-known to experts in shape theory. For the first part see [17, Theorem 
2.11 or [8]. For the second part see [4]. 

We say that Y has stable fundamental group at 00 based at o if Y is strongly connected 
at the end determined by w and rc; (Y, o) is discrete; cf. [22]. 

Our main theorems say that under appropriate hypotheses the topological group 
7tT (Y, o) is “freely generated” by a given compact metric space. Here is the appropriate 
notion of freeness in topological groups. Let %‘,, be the category of pointed totally discon- 
nected complete separable metrizable spaces and let & be the category of complete 
separable metrizable totally disconnected topological groups. The free object of .#Z gene- 
rated by the object (E, z) ofWO is a continuous function f:(E, z) + (I, l), where I is an object 
of A, satisfying the usual universal property. The force of “pointedness” is the suppression 
of one potential generator: if E is one point, I is trivial; if E is two points I is discrete infinite 
cyclic, etc. 

We end this section with some remarks about l-dimensional homology at co. We use 
integer coefficients. Define Z1 (Y) = {H,( Y - ,Q}. Then H;(Y) z l&n #1(Y) is a topologi- 

cal abelian group. There is a related direct sequence X’(Y) = {H’( Y - ~5,)) whose direct 
limit is H,‘(Y). 

The following can be derived easily from [lo, Section 33 and [l 11. It is also proved in 

F-31. 

PROPOSITION 1.2. Assume H,(Y) is finitely generated. Then each H,( Y - L,) and 
H’( Y - L,) is$nitely generated. Moreover, (i) sl( Y) is semistable ifand only ifHb( Y) isfree 

abelian; (ii) Z1( Y) is stable ifand only ifHi( Y) isfinitely generatedfree abelian. (iii) %r( Y) is 
stable and H”,(Y) has rank k if and only if H:(Y) is free abelian of rank k. 

2. THE FUNDAMENTAL GROUP AT INFINITY OF Y x R 

Pick a tree T in Y so that T c---) Y induces a homeomorphism E(T) + E(Y). Pick 

a proper base ray w in T. As before, we assume that o([n, 00)) c Y - L,. Let the path 
components of Y - L, be C,, 1,. . ., C,,k, where the indexing is chosen so that 

o(Cn, 00)) = C,,1. Thus Cn+l, 1 = %I for all n.. We also adopt the convention 

C n+1,2 = G.2 whenever k, 3 2. We wish to compute z;( Y x R, o), first in general and then 
when nl( Y) g Z. 
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Let U, = (Y x 08) - (L, x [ - n,n]). Then U, is the union of Y,’ = Y x (n, co), 

Yi = Yx(-00, -n) and UkiC, ix(-n -l,n+ 1). Using T for base points and 
base paths, the inclusion C,,iL+Y induces $n,i:ni(Cn,i)+xi(Y). Write Pn,i= 

image (0n.i) < xl(Y). 
Writey,,l=o(n)andtakeT~=T~uT~u({y.,~}x[-n-1,n+1])asthetree4of 

base points and base paths in U, where T: is the copy of Tin Y x { +(n + l)> c Yz . Pick 
y,,i E Tn C,,i for 2 < i < k,. Let r,,i be the path { y,,i} x [-n - 1, n + 11, oriented posi- 
tively, 1 6 i < k,. Then Z,,i determines an element t”,i of al (U,, Tb); t,, 1 is trivial. By the 

generalized van Kampen theorem [23, pp. 138-1391, nl(Un, Tb) can be presented as the 
fundamental group of a graph of groups, namely 

((1Il(y)*P”,,711(y))*P”,,)...*P”.,”. (2.1) 

That is, amalgamate across Pn,l, then take HNN extensions where the stable letters 

identify 
;;~-.;:;~nlY*<t”,2 

the (successive images of the) subgroups Pn,2,. .., P,,+“. Write 
,..., t,,J, and let a,:Q, -sf nl( V,) be the obvious epimorphism. Then 

the following diagram commutes: 

Here, fin+l(t,+l,j) = t,,i whenever Cn+l,j c C,,i and i 2 2; fin+l(t.+l,j) = 1 if 
C n+l.j c G.1; and /In+ 1 is the “identity” on rri( Y) * nl( Y). The bonding homomorphism 
i# is induced by inclusion where base trees are matched up in the obvious way. 

PROPOSITION 2.2. The space Y x R is strongly connected at infinity. 

Proof: Again, this is well-known: since Y is non-compact it is easy to see that Y x R has 
one end, and semistability is clear from the commutativity of the above diagram. 0 

We will be interested in the special case where q(Y) E Z. Then each P,,i is generated by 
a non-negative integer m(n, i), and nl(Un, Tb) is presented by 

(a, b, t,, 2,. . . , t,,kn 1 am(“* I) = bmncn, I), am(“*‘) = t,,, bmcn,r) t;j for I > 2). (2.3) 

In our situation we will know that this group has non-trivial center; as we shall see, this 
imposes severe restrictions on the exponents m(n, r). 

3. FREE E-ACTIONS 

Our purpose is to prove Theorems 3.1 and 3.3. 

THEOREM 3.1. Let the infznite cyclic group J = (j) act as a group of covering transformat- 
ions on Y, and let Y/J be non-compact. Zf j is properly homotopic to idy then Y is strongly 
connected at co. Pick a base point z E E( Y/J) and a proper base ray w in Y. If Y is simply 
connected then ~7 (Y, co) isfreely generated by (E( Y/J), z); in particular if Y/J has k( < co) ends 
then or; (Y, w) is stable and is free of rank k - 1. 

4There is a tacit assumption, here, that T has been chosen so that Tn C.,i is connected for all n and i. This can 
easily be arranged. 
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Let f: Y --+ Y be a proper homotopy equivalence where Y is strongly connected at co. 
Then for any proper ray w in Y, fro is properly homotopic to w. Choose a proper 

homotopy F: [0, a$ x Z + Y realizing this. Then, as indicated in Section 1 (see also 
Appendix), F defines an isomorphism cF: rc; (Y, few) -+ n; (Y, 0). Write C#J = cF of8 for the 
resulting automorphism of n; (Y, 0). Obviously we have: 

PROPOSITION 3.2. When Y is strongly connected at co, the property that C#I be an inner 

automorphism of 7~; (Y, CO) is independent of w and of F. 

THEOREM 3.3. Let Y be simply connected and strongly connected at co. Let the inJinite 
cyclic group J = (j) act as a group of covering transformations on Y with Y/J non-compact. 

Pick z E E( Y/J). Zf for some w, j induces an inner automorphism of XT (Y, co) then n: (Y, co) is 

freely generated by (E( Y/J),z). In particular, if Y/J has k( < CO) ends then aT(Y,o) is stable 
and is free of rank k - 1. 

We begin with the proof of Theorem 3.1 and we assume its hypotheses until it is proved 
(after Proposition 3.13). However, Y will not be assumed simply connected until after 
Corollary 3.7. 

Following [6] we apply the “Bore1 trick”. Let 2 be the quotient of the diagonal action of 
J on Y x IR. We have a commutative diagram 

Y- YxR- R 

Y/J - Z - s’ 

where the verticals are quotient maps (indeed, covering projections) and the upper horizon- 
tals are projections. This gives two different ways of looking at Z 

(i) The principal bundle R + Z + Y/J has a section and therefore gives Z homeomor- 

phic to Y/J x R (see [21, Theorems 8.3 and 12.23). 
(ii) The bundle Y + Z + S’ gives Z as the mapping torus of j. 

Since j is properly homotopic to idy, we conclude: 

PROPOSITION 3.4. (Y/J) x R is proper homotopy equioalent to Y x S’. 

COROLLARY 3.5. Y is strongly connected at CO. 

Proof: By hypothesis, Y/J is non-compact, so Propositions 3.4 and 2.2 imply that Y x S’ 
is strongly connected at co, hence also Y. 

The next proposition is a folk theorem: a proof is sketched in Appendix. 

PROPOSITION 3.6. Let f: Y1 + Y2 be a proper homotopy equivalence (where Y, and 

Y2 satisfy the hypotheses of Y in Section 1.). Then f induces an isomorphism 

G(YI,W)--* n’,(Yz, Pm). 

COROLLARY 3.7. The topological groups 7~; (Y/J x R, o’) and x; (Y, w) x Z are isomorphic 
for any base rays o and o’, where Z is discrete. 
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For the rest of this section we assume Y is simply connected. Then rrl( Y/J) % Z, and 
(2.3) applies. To use Corollary 3.7, we must compute the center of the group presented by 
(2.3). This is the group Ek, in a sequence defined inductively by 

El = ,+, bl@n, 1) = bm(n, 1)) 

and, assuming E,_l defined, 

E, = {E,+t&?‘(“*‘) = t~,~~m(n,r)~~~~}, 

The next two lemmas are proved by standard normal form arguments (see [lS]): 

LEMMA 3.8. Let I be the free product with amalgamation rl *&I72 where Ai is a proper 

subgroup of Ti and 4: Al + At is an isomorphism. Then Z(T) = Z(T,) n A1 n Z(T,) (i.e. 

ama~gumated elements in both centers). 

LEMMA 3.9. Let r be the HNN extension I?,., where Ai and AZ are proper subgroups of 

T1 and r#~: A1 -+ A, is an isomorphism. Then Z(T) = Z(r,)n Fix@). 

We compute the centers of the groups E, by successively applying these lemmas, but we 
must be careful to ensure that the relevant subgroups are proper, a condition which could 
fail in E, when m(n, 1) = 1 or in E2 when m(n, 1) = m(n,2) = 1. Call these “exceptional 
cases”. 

PROPOSITION 3.10. If Eke has non-trivium center, then ail the integers m(n, r) are positive. 

Proof: If k, z 2 the lemmas give Z(E,J < .Z(l&_ J < .a’ < Z(E,). Suppose m(n, r) = 0, 

where k, > r 2 2. Then E, _ 3 E,_1 * (t,,,) and since E,_ 1 is non-trivial it follows that 

Z(E,) = (11, implying Z(E,“) = {l). Next, suppose m(n, 1) = 0 where k, 2 1. Then 
El = (a, b) and since this is not an exceptional case we can add Z(E,) < Z(E,) = (1) to the 
above containments, giving Z(E&,) = fl>. 0 

PROPOSITION 3.11. Assume Ek, has non-trivial center. Let N be the least common multiple 

of the positive integers m(n,r). Then Z(E,“) is generated by aN = b”’ unless k, = 2 and 
m(n, 1) = m(n, 2) = 1. In the latter case Z(E,) is the>ee abelian group generated by a and t,, 2. 

ProojI Again this comes from successively applying Lemma 3.9 and Proposition 3.10, 
handling the exceptional cases separately. The first exception happens to fit into the general 

formula, and the second has been noted in the statement of the proposition. cl 

Obviously, we have: 

PROPOSITION 3.12. If every m(n,r) = 1, then I!$., z Z x (tn,2 ,..., tn+) the product of 

Z with a free group of rank k, - 1. 

Now we can complete the proof of Theorem 3.1. Using the notation of Section 2 for Y/J 
in place of Y, we have n, (U,) z Ek, where the latter is presented by (2.3). The bond 
n,(U,+,)-,ni(U,)mapsatoaandbtob,mapst,+,,itot,,iwhenC,+,,icC,,iandi~2, 
andmaps t,+l,jto 1 when Cn+l,i~ C,,l. We will prove in a moment that for n sufficiently 
large every m(n,r) = 1. In that case the structure of &, is given by Proposition 3.12. 
Moreover, the bond identifies the Z-factors (given by Proposition 3.12), so we conclude: 
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PROPOSITION 3.13. Let f: (E( Y/J), z) + F be theffee object of .d generated by (E( Y/J ), z). 

If, for large n, every m(n, I) = 1 then 717 (Y/J x IR, o’) is isomorphic to F x Z. 

Let t generate the Z-factor of 7~; (Y, w) x Z. Using Corollary 3.7, we identify t with an 
element of ~‘1 (Y/J x R, w’) z lim, &,. Then t is central and is not a proper power. We write 
N(n) in place of N above iz order to deal with varying n. We have k, < k,, 1 and 

m(n, i) < m(n + 1, j) whenever C,+ l,j c C,,i. In particular, m(n,i) < m(n + 1,i) when i = 1 
or 2. There are two cases. 

Case 1: Assume lim,,, k, # 2 or lim,,, m(n, 1) # 1 or limn-tm m(n, 2) # 1. Since t is 
central and the bonds are onto, Z(E,J # (1) for large n. By Proposition 3.11, t projects to 
Use for some s(n) E Z - (0) and since “a maps to a”, s(n)N(n) is independent of (large) n. 

But N(n)1 N(n + 1) by definition of the integers m(n,r). So Is(n + 1)1 < Is(n)/. So 
so G lim,,, s(n) and No = lim,,, N(n) make sense and are finite. We conclude that, in the 
inverse limit, t is represented by (aSoNo) = (a) ‘0’0 where (a) abbreviates the sequence 
(a, u, a, . ..). Since t is not a proper power, soNo = + 1; so No = 1. So for all large n, every 
m(n,r) = 1. In particular, the assumption is reduced to limn+m k, # 2. By Proposition 3.13 
and Corollary 3.7,@ (Y, w) x Z is isomorphic to F x Z. Since lim k, # 2, F has trivial center. 
So t generates the center of 7~7 (Y, o) x Z. Factoring out centers we get 71: (Y, w) z F. 

Case 2. Assume lim,,, k, = 2 and limn_a, m(n, 1) = lim,,,m(n, 2) = 1. Then 
Ek, g Z x Z for large n. But also Ek, z IT;( Y,o) x Z for large n, by Corollary 3.7. Thus 
n; (Y, w) is abelian and is isomorphic to Z, which in this case is F. 

With Corollary 3.5, the proof of Theorem 3.1 is complete. 17 

We now turn to Theorem 3.3, assuming its hypotheses. In the previous proof we used the 
hypothesis on j to conclude that the mapping torus T(j) had the proper homotopy type of 
Y x S’ and hence (Proposition 3.4) that Y x S’ was proper homotopy equivalent to 
(Y/J) x R. But in fact we only needed the weaker Corollary 3.7. Thus in the present case it is 
enough to show that n;(T( j), o) and n: (Y, o) x Z are isomorphic. 

Write U, = Y - L, and jn: Un+l + U, for the restriction of j, where without loss of 
generality we assume j(U.+ 1) c U,. Then a typical neighborhood’ of co in T(j) is 
V, = U,, u r(j,); here r(j.) = (V,, 1 x I)/ - where (x, 1) N (j(x), 0) for all x E U,, 1. Write 

i.:Un+l -+ U, for the inclusion. The generalized van Kampen theorem [23, pp. 138-1391 
gives (suppressing base points): 

R(V~) E (711(Un),tlt.inff(9).t-l =j&), vgE~,(U,+&. 

The present hypothesis on j ensures that there exists u, E n,(U,) with j,,#(g) = u; ’ * &g(g). u,, 
and &(u,+ 1) = u, for all n; to see this use the functors 9 and Y described in Appendix. 

Write A,+1 = &&(U,+1 )). Then we have an HNN decomposition 

z,(V,) = (711(Un),u,tlu,tu(u,t)-’ = a, VaEA,+l). 

Taking inverse limits we get A;(T( j), o) z JC;( Y, o) x Z as claimed. 0 

4. FREE COCOMPACT ACTIONS 

In this section, we prove convenient restatements of Theorems A and C, namely The- 
orems 4.5 and 4.8. 

5 V. is not open in 7’(j), so, strictly, V. should be slightly fattened. 
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Let X be a finite connected CW complex with base vertex v, and let G = rrl (X, u). Then 
G is finitely presented. Assume G contains an element j of infinite order.6 Then Theorems 
3.1 and 3.3 can be applied to the universal cover x”. These theorems impose hypotheses on 
j and conclude, among other things, that J? is strongly connected at infinity. We pause for 
three background remarks on this point. 

Remark 4.1. Hopf [ 131 proved that E(X”) is either a one-point space, a two-point space 
or a Cantor set (i.e. a non-empty totally disconnected compact metrizable space in which 
every point is a limit point). Moreover, the topological type of E(2) only depends on G. This 
holds even if the infinite group G does not have an element of infinite order. 

Remark 4.2. It is unknown whether x” must be strongly connected at each end. It is 
known that this property of ?? only depends on G; see the proof of [14, Theorem 3]-the 
property is invariant under Tietze transformations. In view of this, and Proposition 1.1, one 
says that G is semistable at each end [resp. semistable at co] if _? is strongly connected at 
each end [resp. at co]. Again, the existence of an element of infinite order is irrelevant. 

Remark 4.3. Many groups are known to be semistable at each end; see [19] and the 
references cited there. Moreover, if every one-ended finitely presented infinite group is 
semistable at infinity then every finitely presented infinite group is semistable at each end; 

see [18]. 
The conclusions of Theorems 3.1 and 3.3 (with Y = 2) consist of properties of rct(g’, 0). 

So we need a strengthened version of Remark 4.2. 

PROPOSITION 4.4. If 2 is strongly connected at co then the topological group rr;(X”, o) is 
independent of o and depends only on G. 

Proof For independence of o see Section 1. For the other part, use the background 
material outlined in Appendix together with the proof of [14, Theorem 33. 0 

Now we can state the main results of this section, Theorems 4.5 and 4.8; proofs are given 
later in this section. 

THEOREM 4.5. Let X be a finite connected complex, let G s 7tI(X,v) contain an infinite 

cyclic subgroup J generated by a covering transformation j which is properly homotopic to id,-, 
and let x”fJ be non-compact. Then x” is strongly connected at 00. The space E(y/J) is 
a one-point space, or a two-point space, or is non-discrete. Pick a base point z E E(z/J). Then 
7~7 (d, w) is freely generated by (E(T/J), z) in the above sense. In particular, @ (x”, CO) is trivial, 
or discrete infinite cyclic, or freely generated by a non-discrete totally disconnected compact 

metrizable space. 

Remark 4.6. If x/J is compact for some J then it is compact for all J. In that case, x” has 
two ends, is strongly connected at both ends and, for any o, rr; (2, o) is trivial. This is easily 
deduced from Theorem 5.12 of [23]. 

Remark 4.7. In a well-known example due to Davis [3], 8 is strongly connected at 
cc and a”; (2, w) is the inverse limit of n-fold free products of a group H where n + co, each 

6 It is unknown whether every finitely presented infinite group contains an element of infinite order. 
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bond kills the last free factor, and H is the fundamental group of a homology 3-sphere which 
bounds a contractible 4-manifold. Thus H can be chosen finite, giving torsion in n: (8, w). 
In these examples, G is torsion free. One concludes from Theorem 4.5 that no non-trivial 
element of G is properly homotopic to id,-. 

One would like a purely group theoretic version of Theorem 4.5 in which everything 
depends on G rather than X. The offending hypothesis is that j be properly homotopic to 
id,-; higher homotopy invariants of a particular X might obstruct this. The desired result is: 

THEOREM 4.8. Let G and X be as in Theorem 4.5. Assume G is semistable at ax Let 

G contain an infinite cyclic subgroup J generated by a covering transformation j which induces 

an inner automorphism of rt; (d, w). Pick z E E(r?/J). Then n; (2, w) is freely generated by 

(E(_?/J), z) and is either trivial, or discrete inJinite cyclic, or freely generated by a non-discrete 

totally disconnected compact metrizable space. 

The conclusions of Theorems 4.5 and 4.8 are strengthenings of the conclusions of 
Theorems 3.1 and 3.3, respectively. To get the stronger conclusions, we need some 
homological results. Recall the homological notation introduced in Section 1. 

THEOREM 4.9. [ll]. If G is finitely presented H*(G, ZG) is isomorphic to Hi(f). 

Proof This follows from the Lemma in [ll]; see also [8]. 0 

THEOREM 4.10. [6, Corollary 5.21. Let thefinitely presented group G contain an element 

of infinite order. Then the abelian group H’(G,ZG) is either 0, infinite cyclic or infinitely 
generated. 

ADDENDUM 4.11. With G as in Theorem 4.10, if G is semistable at each end then 

H2(G, ZG) is free abelian of rank 0, 1 or co. 

Proof First assume G has one end. By Proposition 1.1, %(_?,w) is semistable, hence 
(abelianizing) %1 (2) is semistable, hence, by Proposition 1.2(i), H:(x) is free abelian. Apply 
Theorems 4.9 and 4.10. 

If G has two ends, it is simply connected at both ends (see 4.6) so H2(G, ZG) = 0 by [ll]. 
For the infinite ended case, some care is needed. Suppose the conclusion were false. 

Then, by Theorems 4.9 and 4.10, H:(R) = 15, H’(_%? - L,) would not be free abelian. So 
;1E”&?) = {HI@ - L,)} would not be semistable. It is straightforward to show (see [8] for 
details) that in this case there would be a component 2, off - L,, with 2,~ Z,+ r, such 
that the inverse sequence {H,(Z,)} IS not semistable. But if o is the proper ray which 
determines the end defined by {Z,} then Y(z,o) abelianizes to {H,(Z,)}. Since ‘?J(_?, w) is 
semistable by hypothesis, so is {H1(Z,)}. Contradiction. 0 

Proof of Theorem 4.5. By Theorem 3.1, x” is strongly connected at 00 and rr;(x, w) is 
freely generated by (E(X”/J), z). Assume E(X”/J) has k c co elements. Then S(x, o) is stable, 
so the abelianization of the finitely generated free group a; (2, o) of rank k - 1 is H’,(R), 
which must therefore be finitely generated free abelian of rank k - 1. By Proposition 1.2, 
and Theorem 4.9 and 4.10, the only possible ranks are 0 and 1. q 

Proof of Theorem 4.8. Similar, but use Theorem 3.3 in place of Theorem 3.1. q 
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Proof of Corollary C’. Without loss of generality we may assume that the center of 
G contains an element w of infinite order, and that 2’ is the Cayley graph of G with respect 
to a finite set of generators {gi, . . . , g,,}. An edge in 2’ connects g to each ggi, where g E G. 

Pick an edge path z in r?’ joining 1 to w. For any gi and g E G there is a loop: g to gw (via gz) 
to gwgi = ggiw (by an edge) to ggi (via ggit-i) to g (by an edge). This loop has length 
21~1 + 2 in the word metric, so it bounds a singular 2-disk in x” involving a number of 2-cells 
which is independent of g. Given a compact set C in 2, there is a compact set D in x” such 
that for any loop tx outside D, singular disks of the above kind can be pieced together to 
build a homotopy between 0: and WCI outside C. Thus w induces an inner automorphism of 
7r; (x”, w). 

For the definition of a Cantor set, see Remark 4.1. Hopf’s well-known proof that if d has 
more than two ends then E(X”) is a Cantor set works on any intermediate covering space 
which is non-compact and cocompact [21, Theorem 5.43. Since the action of G/(w) on 

z/(w) is cocompact, E@/(w)) has one or two points, or is a Cantor set. Now apply 
Theorem 4.5. 0 

5. WRIGHT’S THEOREM, AND APPLICATIONS 

Recall the notation Y( Y, o) from Section 1, and the definition of pro-isomorphism from 
Appendix. These occur in the following important theorem of Wright. We only quote the 
one-ended case: 

THEOREM 5.1. [24, Theorem 9.11. Let the infinite cyclic group J act as a group of 
covering transformations on the simply connected one-ended space Y, and let o be a base ray. 

Zf 9( Y, co) is essentially monomorphic, then B( Y, w) is pro-isomorphic to an inverse sequence of 
free groups. 

Essentially monomorphic sequences overlap with semistable sequences precisely in 
stable sequences. Thus, Theorem 5.1 gives: 

THEOREM 5.2. Let the infinite cyclic group J act as a group covering transformations on Y, 
where Y is simply connected and strongly connected at CO. Zf $ (Y, w) is discrete (equivalently, 
if Y( Y, w) is stable) then ~7 (Y, co) is free and finitely generated. 

Proof: By 5.1, S(Y,,) is a stable sequence of free groups, hence Xi(Y) is a stable 
sequence of free abelian groups all of which are finitely generated, by 1.2. So H’,(Y) is free 
abelian of finite rank, say k. Since rc; (Y, o) is free and abelianizes to H’,(Y), it is free of rank 

k. II 
Combining this with Proposition 1.2(iii), Theorems 4.9 and 4.10, we get: 

THEOREM 5.3. Let X be a finite connected complex, and let G = nl(X,v) contain an 
element of infinite order. Assume G is semistable at 00. For any base ray w, tf rt;(_?, co) is 
discrete then z’, (x”, co) is trivial or infinite cyclic. 

Remark 5.4. In the proofs of Theorem 3.1 [resp. Theorem 3.33 we used the fact that j is 
properly homotopic to id [resp. induces an inner automorphism] to draw simplifying 
conclusions about the mapping torus of j. In the absence of that hypothesis on j, the 
methods of Sections 3 and 4 can still be pursued, and they yield a proof of Theorem 5.3 
which is independent of Wright’s Theorem. 
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Remark 5.5. The interested reader can easily prove that if the finitely generated group 

G has infinitely many ends, if Aut(E(2)) denotes the group of self homeomorphisms of the 
space of ends, and if O: G + Aut(E(2)) is the natural representation, then every element of 
ker d has finite order in G. In particular, when G is torsion free e is faithful. 

APPENDIX 

Here we collect some information about rc: (Y, CO) which is well-known in certain circles 
but is not easy to find in the literature. A full exposition as it pertains to geometric group 
theory will be included in the first-named author’s forthcoming book on the subject [S]. 

We abbreviate the inverse sequence of groups G1&G2 &.a. to {G,}, suppressing 
the bonds &..A map cc:{G,> + {H,} consists of an increasing function a: N + N and for 
each n a homomorphism a,: G,,,, + H, such that whenever n’ 2 n, there exists m 2 a(d) 
making the following diagram commute: 

Two maps a, j? : {G,} + (H,} are equivalent if for each n there exists m 2 max{a(n), b(n)} 
such that the following diagram commutes: 

G a(n) - Gn 

Here the unmarked arrows are bonds. There is a category called pro-Groups whose objects 
are inverse systems of groups indexed by directed sets. We will only be interested in the full 
subcategory generated by inverse sequences (or towers). A morphism between the towers 
{G,} and {H,} is defined to be an equivalence class of maps. (We omit the general definition 
of a morphism of pro-Groups.). There is an obvious definition of composition of such 
morphisms between towers of groups. We will denote this full subcategory of pro-Groups 
by towers-Groups. 

The towers (G,) and {H,} are pro-isomorphic if they are isomorphic objects of towers- 
Groups; explicitly, this happens if and only if there exist cofinal subtowers and homomor- 
phisms making the following diagram commute: 

. . . - G 
.ml 

- Gm,+, - ... 

. . . ‘_ w 
“8 “,+I 

,- . . . 
Indeed for any category V, there is an entirely analogous category towers-%. A good 

general reference for pro-categories is [16]. If V admits countable inverse limits then l@ is 
a covariant functor towers-59 + %?. 
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On the full subcategory of semistable towers, I@ does not lose information provided it is 
taken in the category topological groups, i.e. 

_C? = l&n : Semistable towers -+ A. 

where _A was defined in Section 1. To see this consider the functor 9: A? -+ Semistable 
towers which maps the object M of A to {M/Z,}, where I, varies over all open subgroups of 
M. (See [4] for details: this idea goes back to Cl].) The point is that dp 0 B and S 0 9 are 
natural equivalences. This is the context in which one should view n:( Y,w). One can 

recover 9( Y, 0) - {7c1( Y - L,, w(n))> f rom rc;( Y, CD) up to isomorphism in towers-Groups 
provided 9( Y, o) is semistable. 

Let {G,} be a tower of groups. The pointed set l@i (G,> is the orbit space of the action 
of fl,,, G, on itself by 

(x,)(&?l) = %FdLf?L(xm+l)-l. 

When every G, is abelian this has a natural abelian group structure. This l@l is a covariant 

functor towers-Groups + Pointed Sets (see [7] or [S]), though one rarely needs this. 
Relevant to the present paper is the fact that l&n’ {G,} is trivial if {G,} is semistable, and 
that the less obvious converse is true when every G, is countable (see [12] for the abelian 
case and [7] for the general case; also [ 16, p. 173)). If the base ray of Y is w, there is a natural 

bijection (see below) between l&n1 B( Y, w) and the set of proper homotopy classes of proper 
rays determining the same end as o. Hence the open problem discussed in Remark 4.2 is 
a problem about the vanishing of lim’. 

One can form strong homotopy groups ‘ni( Y, o) using base ray preserving proper maps 

(s’,*)x[Q co)-+(Y, ) o in the obvious fashion, and one has a short exact sequence (of 
groups when i > 0, of pointed sets when i = 0): 

0-+l~1{7Ci+~(Y-K~,~(~))} + ‘?ri( Y, 0) + l@ {7Ci( Y - K”, o(n))} + 0. 

See, for example, [2, $23. When i = 1, this can be useful in computing 71; (Y, 0). 
We end with the promised proof of Proposition 3.6; for more information of this kind, 

see [9, Proposition 8.31. Let the compact subsets L, c Y1 be as before, and let a similar 
collection of compact subsets M, c Y, be chosen. Choose a proper homotopy inverse g for 
f: Let H : g 0 f= idY, and R : g of= idYl be proper homotopies. It may be assumed that for 
all c and n, H,o o([n, co)) c Yl - L, and H, 0 fo w([n, 00)) c Y, - M,. Let ~1, be the path 
(in Y,) cr,(t) = H,o(n) and let bn be the path (in Y,) j?,,(t) = H&x(n). The isomorphisms 

rtl(yl - L,,~~~(~))GL”P,Tc~(Y~ - L,,o(n)) given by [a,] ~[a,‘.o;cr.] fit together to 
give an isomorphism of towers-Groups 

q: {nl(Y1 - L,, gfo(n))> + (nl(Y1 - L,,w(n))}. 

There is a similar definition for &. Note that the proper homotopies H and fi are needed to 
establish that these are indeed isomorphisms. 

The maps f and g induce morphisms 

fn: {nl(Yi - L,, w(n))> -, {ni(Y~ - M,,gfo(n))). 

and 

gf: {xl(Y2 - M,,fMN) + {~I(YI - Lddn))) 

(some details are omitted here). Thus, 

arg& = id and /I&gr = id. 0 
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