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Abstract The Snf1/AMP-activated protein kinases play a key
role in stress responses of eukaryotic cells. In the yeast Saccha-
romyces cerevisiae Snf1 is regulated by glucose depletion, which
triggers its phosphorylation at Thr210 and concomitant increase
in activity. Activated yeast Snf1 is required for the metabolic
changes allowing starvation tolerance and utilization of alterna-
tive carbon sources. We now report a function for the non-acti-
vated form of Snf1: the regulation of the Trk high-affinity
potassium transporter, encoded by the TRK1 and TRK2 genes.
A snf1D strain is hypersensitive in high-glucose medium to differ-
ent toxic cations, suggesting a hyperpolarization of the plasma
membrane driving increased cation uptake. This phenotype is
suppressed by the TRK1 and HAL5 genes in high-copy number
consistent with a defect in K+ uptake mediated by the Trk sys-
tem. Accordingly, Rb+ uptake and intracellular K+ measure-
ments indicate that snf1D is unable to fully activate K+ import.
Genetic analysis suggests that the weak kinase activity of the
non-phosphorylated form of Snf1 activates Trk in glucose-
metabolizing yeast cells. The effect of Snf1 on Trk is probably
indirect and could be mediated by the Sip4 transcriptional acti-
vator.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The plasma membrane electrical potential plays an essential

role in all cells, modulating the transport of charged molecules

through pumps, channels, uniports and cotransport systems [1].

In Saccharomyces cerevisiae, the plasma membrane potential is

primarily determined by the two major electrogenic transport-

ers: the H+-ATPase encoded by the essential PMA1 gene [2]

and the Trk high affinity potassium uptake system encoded

by the TRK1 and TRK2 genes [3–5]. The proton-pumping

activity of Pma1 generates an electrochemical proton gradient

and the Trk system is a major consumer of the membrane

potential because of the high rates of K+ uptake. Alterations

in the expression and/or activities of Pma1 or Trk1–Trk2 would

affect the membrane potential and, consequently, the uptake of

nutrients and toxic cations [6,7]. Therefore, the regulation of
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these two important electrogenic systems is crucial for cell

growth and for tolerance to toxic cations.

The yeast Pma1 ATPase is mainly activated at the post-tran-

scriptional level by glucose metabolism [8]. This activation is

mediated by downregulation of the inhibitory casein kinase I

(encoded by YCK1 and YCK2 genes) [9] and upregulation of

the activating protein kinase Ptk2 [10]. Trk is also regulated

at the post-transcriptional level, being activated by protein ki-

nases Hal4–Hal5 in response to K+ starvation [11], and inhib-

ited by protein kinase Sky1 [12,13]. Trk is also activated by the

calcium-dependent protein phosphatase calcineurin [14] and

inhibited by the protein phosphatase Ppz encoded by PPZ1

and PPZ2 genes [15]. In addition, the K+-uptake system is

activated by glucose metabolism, but nothing is known about

the mechanism [16].

In the present report, we describe a novel modulator of the

Trk potassium transporter, the protein kinase Snf1. This ki-

nase belongs to the AMP-activated protein kinase family,

which plays a key role in stress responses of eukaryotic cells

[17–19]. The yeast Snf1 kinase forms different heterotrimeric

complexes comprising the catalytic a subunit (Snf1) [20], the

regulatory c subunit (Snf4) [21] and one of the alternative b
subunits (Sip1, Sip2 or Gal83) required for the specific subcel-

lular location of the complex [22] and for interactions with

Snf1 targets [23,24]. Extensive work has established that the

yeast Snf1 kinase is activated by glucose depletion, being phos-

phorylated at a conserved threonine (Thr210) by protein ki-

nases Elm1, Tos3 and Pak1 [25,26]. In the presence of

glucose, it is inactivated and dephosphorylated by the PP1

phosphatase Glc7 [27]. The phosphorylated form of Snf1 ex-

erts its function by modification of transcriptional regulators

of genes involved in a wide spectrum of cell functions, such

as adaptation to glucose limitation [28–30], response to differ-

ent stresses [31,32], meiosis and sporulation [33], invasive

growth [34] and life span [35].

We report here that Snf1 protein kinase also regulates the

Trk1–Trk2 transport system and discuss possible mechanisms

for this physiological function.
2. Materials and methods

2.1. Yeast strains, plasmids and growth conditions
The yeast strains used in this study are listed in Table 1. Yeast

strains were grown in synthetic media with 2% dextrose and the appro-
priate requirements [36]. Frozen competent yeast cells were prepared as
described [37]. To test the tolerance to different cations, yeasts were
suspended in water at a cell density of 2 · 107 cell/ml, serially diluted
(10�1, 10�2 and 10�3) and about 3 ll was dropped on rich medium
blished by Elsevier B.V. All rights reserved.
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Table 1
Strains used in this study

strain Genotype Reference

W303-1A Mata ade2-1 can1-100 his3�D1 leu2-3, 112 trp1-289 ura3-52 Wallis et al. [56]
trk1 trk2 W303-1B trk1::LEU2 trk2::HIS3Æ Madrid et al. [6]
mig1 W303-1B mig1::LEU2 Nehlin and Rohne [55]
hal4 hal5 W303-1B hal4::LEU2 hal5::HIS3 Mulet et al. [11]
snf1 W303-1B snf1::HIS3 Östling et al. [51]
cat8 W303-1B cat8::LEU2 Hedges et al. [53]
sip4 W303-1B sip4::TRP1 Lesage et al. [54]
BY4741 Mata his3D1 leu2D0 ura3D0 met15D0 Brachmann et al. [52]
snf1 BY4741 snf1::KanMX4 EUROSCARF
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(YPD) supplemented with different toxic cations. To test the growth of
yeast cells in K+-limited medium, arginine phosphate plates (AP) [38]
were supplemented with 50 lM KCl. Plasmids used in this study were
pWS-Snf1, pWS-Snf1-T210A, pWS-Snf1-K84R [44], YEp13-Trk1 [5]
and YEp24-Hal5 [11].

2.2. Biochemical methods
Plasma membranes were purified from glucose-metabolizing cells by

differential and sucrose gradient centrifugation and ATPase activity
was assayed at pH 6.5 with 2 mM ATP [39]. Protein concentration
was determined by the Bradford method [40] with the Bio-Rad Protein
Assay reagent (Bio-Rad Laboratories, Hercules, CA) and bovine IgG
as standard. Proton efflux from yeast cells was determined after starva-
tion at 4 �C and glucose addition at 30 �C [41]. Simultaneous determi-
nation of potassium and rubidium content was performed as described
[42]. In brief, cells were inoculated in AP medium containing 10 mM
KCl and grown until absorbance at OD660 nm = 0.4. Then, the cells
were washed twice with 20 mM MgCl2 and suspended in AP medium
without potassium. 10 ml aliquots were taken, washed with 20 mM
MgCl2 and suspended in 0.2 ml buffer containing 2% glucose,
50 mM succinic acid and 20 mM MgCl2. After 5 min, 5 mM RbCl
was added and aliquots were taken, washed twice with 20 mM MgCl2,
suspended in 0.5 ml MilliQ water, and boiled to extract the intracellu-
lar ions. After removal of cell debris by centrifugation, 1/50 dilutions
of the supernatant were used for HPLC analysis in Waters equipment
with a IC-PAK CM/D column and a Waters 432 conductivity detector.
Elution was made in an isocratic flux, using as a mobile phase 0.1 mM
EDTA and 3 mM HNO3. Sample analysis and preparation of rubid-
ium and potassium standards was performed as described by the
manufacturer.
3. Results and discussion

In a systematic analysis of mutant phenotypes of yeast pro-

tein kinases, we found that a null mutation of the SNF1 gene

conferred, in glucose media, a pleiotropic phenotype of sensi-

tivities to toxic cations such as Hygromycin B, Na+, Li+ and
Fig. 1. snf1Dmutation, like trk1 trk2 and hal4 hal5mutations, confers hypers
1B) and derivatives with hal4 hal5, trk1 trk2 and snf1 mutations were grown
either Hygromycin B (HygB, 50 lg/ml), NaCl (Na+, 0.8 M), LiCl (Li+, 0.3 M)
50 lM KCl (LowK+) as indicated. Growth was recorded after 2 days (YPD,
observed in two separate experiments. The phenotype of the snf1 mutant wa
tetramethylammonium (Fig. 1). This phenotype was also

exhibited by mutants in the Snf1-regulatory subunit Snf4 (data

not shown). The sensitivity to different toxic cations is sugges-

tive of a hyperpolarized membrane potential, which results in

increased cation uptake. An increased electrical potential could

be caused by either mutations that upregulate Pma1 [10] or

downregulate the Trk K+ transport system [11]. As indicated

in Fig. 1, the phenotype of the snf1mutant was similar, but less

intense, to that of the trk1 trk2 mutant (devoid of the Trk sys-

tem) and of the hal4 hal5 mutant (devoid of two redundant

protein kinases which activate Trk) [11].

Therefore, we next analyzed the activities of H+-ATPase and

K+ transport in SNF1 and snf1D cells growing in glucose med-

ia. Under this condition, the activity of H+-ATPase measured

as H+-pumping in vivo and as ATP hydrolysis in purified plas-

ma membrane in vitro was similar in both strains (Table 2). By

contrast, the snf1D mutation decreased the activity of the Trk

system as measured by Rb+ uptake and by the level of internal

K+ (Table 2). The Rb+ uptake and intracellular K+ values in

snf1D mutant cells are similar to those previously reported

for mutants affecting Trk regulation [11,13,42,43]. Mutants af-

fected in K+ uptake such as trk1Dtrk1D and hal4Dhal5D grow

slowly in K+-limited medium [5] and, accordingly, a null muta-

tion of the SNF1 gene diminished the ability of yeast to grow

in low-K+ medium (Fig. 1). Moreover, as shown in Fig. 2 the

hyperpolarized phenotype of the snf1D mutant is suppressed

by the TRK1 [3] and HAL5 [11] genes in multicopy plasmids.

Overexpression of SNF1, on the other hand, cannot suppress

the phenotypes of trk1 trk2 and hal4 hal5 mutants (Fig. 2).

All the above results strongly suggest that the non-phosphory-

lated form of the Snf1 protein kinase, predominant in glucose

medium, acts upstream of Hal4–Hal5 and Trk to modulate the

K+ uptake system.
ensitivity to different toxic cations and low K+. Wild-type strain (W303-
in liquid YPD and serial dilutions were dropped on YPD plates with
or tetramethylammonium chloride (TMA, 0.2 M) or on AP plates with
LowK+) and after 3 days (HygB, Li+, Na+, TMA). Similar results were
s also observed in a different genetic background (BY4741).



Table 2
Effect of snf1 null mutation on ATPase activity, intracellular content of K+ and uptake of Rb+

Yeast strain H+-pump activity
(nmol/min mg wet weight)

ATPase activity
(lmol/min mg protein)

Rate of Rb+ uptake
(nmol/min mg wet weight)

Internal K+ (mM)

SNF1 11 ± 1.0 0.95 ± 0.05 2.1 ± 0.1 240 ± 7
snf1D 10 ± 0.5 1.05 ± 0.10 1.5 ± 0.1 187 ± 2

The values are the average of three independent experiments (±S.D.).

Fig. 2. Effect of gain of function of TRK1, HAL5 and SNF1 on tolerance of yeast cells to Hygromycin B. Wild-type yeast strain (W303-1B) and
derivatives carrying null alleles of either trk1 trk2, hal4 hal5 or snf1 were transformed with either empty plasmid (YEp352) or multicopy plasmids
with TRK1, HAL5 and SNF1 as indicated. The strains were grown in selective medium and after serial dilutions dropped onto YPD plates with
Hygromycin B (HygB, 50 lg/ml). Images were taken after 2 days of incubation at 30 �C. Identical results were obtained with three different colonies.
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To test this hypothesis, we next examined the ability of the

SNF1 non-phosphorylatable allele snf1-T210A and the poorly

active one snf1-K84R to suppress the phenotype of the snf1D
mutation. K84R mutates an essential lysine in the ATP bind-

ing domain [44] and T210A replaces a threonine in the Snf1

activation loop, which is phosphorylated by the upstream

activating protein kinases in response to glucose limitation

[45–47]. As shown in Fig. 3, the snf1-T210A is clearly able to

suppress the hyperpolarized phenotype of the snf1D mutant

cells and, as expected, is also unable to complement the sucrose
Fig. 3. The snf1-T210A allele partially rescues the hyperpolarized-depend
transformed with either empty plasmid or episomal plasmid with SNF1, snf1-
medium and after serial dilutions dropped onto YPD plates with Hygromyci
source. Wild-type strain (W303-1B, wt) transformed with empty plasmid ser
non-fermentation phenotype of the snf1D mutant. The results

also suggest that the suppression ability required an active pro-

tein kinase because the poorly active snf1-K84R allele is unable

to confer a Hygromycin B resistant phenotype to the snf1D
strain. Therefore, the results obtained so far allow us to pro-

pose the non-phosphorylated form of Snf1 as a new compo-

nent of the mechanisms controlling the Trk1–Trk2 system.

To our knowledge, this is the first report suggesting that

Snf1 non-phosphorylated at Thr-210 could have a physiologi-

cal role, nevertheless we cannot discard the possibility that
ent phenotype of snf1D mutant strain. The snf1 null mutant was
T210A and snf1-K84R as indicated. The strains were grown in selective
n B (HygB, 50 lg/ml) and medium containing sucrose (Suc) as carbon
ved as growth control.
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other phosphorylation sites contributed to regulate Snf1 activ-

ity. A recent report [48] described that Snf1 is also required for

tolerance to hydroxyurea in glucose medium, although in this

case both the T210A and the K84R mutants were effective.

Apparently, different levels of basal activity of Snf1 are re-

quired for these novel functions, while the fully active phos-

phorylated form of Snf1 is required for sucrose fermentation

and expression of genes under stress conditions. Accordingly,

our results suggest that the activity of the T210A mutant is

higher than that of the K84R mutant.

The Snf1 kinase exerts its function in cell metabolism

through the covalent modification of glucose-responsible tran-

scriptional factors. This fact is well documented in the cases of

the transcriptional repressor Mig1 and transcriptional activa-

tors Cat8 and Sip4 [30]. It was of interest to ascertain whether

some of the well known effectors of Snf1 were also implicated

in controlling K+ uptake. To this end, we tested the Hygromy-

cin B resistance phenotype of mig1D, cat8D and sip4D mutant

strains. Fig. 4 shows that sip4D mutant exhibited in glucose

medium the same phenotype as that of the snf1D strain. This

result suggests that the non-phosphorylated form of Snf1, pre-

dominant in glucose medium, acts through Sip4 to activate the

transcription of a protein required for an efficient K+ trans-

port. It should be noted that Cat8 and Sip4 have been pro-

posed to bind to the same panoply of promoters although

with different affinities, being Sip4 less strong activator than

Cat8 [49]. Our finding could suggest that at least in glucose

medium Sip4 has a separate function from that of Cat8.

Two obvious candidates to be regulated by Sip4 are the high

affinity Trk1 potassium transporter and the Hal5 activating

protein kinase. To determine whether TRK1 and/or HAL5

gene expression was modulated by Sip4, we analyzed the

expression of TRK1-LacZ and HAL5-LacZ fusion genes in

wild type, snf1D and sip4 D strains growing in glucose media

but no significant differences were found among them (data

not shown). This is in agreement with recent results based on

DNA microarrays analysis, in which no alteration of the

TRK1 and HAL5 gene expression was found in snf1D mutant

strain [50].

One hypothetical model to explain all the above mentioned

results would be to consider that the Snf1 protein kinase

complex has a dual role in yeast cells depending on glucose

availability and, therefore, of the phosphorylation status of

Thr-210. In glucose starved cells, the phosphorylation of
Fig. 4. Effect of Snf1 targets deletions on tolerance to Hygromycin B.
The tolerance to the antibiotic (HygB, 50 lg/ml) of wild-type (W303-
1B) snf1D, mig1D, cat8D and sip4D isogenic strains was tested by drop
assay as described in the legend to Fig. 1.
Thr-210 would lead the fully active kinase complex to act on

a set of transcriptional factors devoted to promote the utiliza-

tion of alternative carbon sources as have been described so

far. In glucose fermenting cells, the non-phosphorylated, low

activity form of the Snf1 complex could activate a different

set of transcriptional factors which in turn would activate

the expression of genes implicated in functions that, like K+

transport, should help to adapt the cell machinery to the high

growth rate of sugar-metabolizing yeast.
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