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Abstract

We prove that if two Cayley graphs of Z} are isomorphic, then they are isomorphic by
a group automorphism of Z;.

In [3], Babai and Frankl conjectured that Z is a Cl-group with respect to graphs
for all primes p and k > 1. The case k = 1 was settled positively by several authors
[1, 3,5, 6]. It was shown by Godsil [7] that the conjecture is true for k = 2. Recently,
Nowitz [8] gave an example showing that Z% is not a CI-group with respect to graphs
for all k > 6, and asked if there existed a prime p, so that if p > py and p is prime, then
Z is not a Cl-group with respect to graphs. We will answer this question negatively
by showing that Z} is a CI-group with respect to graphs for all primes p.

1. Preliminaries

For general information on permutation groups, the reader is referred to [9]. Let
G be a group and H < G — {1} such that H = H™'. We define the Cayley graph
I'(G, H) to be the graph with V(I'(G,H)) = G and E(I'(G,)) = {(g,gh): g€ G,he H}.
H is said to be the connection set of I'(G, H). We will say I' is a Cayley graph for G if
I'=T(G,H) for some H < G~ {1}, H= H™'. Clearly if I' is a Cayley graph for
G then G, = {g.:G— G: g, (x) = gx, g € G} < Aut(I'). We shall say that a Cayley
graph I' of G is a CI-graph with respect to G if, given any Cayley graph I'" of G such
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that I' is isomorphic to I'’, then I" and I'" are isomorphic by some « € Aut(G). Babai
[2] characterized this property in the following way:

Lemma 1. For a Cayley graph I of G the following are equivalent:

(i) T is a Cl-graph.

(i) Given a permutation ¢ € Sg such that ¢ 'G ¢ < Aut(I'), G, and ¢~ ' G, ¢ are
conjugate in Aut(T').

Let G be a transitive group of degree mk such that there exists a transitive subgroup
H < G such that H admits a complete block system # of m blocks each of size k.
Enumerate the blocks By, By, ...,B,,_. Define a map n,:H—> S,, by n(2) = /&
where «/#(i) =j if and only if «(B;) = B;. Clearly n; is a homomorphism. Let
H/%# = Im(n,).

A graph I is said to be an (m, p)-galactic graph if there exists « € Aut(!") such that all
of the orbits of « have order p, and | V(I")| = mp. Let [«] be the subgroup of Aut(I')
such that if § € [«], then the orbits of § '« are the same as the orbits of a. A graph
I’ will be called an (m, p)-uniformly galactic graph if I' is an (m, p)-galactic graph and
[«] is transitive.

Let G be a transitive permutation group that admits a complete block system
# = {B;:i€ Z,} of mblocks of size p, p a prime, and 4 is formed by the orbits of some
normal subgroup N <IG. Then for each B; there exists o; € N such that op, is
a p-cycle. Define an equivalence relation = on the blocks By, ..., B,,—; by B; = B; if
and only if whenever « € N and «|g, is a p-cycle then «|g, is also a p-cycle. Denote the
equivalence classes of = by Co,...,C, and let E; = { };cc,B;. Then

Lemma 2. Let I be a vertex transitive growth with G < Aut(I") as above. Then there
exists H < Aut(I') such that G < H and each E; is a block of H. Further, I is an
(m, p)-uniformly galactic graph and for each 0 < i < a there exists a; € H such that o,
is semiregular of order p and a;|g, = 1 for every i # j.

Proof. We first show that if B;e E;, B, ¢ E; and some vertex of B; is adjacent
to some vertex of By, then every vertex of B; is adjacent to every vertex of By. This
will imply that for each equivalence class E; there exists o; € Aut(I") such that a;|p, is
a p-cycle for every B, € E; and «;|g, = 1 for every B, ¢ E;, and so that I is an (m, p)-
uniformly galactic graph. We then show that each E; is a block of H =<{G,q;:
0<i<a.

As B;eE; and B, ¢ E;, there exists y;€ G such that either y;|g, is a p-cycle
and y;|, is not, or y;|, is a p-cycle and y,|, is not. Without loss of generality, assume
that y;|g, is a p-cycle and y;|5, = 1. Let &, € G such that |, is a p-cycle. If 3, | B; is not
a p-cycle, then we assume without loss of generality that d;|g, = 1. Then y;;|g, is
a p-cycle and y;6,|5, is a p-cycle. We conclude that each vertex of B; is adjacent to
some vertex of B. Further, as y; € G, each vertex of B, is adjacent to every vertex of B;,
and, similarly, as J, € G every vertex of By is adjacent to every vertex of B;. If 3, (g, is



E. Dobson/ Discrete Mathematics 147 (1995) 87-94 89

a p-cycle, then each vertex of By is adjacent to some vertex of B;. As y; € G, each vertex
of B, is adjacent to every vertex of B;. Hence every vertex of B; is adjacent to every
vertex of B,.

Hence for each equivalence class E; there exists «; € Aut(I') such that o, is
a p-cycle for every Be E; and o;]p, = 1 for every B, ¢ E;. Suppose € H such that
B(E)) N E; #9 and B(E;) # E;. Then there exists B, € E; such that f(B;)¢ E; and
B, € E; such that f(B,) € E;. Then Ba; ™ !4, is @ p-cycle and there exists B, € E; such
that Ba; 8|5, = 1, a contradiction. Hence each E, is a block of H. O

2. The main result

We first prove a lemma that settles the case when I' is a wreath product of two
graphs.

Lemma 3. If T is a Cayley graph of Z} and I is isomorphic to a Cayley graph of
Z that is the wreath product of a circulant graph of order p over a Cayley graph of
Z3 or the wreath product of a Cayley graph of Z, over a circulant graph of order p,
then I' is a CI-graph with respect to Z;.

Proof. We will show that if I' is a Cayley graph of Z} and I' is isomorphic to a wreath
product of a circulant graph I of order p over a Cayley graph I, of Z;, then I is
a Cl-graph. The other case follows with a similar argument.

Let I' = I, be as above. Let I be a Cayley graph of Z} such that I' is iso-
morphicto I'. Let ty,75,73: Z5 = Za by 1,(i, j, k) = (i + 1, j, k), 120, j, k) = (i, j + 1, k),
and 130, j,k)=(,j,k+1). Then G=<{1,,75,73) < Aut(I'), G < Aut(I""), and
G = Z}. Let II be a Sylow p-subgroup of Aut(I') that contains G. Then IT has
a nontrivial center so there exists a € C(IT), the center of II, a # 1. As xe C(Il),
a € Cs,,(G), the centralizer of G in Sz3, and as G is regular and abelian, « € G. Now,
IT admits a complete block system # of p? blocks of size p, where the blocks of size
p are formed by the orbits of o. Define m,: [T~ Sz3,5 by n,(y) = y/#. Then I1/% is
a p-group and there exists f € IT such that §/B e C(II/B), BB # 1. As G/B < I1/4,
/% e G/AB, so that f = f'w, f' € G, w e Ker(n,). Hence we may assume without loss
of generality that f € G. Then IT admits a complete block system € of p blocks of size
p*, where the elements of € are formed by the orbits of {a, 8. Define n,: 1T - S, by
na(y) = y/%. Then |I1/€]| = p, and if y € IT such that /€ # 1, then y = y'w/, ¥ € G,
o' € Ker(n,). Thus we assume that y € G. Hence <a, f, 7> = (13,7,,7; » and so by [4]
there exists 6, € Aut(Z}) so that 67 'ad; = 13, 67 ', = 12, and 7 'y4; = 1,. Fur-
ther, I' is a Cl-graph if and only if §,(I") is a Cl-graph, and as {a|¢, B|c: Ce¥)> < I,
(") is the wreath product of an order p-circulant I'i over a Cayley graph I'; of Z]. As
Z; is a ClI-group with respect to graphs [7], clearly there exists §, € Aut(Z}) such that
0,01(I') = ;. By analogous arguments, there exist 87,0 € Aut(Z}) so that
8581(I") = I T so that 8,7 185 '8,6,(I') = I'". Hence T is a Cl-graph for Z3. O
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Theorem 4. Z} is a CI-group with respect to graphs.

Proof. Let I' and I" be isomorphic Cayley graphs for Z}, and ¢:I' - I an isomor-
phism. Let 7,,7,,7; and G be as in Lemma 3. We must show that there exists
8 € Aut(Z}) such that 5(I') = I"" or that ¢~ 'Ge and G are conjugate in Aut(I"). Now,
G and ¢~ 'Ge are contained in Sylow p-subgroups IT and IT, respectively, of Aut(I"),
and so there exists y € Aut(I') such that y" '@ 'Gey < II. As I is a p-group, there
exists « € C(I1), « # 1, and by arguments in Lemma 3, we may assume x € G. Hence
IT admits a complete block system 4 of p? blocks of size p, where the elements of # are
the orbits of a. Define n, as in Lemma 3. By Lemma 2, |Ker(n,)| = p, p?, or p*". If
|Ker(n;)| = p”’, then Ker(n,) = <a|s: Be #) and I is isomorphic to the wreath
product of a Cayley graph of Z} over an order p-circulant. Thus by Lemma 3,
there exists & € Aut(Z;) such that 8(I') = I'. We therefore assume that |Ker(r,)| = p
or p”.

If{Ker(n;)| = p”, then by Lemma 2 IT admits a complete block system % of p blocks
of size p?, where if C € %, then there exists o € Ker(n,) such that ac(c) # ¢ for all
ce C and a¢(d) = d for all de Z} — C. Define n, as in Lemma 3. Clearly € is also
a complete block system for G, and |G/€| = p. Hence there exists f € G such that
p/€ =1 but f¢ (a). Thus € is formed by the orbits of <ax, #>. Further, I1/¢ = G/¥
so there exists y € IT such that y/% is semiregular, /€ € G/€. By the arguments above,
we assume y € G. Then {«, f,7> = G and by the arguments in Lemma 3 we may
assume that « = 15, f = 1,, and y = 1.

Now, |I1/#| = p* or |I1/#| > p*. If |II/#| > p?, then as the elements of ¥ are
formed by the orbits of (7,,73), 1,(C)=C for all Ce¥. Hence Ker(n,)=
(t3lc: Ce¥). Let C; = {(i, j,k): k€ Z,} and B; ;= {(i, j,k): ke Z,}. Then ¢ = {C;:
ieZ,} and B = {B, ;: i, j € Z,}. Suppose that some vertex of B; , is adjacent to some
vertex of B;,, i # j. Then every vertex of B, , is adjacent to every vertex of B; ;. As
|I1/8| > p?, there exists B e IT such that B|c,/B =1 and B|c,/B #1,c5#d Aspis
prime, we may assume that ¢ — d = i — j mod p, and by conjugating by 1, if neces-
sary, that c =i and d =j. As B|¢,/®B # 1, Blc,/# is a p-cycle on the blocks {B;,:
ke Z,}, and as B,/ = 1, p fixes each block B\, k € Z,. Thus every vertex of B; , is
adjacent to every vertex of C;, and by symmetry, every vertex of C; is adjacent to every
vertex of C;. We conclude that I is the wreath product of an order p-circulant over
a Cayley graph of Z2, and so I is a CI-graph for Z}.

If | I1/8| = p? then Ker(n,) = {z3|c: C € €D, and so if ¢; = ¢y, then @1 '€, = €.
Hence ¢,(, j,k) = (o (i), &:(j, k), 0 €8S, {ieSz. As Ker(m)lc = Z? for all Ce%,
&, k) = w;(j, k) + (a1, b;), w; € Aut(Z2), a;, b € Z,,. As w; € Aut(Z}),

wi(j’ k) = ((X,-j + ﬁik’ ylk + l,-j),

o, Bi, v, 1; € Z,, where the 2 x2 matrix with first row «; f; and second row y;
has nonzero determinant. If §; # 0 for any i, then, as Ker(n;) = (13|c: Ce¥),
|IT/98| > p?, so B; =0 for all ie Z,. As Aut(I") = o1 ' Aut(I')¢,, we conclude that
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Ker(n,) < Aut(I”) and so we may assume (by right multiplication by elements of
Ker(n,)) that b; = 0 for all i € Z,. We now show that «; = o, for all j,j € Z,,.

As|II/€|=p,o(iy=ri+c,reZ},ce Z, and as 1, € Aut(I”), we may assume that
o(i) = ri. Hence

(pl(i’ja k) = (ria aij + ai, ‘))lk + lij)a
and so

(pl_l(iaja k) = (r‘li’ ar_’lli(j - ar"i)’ V;lluk - y:‘l‘ilr‘lijl'
Hence if 1 = 17" 97 '7,0,, then 1 € Ker(n,) and
T(i5 ja k) = (i7al'_.+lr‘l aij + Ci, oi(ja k)),

for some c;€ Z, and 6,:Z2—~ Z,. Now, |t|=p', t 20, and |Z¥| = p — 1, so that
ai-1a; = 1. Hence a; = 04,1, and as {r™ 1) = Z, o0, =a;foralli,jeZ,
Let a = ag. Then

T(iaj’ k) = (171 + a_l(ai - al'+r“)? Gi(j’ k))

As |IT/B| = p*, a" i — Gi1,-1) = ¢, CE Z,, SO G4,-1 = a; — 0. As T, € Aut(I”), we
may assume that a, = 0 and so a;,-1 = — ixc. Hence a; = — irac. Define ¢:Z; — Z3
by ¢(i.j,k) = (i,j — irac,k). Then ¢ € Aut(Z}), and if ¢ = ¢,¢, we may assume
without loss of generality (by replacing I'" by ¢~ 1(I'")) that ¢ = 0 and ¢, = ¢’. Hence
a;=a;4,,and as r" Yy =27,

@i, j, k) = (ri,aj + a,7:k + 1j).

As 1, € Aut(I”), we may assume that a = 0. Now, elementary calculations will
show that

0:(j, k) = Vi_+lr-l7’ik + ’Vi‘+1r"(li — Litr-1) .

Further, t € Ker(n;) and so ;€ {t3]c: Ce ¥ ). Thus 6,(j,k) = k + ¢;, c;e Z,. Hence
for k =0,

(i = ligr=2)J = Yigr G

for all j€ Z,. We conclude that ;= 1;,,-: for allie Z,, and so ;; = i;for all i, je Z,,.
Let 1 = 1. Then 0,(j, k) = y:3,-17:k, and as |6;| = p, yii'-1y; = 1 for all i € Z,. Hence
yi = y; for all i,je Z,. Thus if y = y,, then

and so @, € Aut(Z}). Hence I and I'"" are isomorphic by ¢, € Aut(Z}) and so I is
a Cl-graph.

If |Ker(n,)| = p, then [I1/#| = p? or |I1/%8| > p>. If |[1/®B) = p?, then |II| = p* so
that G and ¢~ 'G¢ are conjugate in Aut(I') and so I' is a CI-graph. If |T1/8| > p?, by
the arguments in Lemma 3, there exist §, y € G so that (a, ,7)> = G, and II admits
a complete block system & of p blocks of size p?, where the elements of € are formed
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by the orbits of (a, f>. Also by arguments in Lemma 3, we assume without loss of
generality that « = 73, f = 7,,and y = 7,.

If Ker(n,)lc = <12,730l¢, then if weKer(n,), o(,jk)=(j+ a,k+b),
anbieZ, Thusifwoell, wi, ,k)=0G+s,j+ a,k + b;), se Z,, and so

VTZ(i, j’ k) = (l + S,j + 1 + ahk + bx) = Tz'}’(i, j7 k)

Hence t, € C(IT), and IT admits a complete block system £, of p* blocks of size
p, where %, is formed by the orbits of pe{t1;,73). Define n,:I11— Sz3,4 by
n,(y) = y/#,. If |Ker(n,)| > p for any p € {1,753, then by the arguments above I is
a Cl-object for Z}. We now show that such a p always exists.

As |Ker(n,)| = p, I' is not isomorphic to a wreath product of a circulant graph of
order p over a Cayley graph for Z7. Let a € IT such that «/%# # 1 but «/# fixes some
block B € 4. Such an « exists as |IT/%#| > p2. Without loss of generality, assume that
a(Bo.o) = Bo,o. Then a|g,, € (73]g,,r. Hence there exists s € Z, such that «73(0,0,0)
=(0,0,0), so we assume that «(0,0,0) = (0,0,0). Hence «(0,j,k) = (0,j,k) for all
jk € Z,. Let T be the connection set of I'. As I' is not isomorphic to a wreath product
of an order p-circulant over a Cayley graph of Z2, there exists i€ Z, such that
C: n T # @ but C; £T. Further, as a/# # 1, there exists j € Z, such that a|c,, = 1 but
lc,,., # 1. Let p € {15,735 such that«|c, = plc,,.,,and denote the orbits of p|, by
0,04, ...,0,_,. Then if (0,0,0) is adjacent to (i, j, k) € ¢,, then (0,0,0) is adjacent to
every vertex of ¢,. Observe that if T € {t,, 73 such that 7 ¢ {p), then each orbit of 7|,
contains exactly one element of each orbit of p|c, for all ke Z,. We conclude that
tlc,yen €<PNc,yny OF Ci S T. As C; £T, alc,,,, €<pDlc,,.,- Arguing similarly, we
have that a|c, ., € {p>]c,,.,- Continuing in this fashion, we have that a|c,, € {p}|c,,
for all ke Z,, and so that /%, = 1. As « # p, |Ker(n,)| > p.

If Ker(m,)|c # <{t3,73)|c, let « € Ker(n,) such that a|c ¢ {t,, 73 ). Consider a~ !7,0.
As I1/# < Sz, I1/2 is contained in a Sylow p-subgroup of Sz, which is isomorphic
to C,0C,, where C, is a cyclic group of order p. Hence {1,,0)/# < 15,0C,. As
15,0C, is an abelian group, a™'t,a/# = 1,/#. Thus a ™~ '1,01; ' € Ker(n,) and so
a” a0 = 1,79, a € Z,. We conclude that a(i, j, k) = (i, 0,(j, k)), where

0:0, k) = w:(j, k) + (a;, by),

w; € Aut(Z‘%), a;, bi € Zp. Let ﬁ,Zﬁ g Zg by ﬂi(j, k) = (J + a,-,k + b,) Then 0,’ = ﬁiwi'
Let, , f:Z2 — Z2 by w(i, j,k) = G, i(j, k) and B, j,k) = G, B, k). Then o = fe
and so

o lu =0 B e = o o = 1,19,

where a € Z,. Hence w; = w; for all i, j e Z,. Without loss of generality assume that
ao = 0 and b, = 0. We will consider when o € Aut(Z;) and when o ¢ Aut(Z3).
If « ¢ Aut(Z}), then o™ '1,a ¢ {1,,7,,73 ). Further, note that

arli, j, k) =ty ta” 1‘5101(1', 5K =00k + o 1((ai,bi) — (@4 1,04 1) (1)
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As o ¢ Aut(Z3), oy ¢ {14,72,73). Let H = {(11,7,,73,a, ). Note that # and ¥ are still
complete block systems for H < I1. Define n'y : H — Sz by n(6) = 6/B and n;:H - §,
by n5(8) = 6/%. Then Ker(n)) < Ker(nl) {13) so that Ker(n}) = {(13). As |H| > p*
and |Im(n})| = p, |Ker(ny)| = p>. By (1), Ker(ny)|c < <1,,73)|c for all C € %, and so
by the arguments above there exists p € H n {t,,73) such that if mn,:H— Sz by
n,(0)=0/%B, (#, being the orbits of p), then |Ker(n,)| >p. By Lemma 2,
Ker(n,)| = p** or p?.If | Ker(n,)| = p”’, then I' is isomorphic to the wreath product of
a Cayley graph of Z,x Z, over an order p-circulant, and so by Lemma 3, I' is
a Cl-graph. If |Ker(n})| = p?, then by Lemma 2 {p|c: C&¥ ) < Aut(I'). Further,
pe{t5,13) and p¢ (13, so that p =151%, b, c€ Z,, a #0. Thus p permutes the
blocks of # as a p-cycle.

Now, (alc,)/# € {t3lc,>/B forall ie Z Let d; € Z, such that («|¢,)/# = 15 /8. Let
Jos f1s ooy fo-1€ Z, such that fia =d,. Then

@I " le)/B = 1.

Let o = o[22 p % As a|c ¢ {13,73)|c for some Ce% and p~'|c € (1,,15) for
all i, o|c ¢ <15,75) and thus o' ¢ {r3) but « € Ker(n,), a contradiction. Hence
a € Aut(Z}).

If € Aut(Z}), then IT < AGL,(p), the affine group over the field with p? elements.
As is well known, this group is doubly transitive and, by [9, Theorem 11.5],
G = (14,715,753 is the only minimal normal subgroup of AGL;(p), and also of II.
Thus @1 'Ge, = G and T is a Cl-graph of Z;. O

It does not appear that this approach will generalize to determine whether a given
Cayley graph of Z¥is a Cl-graph for all k > 1. It may, however, generalize to k = 4
and, possibly, k = 5.

Several people have recently informed the author that the main result of this paper,
Theorem 4, was independently obtained by Xu [10]. Our proof, however, seems to be
both more combinatorial and more elementary.
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