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Abstract 

We prove that if two Cayley graphs of Z~ are isomorphic, then they are isomorphic by 
a group automorphism of Z 3. 

In [3], Babai and Frankl conjectured that Z 3 is a CI-group with respect to graphs 
for all primes p and k >t 1. The case k = 1 was settled positively by several authors 
[1, 3, 5, 6]. It was shown by Godsil [7] that the conjecture is true for k = 2. Recently, 
Nowitz [8] gave an example showing that Z k is not a CI-group with respect to graphs 
for all k >~ 6, and asked if there existed a prime Po so that ifp t> Po and p is prime, then 
Z 3 is not a CI-group with respect to graphs. We will answer this question negatively 
by showing that Z 3 is a CI-group with respect to graphs for all primes p. 

1. Preliminaries 

For general information on permutation groups, the reader is referred to [9]. Let 
G be a group and H ~ G - { 1 } such that H = H-1.  We define the Cayley graph 

F(G,H) to be the graph with V(F(G,H)) = G and E(F(G,)) = {(g, gh): g ~ G,h ~ H}. 
H is said to be the connection set of F(G, H). We will say F is a Cayley graph for G if 
F = F(G,H) for some H ~ G -  {1}, H = H -1. Clearly if F is a Cayley graph for 
G then GL = {gL:G~ G: gL(x)= gx, g e G} <. Aut(F). We shall say that a Cayley 
graph F of G is a CI-graph with respect to G if, given any Cayley graph F' of G such 
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that F is isomorphic to F', then F and F' are isomorphic by some ct ~ Aut(G). Babai 
[2] characterized this property in the following way: 

Lemma 1. For a Cayley graph F of G the following are equivalent: 

(i) F is a CI-9raph. 
(ii) Given a permutation 49 ~ S~ such that 49-1GL49 <~ Aut(F), GL and 49- ~ GL49 are 

conjugate in Aut(F). 

Let G be a transitive group of degree mk such that there exists a transitive subgroup 
H < G such that H admits a complete block system ~' of m blocks each of size k. 
Enumerate the blocks Bo,B~ . . . . .  Bm_~. Define a map r q : H ~ S m  by ~ ( ~ ) - - - ~ / ~  
where c t /~ ( i )= j  if and only if ~(B~)= Bj. Clearly ~1 is a homomorphism. Let 

H / ~  = Im(rt 1). 
A graph F is said to be an (m, p)-galactic graph if there exists a ~ Aut(F) such that all 

of the orbits of a have order p, and I V(F)I = rap. Let l-a] be the subgroup of Aut(F) 
such that if ~ ~ [c~], then the orbits of 6 X~x[~ a r e  the same as the orbits of ~. A graph 
F will be called an (m, p)-uniformly galactic graph if F is an (m, p)-galactic graph and 
I-a] is transitive. 

Let G be a transitive permutation group that admits a complete block system 
= {B~: i ~ Z,,} ofm blocks of size p, p a prime, and ~ is formed by the orbits of some 

normal subgroup N <3G. Then for each B~ there exists ~ ~ N such that ~ln, is 
a p-cycle. Define an equivalence relation - on the blocks Bo . . . . .  B,._ 1 by B~ - B~ if 
and only if whenever a ~ N and ale, is a p-cycle then alz~ is also a p-cycle. Denote the 
equivalence classes of = by Co . . . . .  C, and let E~ = U~c,B~. Then 

Lemma 2. Let F be a vertex transitive 9rowth with G <~ Aut(F) as above. Then there 
exists H <~ Aut(F) such that G <<, H and each El is a block of H. Further, F is an 
(m,p)-uniformly galactic graph and for each 0 <~ i <~ a there exists ctl ~ H such that ~ilE, 
is semiregular of order p and 7ilE, = 1 for every i ¢ j. 

Proof. We first show that if B i e  El, nk q~ Ei and some vertex of Bj is adjacent 
to some vertex of Bk, then every vertex of Bj is adjacent to every vertex of Bk. This 
will imply that for each equivalence class E~ there exists ~ e Aut(F) such that ~glns is 
a p-cycle for every B~ e E~ and ~le, = 1 for every Bt ¢ E~, and so that F is an (m,p)- 
uniformly galactic graph. We then show that each E~ is a block of H = (G ,~ :  
O <~ i <~ a). 

As BieE~ and BR¢E~, there exists ~ G such that either YjrB~ is a p-cycle 
and 7ile~ is not, or ~jle~ is a p-cycle and 7j[nj is not. Without loss of generality, assume 
that YjIBj is a p-cycle and Tile, = 1. Let 6k e G such that 6kln~ is a p-cycle. IfbklBj is not 
a p-cycle, then we assume without loss of generality that 6klBj = 1. Then Yj6klnj is 
a p-cycle and yi6kle~ is a p-cycle. We conclude that each vertex of Bj is adjacent to 
some vertex of Bk. Further, as 7~ ~ G, each vertex of Bk is adjacent to every vertex of B j, 
and, similarly, as 6k ~ G every vertex of Bk is adjacent to every vertex of B~. If 6kln~ is 
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a p-cycle, then each vertex of Bk is adjacent to some vertex of Bj. As 7j • G, each vertex 
of Bk is adjacent to every vertex of Bj. Hence every vertex of B~ is adjacent to every 

vertex of Bk. 
Hence for each equivalence class E~ there exists cq • Aut(F) such that ~ln~ is 

a p-cycle for every B~ • E~ and ~ln, = 1 for every B, ¢ E~. Suppose fl • H such that 

fl(Ei) c~ E i # 0 and fl(Ei) # gi. Then there exists B~ • Ei such that fl(B~)q~ Ei and 
B, • Ei such that fl(B,) • E~. Then flcqfl- ~ I#tB,) is a p-cycle and there exists B, • Ei such 
that fla~fl- X[B, = 1, a contradiction. Hence each E~ is a block of H. [] 

2. The main result 

We first prove a lemma that settles the case when F is a wreath product of two 

graphs. 

Lemma 3. I f  F is a Cayley graph of Z 3 and F is isomorphic to a Cayley graph of 
Z 3 that is the wreath product of a circulant graph of order p over a Cayley graph of 
Z 3 or the wreath product of a Cayley graph of Z 3 over a circulant graph of order p, 
then F is a Cl-graph with respect to Z 3. 

Proof. We will show that if F is a Cayley graph of Z 3 and F is isomorphic to a wreath 
product of a circulant graph F~ of order p over a Cayley graph F2 of Z 3, then F is 
a CI-graph. The other case follows with a similar argument. 

Let F ~/ '1  ~/'2 be as above. Let F' be a Cayley graph of Z 3 such that F' is iso- 
morphic to F. Let zl,  r2, r3 :Z  3 ~ Zp 3 by zt (i, j, k) = (i + 1, j, k), r2(i, j, k) = (i, j + 1, k), 

and r3(i,j ,k ) = (i , j ,k + 1). Then G = < T 1 , ' c 2 , 1 7 3 >  ~ Aut(F), G ~< Aut(F'), and 
G ~ Z 3. Let H be a Sylow p-subgroup of Aut(F) that contains G. Then /7 has 
a nontrivial center so there exists ~ e C(H), the center o f /7 ,  ~ # 1. As ~ e C(H), 

e Csz~(G), the centralizer of G in Sz~, and as G is regular and abelian, e e G. Now, 
H admits a complete block system ~ of p2 blocks of size p, where the blocks of size 

p are formed by the orbits of ~. Define n~: /7~  Szg/~ by nl(y) = y/N. T h e n / 7 / ~  is 
a p-group and there exists fl • / 7  such that f l /~ • C(/7/~), fl~ ¢ 1. As G/~ <~ II /~,  
f l /~ • G/~, so that fl = fl'co, ff • G, o9 • Ker(nl). Hence we may assume without loss 
of generality that fl • G. Then /7  admits a complete block system c£ of p blocks of size 
p2, where the elements of ~ are formed by the orbits of (ct, B)- Define n2 :/7 ~ Sp by 

x2(7) = 7/~. Then I/7/~1 = p, and if 7 • / 7  such that 7/~ # 1, then 7 = 7 '09', )" • G, 
09' • Ker(n2). Thus we assume that 7 • G. Hence (~,fl,7) = ( r 3 , r / , z l )  and so by [4] 
there exists 61 • Aut(Z 3) so that 6~-1ct3~ = r3, 3; ~fi6~ = r2, and 3i-~76~ = r~. Fur- 
ther, F is a CI-graph if and only if,51(F ) is a CI-graph, and as (eric, file: C • c~) <~/7, 
6 ~ (F) is the wreath product of an order p-circulant F~ over a Cayley graph F~ of Z 3 . As 
Z 3 is a CI-group with respect to graphs [7], clearly there exists 62 • Aut(Z 3) such that 
6261(/ ' )= Fl~/"2. By analogous arguments, there exist 6 ' l , 6~•Aut (Z  3) so that 
6'zf'l(F') = FieF2 so that 6't-16'2-t6261(F) = F'. Hence F is a CI-graph for Z 3. [] 
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Theorem 4. Z~ is a Cl-group with respect to graphs. 

Proof. Let F and F'  be isomorphic Cayley graphs for Z 3, and tp:F ~ F'  an isomor- 

phism. Let Zl,'[2,z- 3 and G be as in Lemma 3. We must show that there exists 
6 E Aut (Z  3) such that 6(F) = F' or that ~p- 1Gtp and G are conjugate in Aut(F). Now, 

G and tp-IGtp are contained in Sylow p-subgroups H a n d / / ' ,  respectively, of Aut(F), 

and so there exists ~ • Aut(F) such that ~-l(p-1Gtp7 ~< H. As 1-1 is a p-group, there 

exists a e C(//), a :~ i, and by arguments in Lemma 3, we may assume • • G. Hence 

1-1 admits a complete block system ~ ofp 2 blocks of size p, where the elements o f ~  are 

the orbits of a. Define nl as in Lemma 3. By Lemma 2, JKer(nl)l = p, pP, or pp2. If 

IKer(nl)l = pP2, then K e r ( n l ) =  <~IB: B • ~ )  and F is isomorphic to the wreath 

product of a Cayley graph of Z 3 over an order p-circulant. Thus by Lemma 3, 

there exists 6 e Aut (Z  3) such that 6(F) = F'. We therefore assume that I Ker(n~)l = p 
or pP. 

If lKer(nl )1 = PP, then by Lemma 2/7  admits a complete block system cg ofp blocks 

of size p2, where if C • cg, then there exists ~c e Ker(nl ) such that tic(C) # c for all 

c • C and ~c(d) = d for all d e 2"93 - C. Define n2 as in Lemma 3. Clearly ~ is also 
a complete block system for G, and IG/Cgl = p. Hence there exists fl • G such that 

flick = 1 but fl ~ <~). Thus rg is formed by the orbits of <~, fl). Further, 1-I/~ = G/c~ 
so there exists ~, • 17 such that ),/rg is semiregular, y/c~ • G/~. By the arguments above, 

we assume 7 • G. Then <~,fl,7> = G and by the arguments in Lemma 3 we may 

assume that ~ = r3, fl -- z2, and y = z~. 
Now, I/7/~1 = p2 or I/7/~1 > p2. If I/7/~1 > p2, then as the elements of cg are 

formed by the orbits of <z2,z3), z2 (C)=  C for all C e r t .  Hence K e r ( n l ) =  

<Zzlc: C ~ > .  Let Ci = {(i, j ,k):j ,  k e Zp} and Bi,j = {(i,j,k): k • Zp}. Then c~ = {Ci: 
i e Zp} and ~ = {Bid: i, j • Zp}. Suppose that some vertex of Bi., is adjacent to some 
vertex of Bj.b, i # j .  Then every vertex of B~., is adjacent to every vertex of Bj. b. As 

I/7/~1 >p2, there exists f l e l I  such that fllc~/~ = 1 and fllc~/~ # 1, c # d .  As p is 
prime, we may assume that c - d = i - j  mod p, and by conjugating by z~, if neces- 

sary, that c = i and d = j. As f l lc , /~ # 1, fllc,/g~ is a p-cycle on the blocks {B~.k: 
k e Zp}, and as fllc~/~ = 1, fl fixes each block Bj.k, k • Z~. Thus every vertex of Bi,~ is 
adjacent to every vertex of C j, and by symmetry, every vertex of C~ is adjacent to every 
vertex of Cj. We conclude that F is the wreath product of an order p-circulant over 
a Cayley graph of Z 2, and so F is a CI-graph for Z 3. 

If I / / /~ l  = p2, then Ker(~q) = <Z3]c: C ~ c~>, and so iftpl = tpy, then gOl~c~tp~ =- cg. 

Hence go~(i, j , k ) =  (a(i), ~i(J, k)), a ~ Sp, ~i • Sz~. As Ker(rr2)lc-~ Z 2 for all C • ~, 
~i(J, k) = ~oi(j, k) + (ai, bl), tole Aut(Z2), ai, bi ~ Zp. As o~i e Aut(Z2), 

°gi(J,k) = (aiJ + flik, Tik + lij), 

ai,fli,yi, ti • Zp, where the 2 × 2 matrix with first row ~i fll and second row 7i li 
has nonzero determinant. If fll ¢:0 for any i, then, as K e r ( r h ) =  <Z31c: C•q¢>,  
I///~1 > pZ, so/~ = 0 for all i •  Zp. As Aut(F')  := tpi -1 Aut(F)(pl, we conclude that 
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Ker(Trl) ~< A u t ( F ' )  and  so we may  assume (by right mul t ip l ica t ion  by elements  of  

Ker ( rq) )  tha t  bl = 0 for all i E Zp.  We now show that  ct i = ctj for all i , j  E Zp.  

As IFI/~[ = p, ~r(i) = ri + c, r • Z * ,  c • Zp,  and as zl • Aut (F ' ) ,  we may  assume that  

a(i) = ri. Hence 

~ol(i , j ,k)  = ( r i , ~ j  + a~,Tik + td) ,  

and  so 

q9 { l (i,j, k) = ( r -  li, ~r- l t i ( j  - -  at- , i ) ,  ~ r - l l k  - ~/r-- l i  l r - t i j ) . ,  

Hence if z = "r?"- lqg~lz lq~l ,  then z • Ker(n2)  and 

z(i, j ,  k) = (i, cti-+',-, ~ij + ci, Oi(j, k)), 

for some c i • Z p  and • 2 O~.Z~,---, Zp.  Now,  IT[ = pt, t>_, O, and I Z~'l  = p -  1, so that  
- 1  

0 ~ i + r - l ~  i = 1. Hence  atl = ~ti+, 1, and  as ( r  - 1 )  = Zp, cti = ct~ for all i , j • Z  r 

Let ct = So. Then 

z ( i , j , k )  = (i, j  + ~ -  l (a  i - ai+,-~) ,Oi( j ,k)) .  

As I I - l /~  I = p2, o~-l(ai _ ai+,-1)  = c, c • Zp,  so ai+,- , = ai - ~c. As z2 • Aut (F ' ) ,  we 

m a y  assume tha t  ao = 0 and so a~r-I = - i~c. Hence al = - irctc. Define ~b : Z 3 ~ Z 3 

by c ~ ( i , j , k ) = ( i , j - i r ~ c , k ) .  Then ~b•Au t (Z3) ,  and  if q>'l = q>tth, we may  assume 

wi thout  loss of general i ty  (by replacing F '  by th- I(F ' ))  that  c = 0 and ~01 = ~0'~. Hence 

al = ai+, ,  and as ( r  - 1 )  = Zp,  

~ol( i , j ,k  ) = (ri, oq + a ,? ik  + t l j ) .  

As z2 • Aut(F ' ) ,  we may  assume that  a = 0. Now,  e lementary  calcula t ions  will 

show that  

Oi(j, k) - 1 = y i + r - t T i k - l - T i + l r  1(l i -  l i + r - t ) j .  

Fur ther ,  z • Ke r ( rq )  and  so Oi • (z3lc:  C • ~> .  Thus  Oi(j, k) = k + ci, ci • Z r Hence 

f o r k = 0 ,  

(l i - -  l i + r - l ) j  = '~i+r-lCi 

for all j • Zp. We conclude  that  t~ = t i+ , - i  for all i • Zp,  and so t~ = tj for all i, j • Z r 

Let  i = to. Then Oi(j ,k)  = ";[+l,-l?ik, and  as 10~l = p, ~-+1 ~ = 1 for all i e Zp.  Hence 

7i --- 7.i for all i , j  • Zp.  Thus  if ? = ?o, then 

qgl( i , j ,k)  = (r i ,~ j ,?k  + tj), 

and so ¢Pl • Aut(Z3).  Hence F and F '  are i somorph ic  by q~l • Aut(Zp a) and  so F is 

a CI-graph .  

If  IKer(Tq)l = p, then I1-1/:~1 = p2 or  I I1 /~1 > p 2 .  If I1-I1.~1 = p 2 ,  then IHI = p3 SO 

tha t  G and <p- 1Gtp are conjugate  in A u t ( F )  and  so F is a CI-graph .  If  [I-I1~1 > p2, by 

the a rguments  in L e m m a  3, there exist/3,  y • G so that  (ct, fl, ?> = G, and H admits  

a comple te  b lock system ~ of p b locks  of size p2, where the elements  of  qf are formed 
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by the orbits of (a, fl). Also by arguments in Lemma 3, we assume without loss of 

generality that s = z3, fl = z2, and ~, = r~. 
If K e r ( n 2 ) l c = ( Z 2 , z 3 ) l c ,  then if co•Ker(n2),  c o ( i , j , k ) = ( i , j + a l , k + b l ) ,  

ai, bl ~ Zp. Thus if 09 • 17, co(i, j, k) = (i + s, j + ai, k + bl), s • Z~, and so 

~:z2(i,j,k) = (i + s , j  + 1 + ai,k + bl) = z2~:(i,j,k). 

Hence ~2 • C(/-/), and H admits a complete block system ~p of p2 blocks of size 

p, where ~'p is formed by the orbits of p • ( z 2 , z 3 ~ .  Define 7tp:17~Sz~/~, by 
r~p(~,) = ),/~p. If IKer(zp)] > p for any p • (z2, z3 ~, then by the arguments above F is 
a CI-object for Z 3. We now show that such a p always exists. 

As I Ker(~tt)l = P, F is not isomorphic to a wreath product of a circulant graph of 
order p over a Cayley graph for Z 2. Let ct • 17 such that s / ~  # 1 but s / ~  fixes some 
block B • ~.  Such an ct exists as IH/~I  > p2. Without loss of generality, assume that 

~(Bo,o) = Bo,o. Then ~lBo.o ~ (Z3leo.o). Hence there exists s • Zp such that sz~(0,0,0) 
=(0,0,0),  so we assume that s (0 ,0 ,0 )=  (0,0,0). Hence ~t(O,j,k)=(O,j,k) for all 

j, k • Zp. Let T be the connection set of F. As F is not isomorphic to a wreath product 
of an order p-circulant over a Cayley graph of Z 2, there exists i •  Zp such that 

Ci c~ T ~ 0 but Ci ~:T. Further, as s/~'  :: 1, there existsj • Zp such that eric,, j = 1 but 

Sic ...... :: 1. Le tp  • (T2, '~3) such that Sic ...... = P/c,,,,,, and denote the orbits of Plc, by 
~9o, ~ . . . . .  dTp_ 1. Then if (0, 0, 0) is adjacent to (i, j, k) • (ge, then (0, 0, 0) is adjacent to 
every vertex of(9 e. Observe that ifz • (z2, z3 ) such that z ~ ( p ) ,  then each orbit ofzlc~ 
contains exactly one element of each orbit of Plc~ for all k • Zp. We conclude that 
s l c , , . ~ , e ( p > l c  ...... , or Ci ~- Z. As Ci g T ,  Ctlc, , ,~,e(p)lc ...... . Arguing similarly, we 
have that ~lc,,,~, • (P)lc,,.~,. Continuing in this fashion, we have that Slc,~ • (P)lc,~ 
for all k •Zp ,  and so that s/~p = 1. As s ~ p, IKer(np)l > p. 

If Ker(n2)lc ~ (r2, "~3 )IC, let ~ • Ker(n2) such that s Ic ~ (z2, r3 ). Consider s -  ~z2ct. 
As FI/~ <~ Szg, 17/~ is contained in a Sylow p-subgroup of Sz~, which is isomorphic 
to Cp~C~, where Cp is a cyclic group of order p. Hence ( z z , c t ) / ~  <<. l s~Cp.  As 
I s~C~ is an abelian group, ~-~z2~t/~ = r2/~.  Thus s-~z2sz2 ~ •Ker(n2)  and so 
s -  ~z2ct = z2z~, a • Zp. We conclude that ~(i, j, k) = (i, Oi(j, k)), where 

Oi(j,k) = 09i(j,k) + (ai,bi), 

09, • Aut(Z2), a,, b, • Z , .  Let f l i :Z  2 ~ Z 2 by fli(j,k) = (j + a, ,k + bi). Then 0, = ilion,. 
Let, o9, f l:Z3 ~ Z~ by 09(i , j ,k)= (i, coi(j,k)) and f l ( i , j , k )=  (i, fli(j,k)). Then s = fl09 
and so 

where a E Zp. Hence 09~ = 09j for all i, j • Zp. Without loss of generality assume that 
ao = 0 and bo = 0. We will consider when ct • Aut(Z a) and when ot¢ Aut(Z3). 

If ct ¢ Aut(Z3), then s -  lr1~ ¢ (z~, z2, ~3 ). Further, note that 

oq(i, j ,k) = Z l l S - l z l ~ ( i , j , k )  = (i,(j,k)) + co- l((al,bi) - (ai+l,bi+l)). (1) 
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As ~ q~ Aut(Z3), ~1 q~ (151,152,153 >" Let H = (151,152,153, ~1 >" Note that ~ and cg are still 
complete block systems for H ~</7. Define n'~ : H --* Sz~ by n'~ (6) = 5 / ~  and n~ : H ~ Sp 
by n~(8)= 6/c~. Then Ker(n'l) ~< K e r ( n l ) =  (~3 > so that Ker(n'l) = <z3 >. As I HI/> p4 
and IIm(n~)l = p, IKer(n~)[ 1> p3. By (1), Ker(n~)lc ~< (¢2,r3>1c for all C ec4, and so 
by the arguments above there exists p e r t  ~ <z2,z3> such that if n 'p :H~  Sz~ by 
n'p(fi)= 5/~p (~p being the orbits of p), then IKer(n~)[ >p .  By Lemma 2, 
Ker(n~,)l = pp2 or pP. If IKer(n~)l = pP2, then F is isomorphic to the wreath product of 
a Cayley graph of Zp x Zp over an order p-circulant, and so by Lemma 3, F is 

a CI-graph. If IKer(n'p)l = pV, then by Lemma 2 <Plc: C • ~g) <~ Aut(F). Further, 
P • (z2,153 > and p ~ <% >, so that p = Zb2Z~, b, c • Zp, a # O. Thus p permutes the 
blocks of ~ as a p-cycle. 

Now, (Ctlc,)/~ ~ <Z2lc,) /~ for all i • Zp. Let d i • Zp such that (Ctlc,)/~ = 15dz'/~. Let 

fo, J] . . . .  , fp-  1 • Zp such that f/a = di. Then 

Let ct '= ctIlP-olp -y'. As ~lc~ <r2,z3>[c for some C eCg and P - / ' I c e  <z2,z3> for 
all i, ct'lcq~<152,z3> and thus ~t'¢ <Z3> but ~ ' eKer (n l ) ,  a contradiction. Hence 
ct • Aut(Z3). 

If ct • Aut(Z 3), then/7 ~< AGL3(p), the affine group over the field with p3 elements. 
As is well known, this group is doubly transitive and, by [9, Theorem 11.5], 
G = <~,152,r3> is the only minimal normal subgroup of AGL3(p), and also of /7 .  
Thus ~o(~G~p~ = G and £ is a CI-graph of Z 3. [] 

It does not appear that this approach will generalize to determine whether a given 
Cayley graph of Z k is a CI-graph for all k/> 1. It may, however, generalize to k = 4 
and, possibly, k = 5. 

Several people have recently informed the author that the main result of this paper, 
Theorem 4, was independently obtained by Xu [101. Our proof, however, seems to be 
both more combinatorial and more elementary. 
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