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It is shown that a separable Banach space X has the point of weak to norm 
continuity property (resp. the Radon-Nikodym property) if and only if there exists a 
compact G,-embedding (resp. an Ha-embedding) from X into I,. This solves several 
questions of J. Bourgain and H. P. Rosenthal (J. Funct. Anal. 52 (1983)). It is also 
shown that every non-relatively compact sequence in a Banach space with property 
(PC) has a difference subsequence which is a boundedly complete basic sequence. 
This solves a question of Pelczynski and extends some results of W. B. Johnson and 
H. P. Rosenthal (Studia Math. 43 (1972), 77-92). Various related questions asked 
in the above Bourgain-Rosenthal reference and by G. A. Edgar and R. F. Wheeler 
(Pac. J. Math. 115 (1984)) and N. Ghoussoub and H. P. Rosenthal (Math. Ann. 
264 (1983), 321-332) are also settled. 8 1985 Academic Press, Inc. 

INTRODUCTION 

Let X and Y be two Banach spaces and let S: X -+ Y be a one-to-one 
bounded linear operator. S is said to be: 

(i) A semi-embedding if the image of the unit ball of X by S is norm 
closed in Y. 

(ii) An F,-embedding (resp. a nice F,-embedding) if the image of 
every norm open set in X by S is a norm F, (resp. a weak F,) in Y. 

(iii) A G,-embedding (resp. a nice G,-embedding) if the image of 

* This work was completed while the second author was visiting the University of British 
Columbia. 
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G,-EMBEDDINGS IN HILBERT SPACE 13 

every norm closed bounded and separable subset of X by S is a norm G, 
(resp. a weak G,). 

(iv) An Ha-embedding if for every norm closed convex bounded and 
separable subset C of X, we have that S(C)\S(C) is a countable union of 
closed convex bounded sets. 

It is easy to see that if X is separable, then a semi-embedding is a nice F,- 
embedding which in turn is a nice G,-embedding. Moreover, if S is an F,- 
embedding then there exists an equivalent norm on X which makes S a semi- 
embedding (Proposition 1.6 of [5]). This result, which is due to Saint- 
Raymond, immediately implies the following: 

PROPOSITION. If X is separable then any F,-embedding is a nice Fv- 
embedding and an H&-embedding. 

However, we shall see in this paper that the two notions of G,-embeddings 
are essentially different since we construct a Banach space X and a G,- 
embedding from X into I, such that no operator from X into I, is a nice G,- 
embedding (Example IV. 1). 

The first section is devoted to the proof of a topological characterization 
for G,-embeddings. It may be omitted on a first reading as it is independent 
of the rest of the paper. In it we show that a one-to-one operator S: X + Y is 
a G,-embedding if and only if the image of any a-separated sequence in X 
has an isolated point in Y. This shows that S is a G,-embedding whenever 
for every separable closed bounded non-empty subset K of X, SG&) has a 
point of continuity. This answers a question in [5] where the statement is 
proved under the additional assumption that the image of the unit ball of X 
is a G,. 

Recall that a Banach space X is said to have: 

(i) The point of continuity property (PC) if every weakly closed 
bounded subset of X contains a point of weak to norm continuity. 

(ii) The Radon-Nikodym property (R.N.P.) if every weakly closed 
bounded subset of X contains a denting point. 

In Section II we show that the Banach spaces which nicely G,-embed in 1, 
are exactly those separable Banach spaces with property (PC). This settles at 
once questions (I), (2) and (3) of Bourgain and Rosenthal [5]. Indeed. 

(1) Every G,-embedding into I, of a space with (PC) but failing 
(R.N.P.) cannot be the composition of a finite number of semi-embeddings 
since these operators preserve the (R.N.P.). 

(2) Every Banach space with property (PC) but failing the (R.N.P.) is 
a counterexample to question (2) since they G,-embed in spaces with the 
(R.N.P.) while failing to have such a property. 
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(3) Since spaces with (R.N.P.) have property (PC), they nicely G,- 
embed in I,. 

A counterexample to questions (1) and (2) is for example, the predual B of 
the James-tree space and was given in [ 11 J. The pm-space with (R.N.P.) 
constructed by Bourgain and Delbaen [2] is also shown to be a counterex- 
ample to questions in [5 ] and [lo]. 

Following Bourgain and Rosenthal [4] we shall say that a Banach space 
X has a boundedly complete skipped blocking jinite-dimensional decom- 
position provided there exists a sequence (Gi) of finite-dimensional subspaces 
of X such that the following conditions are satisfied: 

(a) X= [Gil?,. 
(b) G, n [CTi]i+i = (0) for every i, 
(c) If (mJ and (n,J are sequences of positive integers so that 

m,<n,+ 1 <mk+, and (xk) is a sequence such that xk belong to the finite- 
dimensional subspace G[m,, n,] generated by {Gi; mk < i < nk} then the 
series Ckxk converges whenever its partial sums are bounded. 

We also show in Section II that separable Banach spaces with (PC) are 
exactly the ones with a boundedly complete skipped blocking finite- 
dimensional decomposition, from which follows that every non-relatively 
compact sequence in such a space has a difference subsequence which is a 
boundedly complete basis. This answers positively a question of Pelczynski 
[7] (see also Bourgain and Rosenthal [4]). 

In Section III, we give a more precise characterization for spaces with the 
(R.N.P.) in terms of G,-embeddings in 1,. We show that a separable Banach 
space X has the (R.N.P.) if and only if there exists an H,-embedding of X 
into 1,. Note that from the results of Bourgain and Rosenthal [ 5 1, a space X 
is isomorphic to a separable dual if and only if there is an PO-embedding 
from X into 1,. 

Finally, in Section IV we show that every Banach space which G,-embeds 
in I, has an infinite-dimensional subspace which nicely G,-embeds in I, 
which in turn has an infinite-dimensional subspace which F,-embeds in I,. In 
particular every space that G,-embeds in I, is also somewhat separable dual. 

Several of the concepts of this paper were motivated by those of a recent 
joint work of G. A. Edgar and R. F. Wheeler. We refer the interested reader 
to their fundamental paper [8]. 

For unexplained notions and notations we refer to the books of Diestel 
and Uhl [7] and Lindenstrauss and Tzafriri [ 181. 
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I. A TOPOLOGICAL CHARACTERIZATION OF G,-EMBEDDINGS 

In [5], Bourgain and Rosenthal prove that a one-to-one operator T: X-+ Y 
is a G,-embedding if T(B,) is a G, and if for every closed bounded non- 
empty subset K of X, T;& has a point of continuity. They ask whether the 
assumption that T(B,) is a G, can be omitted. This section is devoted to give 
a positive answer to this question. 

We shall say that a sequence (x,) in a metric space (X, d) is b-separated if 
d(x,, x,) > 6 > 0 whenever m # n. 

THEOREM I. 1. Let X and Z be two Polish spaces and let f be a 
continuous function which maps every d-separated sequence in X into a 
sequence which is not dense in itselfin Z, for every 6 > 0. Then f (X) is a G, 
in Z. 

First some notations. We set Y = f (X) E Z and say that a subset A c Z is 
Y-dense if A is non-empty and Y n A is dense in A. We say that S G X is E- 
small if S is contained in a finite union of closed balls of radius E in X. Note 
that if S is s-small, so is S. 

If A c Z is Y-dense, we define a function k, on A by kA (a) = inf{ .s > 0; 3 V 
neighborhood of a with f -‘(Vn A) s-small}. 

It is clear that B = {k, < E} is an open subset of A for every E > 0. In 
other words kA is upper-semi-continuous on A. Note also that if B is non- 
empty, B is then Y-dense and kB = k, on B. 

For the proof of Theorem 1.1, we shall need the following four lemmas. 

LEMMA 1.1. Under the above assumptions. If A is a Y-dense subset of Z, 
then the set {kA < E} is non-empty for every E > 0. 

Proof: Suppose not. We have then kA > E on A. We shall construct an 
e/Z-separated sequence (x,) in S, such that {f (x,)} c.4 and is dense in itself, 
which is obviously a contradiction to the assumption. 

Suppose x,, x2 ,..., x, constructed with a, =f (Xi) E A, i = l,..., n, and 
d(xi,xj) > 42 whenever 1 < i <j< n. Let I/= B(a,, 2-“). Since k,(a,) 2 E, 
f - ‘( Vn A) is not s/Z-small, thus not contained in lJy=, B(xi, c/2). Let 
X “+I Ef-‘(vnA)\U;=, B(Xi, E/2)* W e can proceed the same way for 
XZY, n, X thus finding x,+ , ,... xzn with a, =f (xi) E A, i = 1, 2 ,..., 2n, 
d(xi, xj) > 42 if 1 < i <j Q 2n and d(ai, a,+i) < 2-” for i = l,..., n. 

By repeating this procedure we clearly obtain an s/Zseparated sequence 
whose image is dense in itself. 

Remark 1.1. If Y is dense in Z, then Y contains a G,-dense in Z. Indeed 
suppose Z = y, then k = k, is upper-semi-continuous. Moreover the set 



76 GHOUSSOUB AND MAURI3 

{k < l/n} is dense for every n, for otherwise we have an open set o c Z with 
k > l/n on o, thus k, = k > I/n on LO, contradicting Lemma I. 1. It follows 
that {k= 0) is a dense G, in Z. If k(z) = 0, one can find a decreasing 
sequence (I’,) of neighborhood of z such that diam(V,,) < 2-” and 
f-‘(vJ 2~“-small. Then K= fi,f-‘(v,) =f-l(fl, v,,) =f-‘((z}) shows 
that z E Y. Furthermore, for every sequence (x,) in X with f(x,) + z, we 
have d(x,, K)+ 0. Note that {x,) is precompact: given n, all x,‘s but 
finitely-many belong to V,, thus {x,] cf-‘(v,) except for a finite set, and 
f-’ (V,) is 2-“-small. If x ,,,k-+ x, f(x,,) -+ z so f(x) = z and x E K. It 
follows that the set {k = 0) is a dense G, in Z consisting of the points of 
continuity off - ’ 1 f(X). 

We will call a Y-dense subset A of Z e-moderate (E > 0) if k, < E on A. If 
B is Y-dense, A = {k, < E} is non-empty by Lemma 1.1, open in B, therefore 
A is Y-dense and k, = k, on A which shows that A is c-moderate. 

LEMMA 1.2. Let A be a Y-dense subset of Z and E > 0 given. There 
exists then a transfinite family (A,) of subsets of A such that for every a ( Q 
the following property (H,) holds. 

1 

(a) For every ,LI < a, A, is open in Fb = Y n A\U y<4 A y (where the 
closure is taken relative to A), and A, is s-moderate. 

WJ W The sets (A4hcn are disjoint and for every /3 < a, U y< D A y 
is G, in A. 

(c) If FD # 4, then A, is non-empty, for every p < a. 

Proof Suppose the family has been constructed for every p < a with the 
property H,. 

If YnA c UoCa A,, then Fe = YnA\U,,, A, is empty and we set 
A,=$. 

Otherwise Fa is Y-dense and A, = {kF, < E) is open in F, and is E- 
moderate. 

We must show that A, n A, = $ when /I ( a. Actually A, n F, = #; 
because A, is open in F,, A, n F, is open in F, c F,,, so 
A,nF,#$aAAnFa meets YnA\U,,,A,, which is absurd. 

It remains to show that UDCa A, is G, . To this end consider 

SinceA,cF,cFI,forp< y<a, 
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From H,(b), we have that B, and hence B is G, in A. We have B 2 A’, 
andifzEB\P’,zEF=flp<a F,, which is disjoint from A’, thus 

A’=B\F is G8 in A. 

Also note that each A, is relatively open in A, thus I;, - G, in A, and 
Uoca A, is F, - G, in A for every a. 

LEMMA 1.3. Let A be an F, - G, Y-dense subset of Z and E > 0. There 
exists then a sequence (A,) of subsets of A such that 

(a) the A,,‘s are disjoint F, - G, e-moderate subsets of Z; 

(b) A’=U,A,isF,-GG,inZandcontains YnA. 

ProoJ Since A is metrizable and separable the decreasing family F, of 
closed subsets of A must be stationary at some countable ordinal but clearly 
F a+1 = F, * F, = q! from our construction. 

If F, = d we have YnA c lJB,,A,, which proves Lemma 1.3. 

LEMMA 1.4. There exists a double sequence (A& of subsets of Z such 
that: 

(1) For every fixed k, the A,,, ‘s are disjoint F0 - G, 2-k-moderate 
subsets of Z, and A, = u,, A,,, is an F, - G, containing Y. 

(2) For every k and n, Ak+l,n is a subset of some A,,,. 

Proof. We start with A = y and apply Lemma I.3 with E = l/2 to get 
(Al,,) satisfying (1) for k= 1. 

Apply again Lemma I.3 to each A,,, with E = l/4 to produce a family 
(Az,&,,, with the properties.(a) and (b) of Lemma 1.3. 

Set A;,, = Um4,n,m 2 Ynb,,,. 
Consider the family (A2,n,m)n,m and A, = Un,mAz,n,m = U,A;,,. We have 

A,? U,, (YnAA,,)z YnA, = Y. 
Everything is clear in (1) and (2) for the family (A2,J except that A, is 

a G,. 
But Um>A,m is G, since A 1 is Gs and each A,,j is F,, thus 

cn= (~lA$J(,iin4,m) is% 
and 

~c,=UA;,,=A* is G,. 
n n 
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The family A,,, in Lemma I.4 is just the family (A2,n,m) after some re- 
indexing. The step from k to k + 1 is identical to what we just made. 

Proof of Theorem 1.1. Let (Ak) be as in Lemma 1.4. We claim that 
Y = ok A, thus proving that Y =f(X) is a G, subset of Z. Indeed, we have 
YG nk A, by Lemma 1.4. If now z E n,A,, there exists by (2) in Lemma 
I.4 a sequence A, n 2 A,,,* 3 . . . =, Ak,nt 2 . . . 
Bk =Ak,n,, being 2’ kymoderate. 

of sets containing z, with 

Using the definition of moderation, it is possible to find a decreasing 
sequence (Vk) of neighborhoods of z, with diam(V,) < 2-k and 
f -‘( V, ~7 Bk) 2-k-small and non-empty for every k. 

It follows that 

nf-‘cvk n Bk) = K is non-empty (and compact). 
k 

If now x E K,f(x) E nk vk = {z}, showing that z E Y. 

Remark. If one assumes thatf(X) is co-analytic (in particular Borel) in 
Y, then Theorem I.1 would follow easily from a celebrated result of 
Hurewicz [ 131. 

THEOREM 1.2. Let X and Z be two Banach spaces and let T: X-+ Z be a 
one-to-one operator. Then the following assertions are equivalent: 

(1) T is a G,-embedding. 

(2) For every closed bounded separable subset K of X, T$,:,, has a 
point of continuity. 

(3) For every 6 > 0 and every b-separated sequence {x,} in B,, the 
sequence {TX,] is not dense in itself. 

Proof Note first that we can suppose X and Z separable since we can 
restrict ourselves to the separable subspaces generated by the separable 
subsets involved in the discussion. (1) =S (2) is clear. For (2) + (3) take any 
point of continuity of T-’ on T(D) whenever D is a a-separated countable 
subset of B,. It is clearly an isolated point of T(D). For (3) * (1) it is 
enough to apply Theorem I.1 to each closed bounded separable subset of X. 

THEOREM 1.3. Let X and Z be two Banach spaces such that the ball of 
Z equipped with the weak topology is a Polish space. Let T: X + Z be a one- 
to-one operator. The following assertions are then equivalent. 

(1) T is a nice G,-embedding. 

(2) For every closed bounded separable subset K of X, T;&, has a 
point of weak to norm continuity. 
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(3) For every 6 > 0 and every d-separated sequence (x,) in B, the 
sequence {TX, ] is not weakly dense in itself: 

Remark. Note that (1) implies (2) under the weaker assumption that 
every weakly closed bounded subset of Z is a Baire space for the weak 
topology. In view of a result of Edgar and Wheeler [8] this is verified 
whenever Z has the (PC) property. 

We now give an application of Theorem I.2 to a three-space type problem. 

THEOREM 1.4. Given a separable Banach space X and a subspace Y of 
X, let Q: X + X/Y be the quotient map. Let T be an operator from X into a 
Banach space Z such that the restriction of T to Y is a G,-embedding, then 
the operator (T, Q): X--t Z 0 X/Y is a G,-embedding. 

Proof. Suppose (x,) is a bounded sequence in X that is b-separated for 
some 6 > 0 and such that {(TX,, Qx,)}, is dense in itself in Z @X/Y. We 
may assume without loss of generality that x, = 0. Consider M = {m E M; 
11 Qx,ll < S/10}. The sequence {(TX,, Qx,); m E M) is again dense in itself. 
Let now R be a continuous lifting from X/Y into X such that \IRQx,I) < 6/4 
for each m E M. Note that the sequence y, = x, -Rex,,, is b/2-separated 
and is contained in Y. Given now m, in M, there exists a sequence (m,J such 
z;t yTFi, Qx,,) + (Tx,~, Q,,) when k -+ 03. Hence Rex,,,, -+ Rex,,,, and 

- - RQx,,) -+ %z,, -RQx,,) = TymO which shows that (Ty,), 
is dense in ?self hence contradicting the assumption on T, ,,. 

II. SPACES WITH THE POINT OF CONTINUITY PROPERTY 

Recall first that a Banach space X has property (PC) iff for every E > 0 
and every bounded non-empty subset F of X, there exists a weakly open set 
VcXsuch that VnF## and diam(VnF)<s. 

The following lemma reduces most of the problems considered here to the 
study of the unit ball. 

LEMMA 11.1. Let X be a separable subspace of a dual space Y*, then for 
every norm closed subset F of B,, we have 

4,\F = (Br+\Bx) ” u K, n 
where the K,‘s are weak*-compact convex subsets of Y*. 

Proof For each x in X, denote by r(x) the distance d(x, F) of x to F, and 
let &(x7 r(x)) = {Y E X; II Y II Q 1 and (( y -XII < r(x)/2}. These are open 
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balls in the polish space (B,, I( II). Since, B,\F = UxeB,\F D,(x, r(x)), there 
exists a countable subfamily (x,) such that B,\F = U, D(x,, r(x,)). 

Let now &(x,r(x))= {yE Y*; (IyJI< 1 and I/y-x(J<r(x)/2}. Note 
that each fi,+(x, r(x)) is weak*-compact and convex in Y*. We claim that 
F n U,, Br*(xn, r(x,)) = 4. Indeed, if not there will be y in F and an x, in 
B,\F such that 1) y - x, )I < r&J/2 = $d(x, , F), which is absurd. Finally, we 
get B,*\F = (B,*\B,) U U, 44% y rW>. 

The following is a version of a result of Edgar and Wheeler [8] that is 
crucial to what follows. We include a proof for completeness. Recall first 
that an elementary w*-open neighborhood of x is a set of the form 
V(x, G, a) = {x ** E x**; SUP,.,G )(x ** - x)(x*)1 ( a} where a > 0 and G 
is a finite subset of X*. 

LEMMA 11.2. If X is a separable Banach space with property (PC), then 
for every bounded closed subset F of X, there exists a sequence (y,) of coun- 
table ordinals, sequences {K,,, ; a ,< y, , n E IN} of weak*-compact sets in 
X* * and sequences {V,,, ; a ,< y,, n E N} of elementary weak*-open sets 
such that 

Proof Given E > 0, we construct by transfinite induction a decreasing 
family of norm closed subsets (F,) of F in the following way: 

(i) F,=F. 
(ii) If a = ,f3 + 1 and F, # 4, use property (PC) to find an elementary 

w*-open set V. such that VD n F, # 4 and diam(F&n V,) < E. Set 
F, = F,\V,. 

(iii) If a is a limit ordinal, let F, = flDca FD. 

Since X is separable, there is y < R (the first uncountable ordinal) such 
that F, = 4. Let now K, equal the weak *-closure of F, in X* *. 

Note that F c K, U (tJoca V,) for each a < y. On the other hand suppose 
x** E na,yKU (&<a V,)) and let a, be the first ordinal a,, < y such 
that x** 6Z Km,. We have then x** E UOcau V,. That is there is /3 < a,, with 
x** E K,n V6. Let now a net (xj) in F, with xj+ x** weak*. For large 
enough-j, the xj’s are also in V,. Take now such an xj in V, and we have 

II~j-X**Il~~llXj-xill~E hence d(x * *, F) < E. 

By taking E = l/n in the above construction, we get a sequence of coun- 
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table ordinals (YJ, weak*-compact sets {K,,, ; a Q yn, n E N } and 
elementary weak*-open sets {I’,,, ; a < y,, n E n\l } such that 

F=n n Ka,,” u V&n * 
n n<Yn ( 4<n 1 

LEMMA 11.3. If X is a separable Banach space with property (PC), then 
there exists a separable Banach space Y and an isometry T. X + Y” such 
that T(B,) is a weak* - G, in B,,. 

ProoJ: By Lemma II.2 applied to B,, we write 

where K,,, is weak*-compact and V,., is an elementary weak*-open set of 
the form V(x,,, , G,,, , E& where E~,~ > 0, x~,~ E X and G,,, is a finite 
subset in X*. Let now D be a countable norming subset of X* containing 
G,,, for each n E R\l and /I < yn and let Y be the separable closed subspace of 
X* generated by D. 

Consider the inclusion map S: Y-+X* and T = S*: X** -+ Y*. Then T,, 
is an isometry. If x E X, Q > 0 and G is a finite subset of Y, consider 
W(Tx, G, a) = { y* E Y”; supyaG ((y* - Tx)(y)j < a}. It is a weak*-open 
subset of Y*. Note that 

T-‘(W(Tx, G, a)) = 
I 
x**EX**;sup(T(x**-x)(y)I<a 

Y~G I 

= I X**EX**; SUP 1(X**-x)(y)\ < a . 
YEG I 

This shows that each V,,, is equal to T-‘(W,,,) where W,,, is a weak*- 
open subset of Y*, and T(V,,,) = W,,, since T is onto. The same also holds 
for unions of elementary weak*-open sets. That is, since we can write 

B, = 0, (K, u 0,) where the K,‘s are weak*-compact in X* * and the 
Om’s are countable unions of elementary weak*-open sets determined by 
functionals in Y we can now write 

Bx = n (Km u T- iWm)) m 
where W,,, is weak*-open in Y*. Note now that 

Wx) = T n (Km ” T- ’ Wm)) E f-) (T(K,,J ” W,). 
m m 
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Conversely if y* E fl,,, (T(K,) U W,), there exists a subset M of N such 
that 

By the compactness of the K,‘s we have fimEM T(K,) = T(f),,,,, K,). On 
the other hand 

Hence Y* E T<n,,,K,) U TImeM T-‘(W,))s T(n,(K,u T-‘(W,,J))= 
W,). 

It follows that T(B,) = n,(T(K,) U IV,). 
Since Y is separable, B,, is a metrizable weak*-compact set, hence each 

K, is a weak*-G, in Y* from which follows that T(B,) is a weak*-G, in 
Y*. 

Now, we can prove the following: 

THEOREM II. 1. For a Banach space X, the following properties are 
equivalent: 

(a) X is separable and has the (PC) property. 

(b) X has a boundedly complete skipped blocking finite-dimensional 
decomposition. 

(c) There exists a nice G,-embedding of X into I,. 

Proof: (a) =P (b) Use Lemma II.3 to find a separable Banach space Y 
such that X is a closed subspace of Y* and Y*p = U, K, with (K,) being 
an increasing sequence of weak*-compact subsets of Y*. Let (x,) be a dense 
sequence in X and let Y, be a finite subset of Y such that X = [xi] @ Yt. 
(All the annihilators will be taken in X.) We shall say that a subset M of Y, 
C-norms a subspace Z of X for some constant C if for every x in Z we have 

Set now X, = [x,]. Let x, = u, t v2 where u, =,4x, and v2 E Yi. We shall 
choose a finite subset Y, of Y such that: 

(4 Yd=L 
(b) Yl j-norms Xi. 
(c) If v2 # 0 then v2 & Y:. 
(d) The topology o(Y*, Y,) separates Ball(X,) from K, : that is, every 
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x in Ball(X,) has a w*-open neighborhood W determined by functionals in 
Y, such that Wn K, = (. 

Indeed since Ball(X,) is compact and K, n Ball(X,) = 4, there exists a 
finite covering { V’;j E F,} for Ball(X,) such that Vj is a o(X, Y) elementary 
open set disjoint of K, for each j. Let JV, be the finite set of functionals in Y 
that determines { Vj;jE Fl}. Let M, be a f-norming set for X,. Let y, in Y 
suchthat(y,,v,)#OandsetY,=Y,UN,UM,U{y,}.ItisclearthatY, 
verities (a), (b), (c) and (d). 

Let now X, be the finite-dimensional subspace containing v2 
such that Yi = X, @ Y:. We get that x2 E X, OX,. Suppose now 
X l,--,xn, y,,..., Y,-l are constructed such that for 2 <j < n: YjP2 c Yj- i 
and are finite subsets of Y, YJAPz = Xi 0 Y,A-i with dim Xi < co, 
xjEX,@X,@...@Xj and X=X,@X,@...@Xj@Yf-l. Write now 
X n+1= 24 n+l+~n+,, with u,+,EX,@.e.@X, and ZI,+,EY~_,. Choose 
as above a finite subset Y,, c Y such that: 

(b) Y,2-“-normsX,@X,@...@X,. 

(cl Ifun+ Zo,on+l 6z y:. 
(d) The topology o(Y*, Y,) separates Ball(X, @ X, @ ..a 0 X,) from 

Kn. 

Find X,,+i c Yi-i such that zl,+, E X,,, , Yt-, =X,+ i @ Y,‘, hence 
X n+lEx,@***Ox,+1. 

Finally, we get a sequence (X,) of finite-dimensional subspaces of X such 
that X, n CL fn 0 X,) = {0} and x, E X, @ X, .a. @ X, for each n, hence 

x= u:,xl OX,@ -** ox,. 
To prove that (X,) is a boundedly complete skipped blocking decom- 

position for X we shall only consider a sequence vi = uZi+ i E Xzi+ i such that 
S, = c?=O ui is in the ball of X and prove that s, is convergent. The same 
reasoning will hold for the even case and the general case. 

Let s be a weak*-limit of (s,) in Y*. If s &X, there exists n, so that 
s E &I,+ 1. Let G,=X,@...@X,. For each n>n,,, we have s,=s,O+w 
where w E X2n,+3 0 X,,0+, ..a 0 Xzn+ 1 c Y&+i. But property (d) gives a 
w*-open neighborhood of s,~ of the form W = {y*; sup, 1 (y* - sno,y,)l 
< E} such that (y,) c Yzn,+ I and Wn K,,o+ 1 = qi Hence s, E W for all 
n > n, and s E W, which is a contradiction. 

It follows that s E X, hence there exists m, such that x E G,,O+, and 
1;- xI[>~; >$ (b) there exists y in YZmO+ i such that 11 y (I< 1 and 

‘SJ?to , mo-xII(l +2- 2m0-‘)-‘. Note that for n > m, we have for 
such a y: 

(Y3 s, -x> = (YT smo - x) hence (y,smo-x)=(y,s-xX) 
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and 

and 

(Jsmo-sII < 2&(1 + 222mo-7. 

It follows that (s,) norm converges to s. 

(b)* (a) by the results of Bourgain and Rosenthal [4]. 

(a) ~j (c) By Lemma 11.3, there exists a separable Banach space 
Y and an isometry T: X+ Y* such that T(B,) is a weak*-G, in By*. 
Write B,*\T(B,) = U, K, where the K,‘s are weak*-compact. By 
applying Lemma 11.1 to any closed subset F of B, we have 
B,,\T(F) = (lJ, K,) U (lJ, 0,) where the Da’s are also weak *-compact. 
Let now S be a dense range operator from I, into Y, then S*: Y* -+ I, is 
one-to-one and weak* to weak continuous. Moreover for each closed F 
in B,, S*(B,*\T(F)) IS a weak F, in I, hence the operator S*T is a nice 
G,-embedding of X into I,. 

(c) * (a) Let R: X-+ I, be a nice G,-embedding. Suppose first X non- 
separable. There exists then an uncountable family (x,) in B, such that 
]]x, - x,,]] > 6 whenever OL f a’. Since the ball of 1, is a Polish space, there 
exists a countable subfamily (x,,), so that (x,,), is dense in itself. But it is 
also a G, since F = {x,,; n E N } is closed and R is a G,-embedding. This is 
clearly a contradiction. 

To prove that X has (PC) it is enough to take for any closed bounded 
subset F of X, a point x in F such that TX is a point of weak to norm . . contmuny for R b&). It is clearly a point of weak to norm continuity relative 
to F. 

Remark 11.1. We may directly construct a nice G,-embedding into Cz 
using the boundedly complete skipped blocking decomposition (X,,). Indeed, 
let P, be a projection from X into X,, T, an embedding of X, into a finite- 
dimensional Hilbert space ff,, and E, > 0 such that CF= I E, (( T, P,/( < co. 
Let T: X+ (C, @ H,Jl, defined by TX = (E, T,,P,x),. T is a nice G,- 
embedding. Indeed, suppose (x,) b-separated and (TX,), weakly dense in 
itself. It follows that for each n, (P,,x~)~ is norm dense in itself. A reasoning 
similar to the proof of Theorem (5) of [4] shows that there exists a subse- 
quence (xaJk such that xak+, -xak is arbitrarily close to some wk+, in 
X nx+,+l 0 ..* o**,+,, which is obviously a contradiction. 

Remark 11.2. The proof of Lemma II.3 gives immediately the following 
“local” result: If C is a closed convex bounded subset of a separable Banach 
space X, then C has the (PC) property if and only if there exists a separable 
Banach space Y and an isometry T: X+ Y* such that T(C) is a w*-G, 
subset of Y*. 
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COROLLARY 11.1. Every Banach space X with property (PC) is 
somewhat separable dual. Moreover every non-relatively compact sequence in 
X has a dtrerence subsequence which is a boundedly complete basic 
sequence. 

Proof Follows immediately from the above theorem and Proposition (3) 
of [4]. 

Remark 11.3. Note that Corollary II.1 gives the following result proved 
by Edgar and Wheeler [8]: A Banach space with property (PC) and a 
separable dual is somewhat reflexive. 

COROLLARY 11.2. Every separable Banach space whose dual has a 
subspace with property (PC) has a separable quotient with a shrinking basic 
sequence. 

Proof Follows from Theorem II.1 and the results of Johnson and 
Rosenthal [ 151. 

COROLLARY 11.3. If X is a separable Banach space with the (PC) 
property, then there exists a compact nice G,-embedding R : X -+ 1, such that 
for any Banach space Z containing X as a closed subspace, there exists a 
compact operator R”: Z + 1, with R”] X = R. 

Proof Let Y be the separable Banach space associated to X by Lemma 
11.3. Let T be the isometry from X into Y*. Let Q be a quotient map from 1, 
onto Y, and let S be a compact, dense range operator from 1, into 1,. Note 
that R = S*Q*T is a compact nice G,-embedding from X into 1,. If now 2 
is a Banach space containing X, then by a well-known property of_l, there 
exists an operator N: Z -+ 1, such that N,, = Q*T. It follows that R = S*N 
is compact and R,, = R. 

In general, we cannot expect R to be one-to-one. Indeed we have the 
following result. 

COROLLARY 11.4. For a Banach space X, the following properties are 
equivalent: 

(a) X has property (PC) and X* is separable. 

(b) There exists a one-to-one operator R: X* * -+ 1, such that R is 
weak* to weak continuous and R,, is a nice G,-embedding. 

Note that such spaces are the ones whose unit ball is Polish for the weak 
topology [ 81. 

Proof (a) S- (b) By the results of Edgar and Wheeler [8], the ball of X is 
a weak*-G, in X* * hence if S is a dense range operator from 1, into X* 
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(which exists since X* is separable) then S*: X** -+ I, is one-to-one and S& 
is a nice G&-embedding by Lemma 11.1. 

(b) 3 (a) X has (PC) by Theorem II. 1 and since (R ,x)*: I, -+ X* has a 
dense range, X* is weakly compactly generated hence separable since X is 
[71* 

Remark 11.4. Note that Corollary II.3 combined with Theorem I.4 gives 
that a separable Banach space X G,-embeds in 1, @X/Y whenever Y is a 
subspace of X with property (PC). 

COROLLARY 11.5. If X is a Banach space with property (PC), then every 
operator from L, into X is a Dunford-Pettis operator. 

ProoJ Let T: L, + X. Let Y be the separable subspace of X generated by 
T(L,). Let R: Y + I, be a G,-embedding. By Theorem II.6 of [lo], T is a 
Dunford-Pettis operator since RT obviously is D.P. 

The following corollaries solve various questions asked in [5]. 

COROLLARY 11.6. If X is a separable Banach space with property (PC) 
but failing the (R.N.P), then there exists a nice G,-embedding of X into 1, 
which is not the composition of a finite number of semi-embeddings. 

Proof: It follows immediately from Theorem II.1 and the fact proved in 
[5] that a Banach space belonging to the smallest class 9 of spaces stable 
under semi-embeddings and containing the space 1, has the (R.N.P.). 

Examples of Banach spaces having (PC) but failing (R.N.P.) are: 

(1) The space B predual of the James-tree space JT [ 171. 
(2) The subspace BR of the Hagler space JH considered in [4]. 

The following solves affirmatively question (3) of [5]. We shall give a 
more precise result in the next section. 

COROLLARY 11.7. A separable Banach space with the Radon-Nikodym 
property G&-embeds in 1,. 

Proof: Since spaces with (R.N.P.) have the (P.C.P.), there exists a nice 
G,-embedding S i from such a space X into 1,. Consider now any one-to-one 
operator S, : 1, + 1,. It is easy to see that S,S, is a compact nice G,- 
embedding from X into 1,. 

Recall from [lo] that the class 9 (resp. F) is the smallest class of 
separable Banach spaces stable under semi-embeddings (resp. G,- 
embeddings) and containing the space L’. The following solves negatively 
questions in [5] and [lo]. 
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COROLLARY 11.8. There exists a &$-space BD and a nice G,-embedding 
S: BD-+ I, such that: 

(i) S does not fuc an inj?nite-dimensional pm-subspace of BD. 

(ii) BD belongs to the class y but not to the class 9. 

Proof It is enough to take the pm-space with the (R.N.P.) constructed 
by Bourgain and Delbaen [2]. Note that by Proposition I.5 of [5] such an S 
is another G,-embedding which is not the product of semi-embeddings. For 
(2) it is enough to notice that 1, embeds in L, , hence BD E Y. It is noted in 
[lo] that BD does not belong to .-F’. 

LEMMA 11.4. If X nicely G,-embeds in a Banach space Y having the 
(PC) property, then X has the (PC) property as well. 

Proof Let S:X+ Y be such a G,-embedding and let F be a closed 
separable bounded subset of X, then S(F) is a weak G,. Since Y has (PC), a 
result of Edgar and Wheeler [8] shows that S(F) weak is a Baire space for the 
weak topology, hence (S(F), weak) is a Baire space. It follows that SI,:,, 
has a weak to norm point of continuity Sx. 

It is clear that such an x is a point of weak to norm continuity for the set 
F. 

COROLLARY 11.9. The smallest class of Banach spaces stable under nice 
G,-embeddings and containing the space 1, is exactly the class of separable 
Banach spaces with property (PC). 

Remark 11.5. Note that the smallest class of spaces stable under F,- 
embeddings and containing the space 1, is strictly larger than the class of 
spaces which F,-embeds in I,, since it was noted in [5] that the pr-spaces 
with (R.N.P.) constructed by Johnson and Lindenstrauss [ 141 semi-embed in 
a separable dual which semi-embed in 1, while these spaces do not F,embed 
in 1, since they do not embed in separable duals. 

In [8] it is shown that the dual of the James-tree space JT has property 
(PC). It follows from the above discussion that every separable subspace of 
JT* nicely G,-embeds in 1,. However, in this case we can do better and find 
a nice G,-embedding from the whole space JT* into 1, @ l,(r) where r is 
uncountable. This answers negatively a question in [9] since JT* is a dual 
space without the (R.N.P.). Note that the range space cannot be taken 
separable and the G&-embedding cannot be weak* to weak continuous since 
in either case the space (JT)* would have the (R.N.P.) [9]. 

To construct the nice G,-embedding, recall that there exists a quotient 
map Q: JT* --f l*(r) (r uncountable) such that (JT)* * = JT@ Q*(l,(r)). 
(For details see [ 171.) Let now T: 1, + JT be a dense range operator which 
exists since JT is separable. We shall prove the folowing. 

580/61/l-7 
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PROPOSITION 11.1. The map (T*, Q): JT* + I, @ 12(T) is a nice G,- 
embedding. 

Proof Let F be a separable bounded closed subset of (JT)*. Let x be a 
point of weak to norm continuity in F. We shall show that (T*, Q) x is a 
point of weak to norm continuity for (T*, Q),:,,,,,, . Indeed, if (T*, Q) x, 
converges weakly to (T*, Q) x and x, E F, (x,) converges to x a(JT*, JT) 
since T* is weak” to weak continuous and is one-to-one, and x, + x 
o(JT*, Q*&(r))) which implies that x,--+x weakly hence x,+x strongly. 
Theorem I.3 applies to the separable closed linear space X of F since its 
range is a separable Hilbert space hence Polish for the weak topology and 
we get that (T, Q) is a nice G,-embedding. 

We do not know if an analog of Theorem I.4 holds for nice G,- 
embeddings. On the other hand, J. Bourgain showed that the three-space 
property holds for Banach spaces having a boundedly complete skipped 
blocking finite-dimensional decomposition (personal communication). In 
view of Theorem 11.1, this gives the following result which answers positively 
a question of Edgar and Wheeler [8]. 

PROPOSITION 11.2. Let X be a Banach space and let Y be a subspace of 
X such that Y and X/Y are separable and have property (PC) then X has 
property (PC). 

Remark 11.6. If Y is any separable Banach space with property (PC) but 
without the (R.N.P.), then by a result of Bourgain and Pisier [ 11, Y embeds 
in a ym-space X in such a way that X/Y has the (R.N.P.). It follows then by 
Proposition II.2 that X is a iP,-space with property (PC) but failing the 
(R.N.P.). This pathology does not exist in 5&spaces since in this case the 
two properties are equivalent [4]. 

III. SPACES WITH THE RADON-NIKODYM PROPERTY 

Let A be a non-empty bounded subset of a Banach space X. If x* E X*, 
let M(x*, A) = sup x*(A). A slice of A is a set of the form S(x, a, A) = 
{xE A;x*(x) >M(x*,A) - a} where x* E X* and a > 0. We denote by 
s(x*, a,A) the set {x EA; x*(x) > M(x*,A) -a}. We recall that X has 
(R.N.P.) if every closed bounded convex subset of X has slices of arbitrarily 
small diameter. We shall call a weak*-open half space of X** a set of the 
form H(x*, 6) = {x ** EX**;x**(x*) > S}. 

LEMMA 111.1. If X is a separable Banach space with the (R.N.P.), then 
there exists a sequence (y,,) of countable ordinals and sequences 
(K,,, ; Y,, , n E n\l }, {H,,, ; a Q Y,, , n E N ) such that: 
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(i) Each K,,, is a weak*-compact convex subset of Bx*,. 

(ii) Each H,,, is a weak*-open bar space of X** such that 

H,,“nKCV is a slice of K,,,. 

(iii) 4 = CL fL#LU (UBca %J). 
ProoJ Given E > 0, we construct by transfinite induction a decreasing 

family of norm closed convex subsets (F,) of B, in the following way: 

(i) I;,= B,. 

(ii) If a = /3 + 1 and F, # 4, use the (R.N.P.) to find a slice S, of Fs 
such that diam(S& < E. Set F, = F,\S,. It is norm closed and convex. 

(iii) If a is a limit ordinal, let F, = flbCa F,. 

Since X is separable, there is y < R (the first uncountable ordinal) such 
that F, = 4. Let K, be the weak*-closure of F,, It is a weak*-compact 
convex subset of B,., . For each slice S, r S(xD , * F&J= {xEF,;x$(x)> 
M(x% , F,) - S,}, let H, be the weak *-open half space. 

H(x,* , M(-$, Fo) - 6,) = {x **EX**;x**(x~)>M(x,f,F&-&}. 

Note that H,, n F, = L?,. 
ClearlyB,~K,UlJb.,aH4foreacha<y. 
Suppose now x** E naGy {K, U (lJo.,a H,)}. Let a,, be the first ordinal 

a0 & y such that x** & KmO. We have then x** E U4.,aeH4. That is, there is 
/?< a, with x** EK,nH,. Let now (xi) be a net in I;, with xj+x** 
weak*. For large enough j, the xi’s are also in H,, hence in FD ~7 H, = s, . 
Take now such an xj and we have 

llXj-X**II~~llXj-Xill~& hence d(x **,B,),<E. 

By taking E = l/n in the above construction, we get a sequence of 
countable ordinals (Y”), weak*-closed convex sets {K,,, ; a < yn, n E N } 
and weak*-open half spaces (H,,, ; a 4 y,, , n E N } such that B, = 

n, naGy,hn u u<anw- 
LEMMA 111.2. If X is a separable Banach space with the (R.N.P.), then 

there exists a separable Banach space Y and an isometry T: X -+ Y* such 
that T(B,) = 0, 0, where the complement of each 0, is weak*-closed and 
convex in Y*. 

Proof By Lemma III.1 applied to B,, we write B,= 0, n,(,K&J 
KJ4<a H,,,) where Km,, is weak*-compact and convex and H4,” is a weak*- 
open half space of X** of the form H(x&, a,,,). 
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Let now D be a countable norming subset of X* containing {x0*,,,; /? < y, 
and n E N }. Let Y be the separable closed subspace of X* generated by D. 
Consider the inclusion map S: Y-+X* and T = S*: X* * -+ Y*. Then T,, is 
an isometry. 

If y E Y, consider the half space in Y*, W(y, 6) = {y* E Y*; 
y*(y) > 6). Note that 

T-‘(WY, 4) = { x** E X**; TX**(Y) > S} = {x** EX**;X**(JI) > s}. 

This shows that each Hb,n is equal to T-’ W,,, where Wb,n is a weak *-open 
half space in Y. Moreover T(H,,,) = W,,, since T is onto. The same also 
holds for unions of open half spaces. That is, since we can write 

Bx= n KnuO,) m 

where K, is weak*-convex compact and 0, is a countable union of weak*- 
open half spaces of X* *, we have 

Bx=nK,V T-‘(W,,,) 
m 

where W,,, is a countable union of weak*-open half spaces in Y*. The same 
proof as in Lemma II.3 shows that 

Since T(K,) is a weak*-compact convex subset of B,, , and B,, is weak*- 
metrizable, T(K,) = n, V,,, where V,,, are weak*-open half spaces of I’*. 
Hence 

TPd = n n (L U WA. m n 

In other words 

TV%) = n Ok 
k 

where 0, is a countable union of weak*-open half spaces of Y*. Note now 
that the complements of the On’s are convex and weak*-closed. 

Now we can prove the following: 



~~~~~~~~~~~~~ IN HILBERT SPACE 91 

THEOREM 111.1. For a Banach space X, the following properties are 
equivalent: 

(a) X is separable and has the (R.N.P.). 
(b) There exists an Ha-embedding of X into 1,. 

ProoJ (a) S- (b) By Lemma 111.2, there exists a separable Banach space 
Y and an isometry T: X -+ Y* such that T(B,) = 0, 0, with the 
complements of the O,,‘s being weak *-compact and convex. Let m be the 
weak*-closure of T(B,) in Y*. Note that 

is convex and weak*-compact in Y*. 
Let now S be a dense range operator from 1, into Y then S*: Y* -+ 1, is 

one-to-one. The same proof as in Theorem II.1 s-that R = S*T is a nice 
G,-embedding. On the other hand R(B,) = S*(T(B,)), hence 

where each K, = S*(mn 0:) is convex and weakly-compact. 
(b) 3 (a) Let (0, C, ,u) be a probability space and let F: Z -+ B, be a 

vector measure with 11 F(E)11 <,u(E) for all E e Z. The vector measure 
R o F(E) is valued in I,, hence there exists a Bochner integrable function 
@: Q + R(B,) such that 

R 0 F(E) =I Q(t) dp(t) for each E E Z. 
E 

We shall prove that @ has almost all its values in R(B,). Indeed, suppose 
not and write R(B,)\R(B,) = U, K, w h ere the K,,‘s are convex and weakly 
compact. 

For each n, the sets D, = W’(K,) belong to Z, and if ,u(D,) > 0, 
F(D,MD,,) is in B,, hence R o F(D,)/,u(D,) is in R(B,) but not in K,. On 
the other hand, R 0 F(D,)/,u(D,) = (l/p(D,)) so, Q(t) dp(t) which belongs to 
K, since the latter is closed and convex. 

It follows that ,a(D,) = 0 for each n, so b(t) E R(B,) for almost all t. A 
theorem of Lusin guarantees then that R -‘# is measurable and is a Bochner 
derivative in X for F. Hence X has the (R.N.P.). 

The proof of (b) =+- a is essentially the same as the one used by Edgar ( ) 
and Wheeler [8] to show that a Banach space X has the Radon-Nikodym 
property whenever X* *\X = U, K, with each K, being w*-compact and 
convex, Note that if X* is separable then the space Y considered in Lemma 
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III.2 can be taken to be the dual of X. We get then the following converse of 
the result of Edgar and Wheeler [8]. 

COROLLARY III. 1. Let X be a separable Banach space then the following 
properties are equivalent: 

(1) X has the (R.N.P.) and X* is separable. 

(2) X**\X= u, K, where each K, is w*-compact and convex. 

Remark III. 1. The proof of Lemma III.2 gives immediately the following 
local result: If C is a closed convex bounded subset of a separable Banach 
space X, then C has the (R.N.P.) if and only if there exists a separable 
Banach space Y and an isometry T: X + Y* such that T(C) is a w*-Hs : that 
is, Y*\T(C) = U, K, where each K, is w*-compact and convex. 

Remark 111.2. Note that if D is a closed convex bounded w*-H, set in 
Y*, then the same proof as in (b) =z- (a) implies, without any assumption of 
separability on D, that every D-valued vector measure has a w*-measurable 
derivative valued almost everywhere in D. Moreover, if one considers the 
image T*(D) in 1, then it is L,-convex in the sense of Rosenthal [20] 
without being necessarily closed. The above proof gives, however, that 
bounded, Li-convex, Ha-subsets of 1, have the Radon-Nikodym property as 
defined in [20] for non-necessarily closed sets. 

IV. ~~~~~~~~~~~ IN 1, 

In this section we shall investigate the relation between G, and nice G,- 
embeddings. 

LEMMA IV.l. Let X be a Banach space such that none of its subspaces is 
isomorphic to 1,. If T is a G,-embedding from X into 1, then there exists an 
infinite-dimensional closed subspace Y of X such that T,, is a nice G,- 
embedding. 

Proof Since T is not an isomorphism on any subspace of X, it is 
standard to show the existence of a basic sequence (e,) in X such that 
lim, (( Te,)I = 0 (Lemma 1.a. 6 of [ 181). F rom which follows that T restricted 
to the closed linear span Y of (e,) is a compact G,-embedding, hence a nice 
G,-embedding. 

THEOREM IV.l. Every Banach space X that G,-embeds in 1, is 
somewhat separable dual. 

Prooj Let Y be any subspace of X. Either 1, embeds in Y or there exists 
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a subspace 2 of Y which has property (PC) by Lemma IV. 1. Hence 
Theorem II. 1 applies to give a separable dual isomorphic to a subspace of 2. 

We now show that for a large class of Banach spaces the notions of G, 
embeddings and nice G,-embeddings are equivalent. 

The key idea is the following result due to H. P. Rosenthal [ 191. We 
sketch a proof for completeness. 

PROPOSITION IV.l. Let X be a Banach space such that every closed 
convex bounded subset of X with the (PC) property has the (R.N.P.). Let S 
be a G,-embedding of X into a Banach space Y. Then an operator Tfrom L, 
into X is representable tf and only tf ST is representable. 

Proof Suppose T is a non-representable operator from L, into X such 
that ST is representable. Then there exists a closed convex subset A of the 
unit ball of L I such that T(A) fails the (R.N.P.) while, ST(A) is relatively 
norm compact. This implies that S,,, is a nice G,-embedding and that 
T(A) has the (PC) property hence the (R.N.P.), which is a contradiction. 

Recently J. Diestel proved that subspaces of weakly sequentially complete 
Banach lattices verify the hypothesis of the above proposition. The case of 
L 1 was observed by Bourgain and Rosenthal [3]. In [ 121, we give proofs of 
these results using the methods introduced in this paper. 

COROLLARY IV.1 (a) If X is a subspace of a weakly sequentially 
complete Banach lattice, and X G,-embeds in I,, then X has the 
Radon-Nikodym property, hence it Ha-embeds in 1,. 

(b) If X is a Banach lattice that G,-embeds in I,, then X is isometric 
to a dual and separable Banach lattice, hence it I;,-embeds in I,. 

Proof It follows immediately from the above discussion and the recent 
result of Talagrand stating that separable Banach lattices with the (R.N.P.) 
are dual Banach lattices [21]. 

Remark IV-l. The above discussion shows, for instance, that the 
subspaces of L, with the strong-Schur property constructed by Bourgain and 
Rosenthal [3] do not G,-embed in I,. Moreover this shows that the Banach 
lattice MT constructed by Talagrand [22] does not G,-embed in I, even 
though every operator from L, into MT is a Dunford-Pettis operator. Note 
that in view of the results in [lo], this property is a necessary condition for a 
space that GA-embeds in 1,. 

The following example shows, however, that the two notions are not 
equivalent: 

EXAMPLE IV.1. There exists a Banach space B, which G,-embeds in 1, 
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but fails property (PC) hence no operator from B, to 1, is a nice G,- 
embedding. 

Proof We assume the reader is familiar with the construction of the 
James-tree space JT and its predual B as analyzed in Lindenstrauss and 
Stegall [ 171. In [ 1 l] we showed that the space B nicely G,-embeds in I,. 
This was mostly due to the fact that in such a space one considers a tree 
with finitely many branching points: that is, a tree T, so that for each t E T,, 
the set of immediate successors oft in T, is finite, its cardinality may depend 
on t but it is always larger or equal to 2. To construct our counterexample, 
we shall use a tree T,,, with infinitely many branching points. 

For that consider the tree T,=UFX,Nk. If t=(n1,n2,...,n,)E T,, set 
Itl=k and forj<k set tlj=(n,,n,,..., nj). Define the partial order on T, 
by s<t if Isl<ltl and s=tJ IsI. For each element (~,)EN~, we associate 
the branch y = (4, (n,), (n, , nz) ,..., (n, , n2 ,..., n,J ,... } c T,. Set yl k = 
(n, , nl,..., n,J E T,. 

Define now on the space of real valued, finitely supported functions on T, 
the norm 

II4l = sup ($ ( 2, xJ 2, 1’2T 
1 

the supremum being taken over all families (S,, S2,..., S,) of disjoint 
segments in T, . Let JT, be the completion of such a space. Let (e&r, be 
the canonical basis; let (ef),,rm be the biorthogonal functionals. Denote by 
B, the closed subspace of JTZ generated by the family (e:),,rm. 

We shall say that A c T, is full if S nA is a segment of T, for each 
segment S of T,. Note that if lT, denotes the natural projection on [e,],,, , 
then I]flAI] = 1. 

Moreover, for each t E T, , we shall set A, = {s E T, ; s > t} and 
n, = nA,. Note that A, is then full and [In,]/ = 1. 

Let now L, = {t E T,; (tl= k} and nk= CtELknl, we get that I]r;rkl] = 1 
and IIC rGL,~I]12 = ClELk](x11]2 for each family (xt)lELk in JT, such that 
n,x, = xt for each t EL,. By duality we get that IJCtEL,xF ]I2 = CIELI /lx: [I2 
whenever II* xl* = xp V t E L 

We shall prove the followikg: 

THEOREM IV.2. B, = {x* E JT$ ; lim, inf ](fl,“kx* II = O}. 

For that we need the following lemma. 

LEMMA IV.2. For every x* in JT& and every E ? 0, there exists a full 
subtree T, c T, with a finite number of branching points such that 
11x* - n,*,x* 11 < E. 
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proof. Let WtsT, be a family of positive real numbers such that 
c tET,~t<e. Let tET, and S,= {s~T,;s>t and Is]=ltl+ 1). We 
have : 

Let Si be a finite subset of S, such that 

The construction of T, is now clear: for each t, we keep only its 
successors which are in S: and we use the same procedure again on each 
element of S: . Note that the total of the terms eliminated in x* will have a 
norm less than C,,,, E, < E. The details are left to the interested reader. 

Before proving the theorem we shall denote by JT the James-tree space 
modelled on the tree T whenever T has a finite number of branching points. 
Note that the usual James-tree space is modelled on the diadic tree but that 
all the estimates proved in [ 141 extend trivially to the non-diadic case, and 
we shall use them freely in the following. 

Proof of Theorem IV.2. Let x* E (JT,)” such that d(x*, B,) = 6 > 0. 
We may find a tree T, with a finite number of branching points such that 
1(x* -JT?,x*]] < 6/2. We may consider xl* =JTT,x* as an element of JT:. 
Note that d(xf , B,) > 6/2 where B, = [e: ; t E T,]. By applying the results 
of Stegall and Lindenstrauss [ 171 to the space JT, , we can find a branch y in 
T, (which is also a branch in T,) such that lim, xT(ey,k) = lim, x*(eylk) # 0. 
It follows that B, = {x* E JTZ ; lim, infI]JZfkx* I] = 0). 

COROLLARY IV.2. Let U be the operator from 12(Too) into JT, defined 
by Ue,=2-“‘e, for all tE T,. Then the restriction of U* to B, is a 
G,-embedding into E,(T,). 

ProoJ: Note that U has a dense range, hence U* is one-to-one. Moreover 
the ranges of lTL, and J7$ are isometric to 12. We shall use the same 
notations for the corresponding projections in I,(T,). Note now that 
G, = { y E U*(Ball(JTz)); ]]D,* y(( 2 2-k/n, k > n} is norm closed and 
U*(Ball(JT&))\U*(Ball(B,)) = lJ, G,. Moreover, we get from Lemma II. 1 
that for any closed subset F of Ball(B,), we have 

Ball(JT$,)\F = [Ball(JTg)\Ball(B,)] U tJ n K, 

where the K,‘s are weak*-compact in JT&. It follows that 
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U*(Ball(JZ’z))\U*(F) = (U, G,)U (U, T*(K,)) is an F, since U* is 
weak* to weak continuous on JT&. 

PROPOSITION IV.2. B, fails the (PC) property hence no operator from 
B, into 1, is a nice G,-embedding. 

Proo$ Note that for each t E T,, weak limitSCSte,* = 0 since (et),,,C is 
isometric to the unit vector basis of I,. It follows that the set 
A = {e&teX,t ..a te&; k E N, t E T, and 1 tl > k} is weakly dense in 
itself, is contained in Ball(B,) and doesn’t have any point of weak to norm 
continuity. 

Note added in proof. The sequence of compact sets (K,) that appears in the proofs of 
Lemmas II.3 and III.2 is not necessarily decreasing hence the statement that T(n, K,) = 
n,,, T(K,) is not correct. However, by using the notations of Lemmas II.2 and 111.1, we get 
that for each E > 0, the sequence (K,,,), is decreasing hence 

Since now B, c n,,, W,,,U (UDco v,.,)) c Bx + &Bx- and since T is a contraction we get 
the results claimed in Lemmas II.3 and 111.2. 
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