JOURNAL OF FUNCTIONAL ANALYSIS 61, 72-97 (1985)

G_{δ} Embeddings in Hilbert Space*

N. GHOUSSOUB

Department of Mathematics, The University of British Columbia, British Columbia, Canada

AND

B. MAUREY

Université de Paris VII, Paris, France Communicated by the Editors Received November 25, 1983; revised May 14, 1984

It is shown that a separable Banach space X has the point of weak to norm continuity property (resp. the Radon-Nikodym property) if and only if there exists a compact G_{δ} -embedding (resp. an H_{δ} -embedding) from X into l_2 . This solves several questions of J. Bourgain and H. P. Rosenthal (J. Funct. Anal. 52 (1983)). It is also shown that every non-relatively compact sequence in a Banach space with property (PC) has a difference subsequence which is a boundedly complete basic sequence. This solves a question of Pelczynski and extends some results of W. B. Johnson and H. P. Rosenthal (Studia Math. 43 (1972), 77-92). Various related questions asked in the above Bourgain-Rosenthal reference and by G. A. Edgar and R. F. Wheeler (Pac. J. Math. 115 (1984)) and N. Ghoussoub and H. P. Rosenthal (Math. Ann. 264 (1983), 321-332) are also settled. © 1985 Academic Press, Inc.

INTRODUCTION

Let X and Y be two Banach spaces and let $S: X \to Y$ be a one-to-one bounded linear operator. S is said to be:

(i) A semi-embedding if the image of the unit ball of X by S is norm closed in Y.

(ii) An F_{σ} -embedding (resp. a nice F_{σ} -embedding) if the image of every norm open set in X by S is a norm F_{σ} (resp. a weak F_{σ}) in Y.

(iii) A G_{δ} -embedding (resp. a nice G_{δ} -embedding) if the image of

0022-1236/85 \$3.00 Copyright © 1985 by Academic Press, Inc. All rights of reproduction in any form reserved.

^{*} This work was completed while the second author was visiting the University of British Columbia.

every norm closed bounded and separable subset of X by S is a norm G_{δ} (resp. a weak G_{δ}).

(iv) An H_{δ} -embedding if for every norm closed convex bounded and separable subset C of X, we have that $\overline{S(C)} \setminus S(C)$ is a countable union of closed convex bounded sets.

It is easy to see that if X is separable, then a semi-embedding is a nice F_{σ} -embedding which in turn is a nice G_{δ} -embedding. Moreover, if S is an F_{σ} -embedding then there exists an equivalent norm on X which makes S a semi-embedding (Proposition 1.6 of [5]). This result, which is due to Saint-Raymond, immediately implies the following:

PROPOSITION. If X is separable then any F_{σ} -embedding is a nice F_{σ} -embedding and an H_{δ} -embedding.

However, we shall see in this paper that the two notions of G_{δ} -embeddings are essentially different since we construct a Banach space X and a G_{δ} -embedding from X into l_2 such that no operator from X into l_2 is a nice G_{δ} -embedding (Example IV.1).

The first section is devoted to the proof of a topological characterization for G_{δ} -embeddings. It may be omitted on a first reading as it is independent of the rest of the paper. In it we show that a one-to-one operator $S: X \to Y$ is a G_{δ} -embedding if and only if the image of any δ -separated sequence in Xhas an isolated point in Y. This shows that S is a G_{δ} -embedding whenever for every separable closed bounded non-empty subset K of X, $S_{|S(K)|}^{-1}$ has a point of continuity. This answers a question in [5] where the statement is proved under the additional assumption that the image of the unit ball of Xis a G_{δ} .

Recall that a Banach space X is said to have:

(i) The point of continuity property (PC) if every weakly closed bounded subset of X contains a point of weak to norm continuity.

(ii) The Radon-Nikodym property (R.N.P.) if every weakly closed bounded subset of X contains a denting point.

In Section II we show that the Banach spaces which nicely G_{δ} -embed in l_2 are exactly those separable Banach spaces with property (PC). This settles at once questions (1), (2) and (3) of Bourgain and Rosenthal [5]. Indeed.

(1) Every G_{δ} -embedding into l_2 of a space with (PC) but failing (R.N.P.) cannot be the composition of a finite number of semi-embeddings since these operators preserve the (R.N.P.).

(2) Every Banach space with property (PC) but failing the (R.N.P.) is a counterexample to question (2) since they G_{δ} -embed in spaces with the (R.N.P.) while failing to have such a property.

GHOUSSOUB AND MAUREY

(3) Since spaces with (R.N.P.) have property (PC), they nicely G_{δ} -embed in l_1 .

A counterexample to questions (1) and (2) is for example, the predual B of the James-tree space and was given in [11]. The \mathscr{L}_{∞} -space with (R.N.P.) constructed by Bourgain and Delbaen [2] is also shown to be a counterexample to questions in [5] and [10].

Following Bourgain and Rosenthal [4] we shall say that a Banach space X has a boundedly complete skipped blocking finite-dimensional decomposition provided there exists a sequence (G_i) of finite-dimensional subspaces of X such that the following conditions are satisfied:

(a)
$$X = [G_i]_{i=1}^{\infty}.$$

(b) $G_i \cap [G_i]_{i \neq i} = \{0\}$ for every *i*.

(c) If (m_k) and (n_k) are sequences of positive integers so that $m_k < n_k + 1 < m_{k+1}$ and (x_k) is a sequence such that x_k belong to the finitedimensional subspace $G[m_k, n_k]$ generated by $\{G_i; m_k \le i \le n_k\}$ then the series $\sum_k x_k$ converges whenever its partial sums are bounded.

We also show in Section II that separable Banach spaces with (PC) are exactly the ones with a boundedly complete skipped blocking finitedimensional decomposition, from which follows that every non-relatively compact sequence in such a space has a difference subsequence which is a boundedly complete basis. This answers positively a question of Pelczynski [7] (see also Bourgain and Rosenthal [4]).

In Section III, we give a more precise characterization for spaces with the (R.N.P.) in terms of G_{δ} -embeddings in l_2 . We show that a separable Banach space X has the (R.N.P.) if and only if there exists an H_{δ} -embedding of X into l_2 . Note that from the results of Bourgain and Rosenthal [5], a space X is isomorphic to a separable dual if and only if there is an F_{σ} -embedding from X into l_2 .

Finally, in Section IV we show that every Banach space which G_{δ} -embeds in l_2 has an infinite-dimensional subspace which nicely G_{δ} -embeds in l_2 which in turn has an infinite-dimensional subspace which F_{σ} -embeds in l_2 . In particular every space that G_{δ} -embeds in l_2 is also somewhat separable dual.

Several of the concepts of this paper were motivated by those of a recent joint work of G. A. Edgar and R. F. Wheeler. We refer the interested reader to their fundamental paper [8].

For unexplained notions and notations we refer to the books of Diestel and Uhl [7] and Lindenstrauss and Tzafriri [18].

G_{δ} -embeddings in Hilbert space

I. A TOPOLOGICAL CHARACTERIZATION OF G_{δ} -Embeddings

In [5], Bourgain and Rosenthal prove that a one-to-one operator $T: X \to Y$ is a G_{δ} -embedding if $T(B_X)$ is a G_{δ} and if for every closed bounded nonempty subset K of X, T_{1TK}^{-1} has a point of continuity. They ask whether the assumption that $T(B_X)$ is a G_{δ} can be omitted. This section is devoted to give a positive answer to this question.

We shall say that a sequence (x_n) in a metric space (X, d) is δ -separated if $d(x_m, x_n) \ge \delta > 0$ whenever $m \ne n$.

THEOREM I.1. Let X and Z be two Polish spaces and let f be a continuous function which maps every δ -separated sequence in X into a sequence which is not dense in itself in Z, for every $\delta > 0$. Then f(X) is a G_{δ} in Z.

First some notations. We set $Y = f(X) \subseteq Z$ and say that a subset $A \subseteq Z$ is *Y*-dense if A is non-empty and $Y \cap A$ is dense in A. We say that $S \subseteq X$ is ε -small if S is contained in a finite union of closed balls of radius ε in X. Note that if S is ε -small, so is \overline{S} .

If $A \subset Z$ is Y-dense, we define a function k_A on A by $k_A(a) = \inf\{\varepsilon > 0; \exists V \text{ neighborhood of a with } f^{-1}(V \cap A) \varepsilon$ -small}.

It is clear that $B = \{k_A < \varepsilon\}$ is an open subset of A for every $\varepsilon > 0$. In other words k_A is upper-semi-continuous on A. Note also that if B is non-empty, B is then Y-dense and $k_B = k_A$ on B.

For the proof of Theorem I.1, we shall need the following four lemmas.

LEMMA I.1. Under the above assumptions. If A is a Y-dense subset of Z, then the set $\{k_A < \epsilon\}$ is non-empty for every $\epsilon > 0$.

Proof. Suppose not. We have then $k_A \ge \varepsilon$ on A. We shall construct an $\varepsilon/2$ -separated sequence (x_n) in S, such that $\{f(x_n)\} \subseteq A$ and is dense in itself, which is obviously a contradiction to the assumption.

Suppose $x_1, x_2, ..., x_n$ constructed with $a_i = f(x_i) \in A$, i = 1, ..., n, and $d(x_i, x_j) > \varepsilon/2$ whenever $1 \le i < j \le n$. Let $V = B(a_1, 2^{-n})$. Since $k_A(a_1) \ge \varepsilon$, $f^{-1}(V \cap A)$ is not $\varepsilon/2$ -small, thus not contained in $\bigcup_{i=1}^n B(x_i, \varepsilon/2)$. Let $x_{n+1} \in f^{-1}(V \cap A) \setminus \bigcup_{i=1}^n B(x_i, \varepsilon/2)$. We can proceed the same way for $x_2, ..., x_n$, thus finding $x_{n+1}, ..., x_{2n}$ with $a_i = f(x_i) \in A$, i = 1, 2, ..., 2n, $d(x_i, x_j) > \varepsilon/2$ if $1 \le i < j \le 2n$ and $d(a_i, a_{n+i}) < 2^{-n}$ for i = 1, ..., n.

By repeating this procedure we clearly obtain an $\varepsilon/2$ -separated sequence whose image is dense in itself.

Remark I.1. If Y is dense in Z, then Y contains a G_{δ} -dense in Z. Indeed suppose $Z = \overline{Y}$, then $k = k_{Z}$ is upper-semi-continuous. Moreover the set

 $\{k < 1/n\}$ is dense for every *n*, for otherwise we have an open set $\omega \subset Z$ with $k \ge 1/n$ on ω , thus $k_{\omega} = k \ge 1/n$ on ω , contradicting Lemma I.1. It follows that $\{k=0\}$ is a dense G_{δ} in Z. If k(z)=0, one can find a decreasing sequence (V_n) of neighborhood of z such that diam $(\overline{V}_n) \leq 2^{-n}$ and $f^{-1}(\bar{V}_n) 2^{-n}$ -small. Then $K = \bigcap_n f^{-1}(\bar{V}_n) = f^{-1}(\bigcap_n \bar{V}_n) = f^{-1}(\{z\})$ shows that $z \in Y$. Furthermore, for every sequence (x_m) in X with $f(x_m) \to z$, we have $d(x_m, K) \rightarrow 0$. Note that $\{x_m\}$ is precompact: given n, all x_m 's but finitely many belong to V_n , thus $\{x_m\} \subseteq f^{-1}(\overline{V}_n)$ except for a finite set, and f^{-1} (\overline{V}_n) is 2^{-n} -small. If $x_{m_k} \to x$, $f(x_{m_k}) \to z$ so f(x) = z and $x \in K$. It follows that the set $\{k = 0\}$ is a dense G_{δ} in Z consisting of the points of continuity of $f^{-1}|f(X)$.

We will call a Y-dense subset A of Z ε -moderate ($\varepsilon > 0$) if $k_A < \varepsilon$ on A. If B is Y-dense, $A = \{k_B < \varepsilon\}$ is non-empty by Lemma I.1, open in B, therefore A is Y-dense and $k_A = k_B$ on A which shows that A is ε -moderate.

LEMMA I.2. Let A be a Y-dense subset of Z and $\varepsilon > 0$ given. There exists then a transfinite family (A_{α}) of subsets of A such that for every $\alpha < \Omega$ the following property (H_{o}) holds.

- (H_α) (a) For every β ≤ α, A_β is open in F_β = Y ∩ A \∪_{γ<β} A_γ (where the closure is taken relative to A), and A_β is ε-moderate.
 (b) The sets (A_β)_{β≤α} are disjoint and for every β ≤ α, ∪_{γ<β} A_γ is G_δ in A.
 (c) If F_β ≠ φ, then A_β is non-empty, for every β ≤ α.

Proof. Suppose the family has been constructed for every $\beta < \alpha$ with the property H_{β} .

If $Y \cap A \subseteq \bigcup_{\beta < \alpha} A_{\beta}$, then $F_{\alpha} = \overline{Y \cap A \setminus \bigcup_{\beta < \alpha} A_{\beta}}$ is empty and we set $A_{\alpha} = \phi.$

Otherwise F_{α} is Y-dense and $A_{\alpha} = \{k_{F_{\alpha}} < \varepsilon\}$ is open in F_{α} and is ε moderate.

We must show that $A_{\beta} \cap A_{\alpha} = \phi$ when $\beta < \alpha$. Actually $A_{\beta} \cap F_{\alpha} = \phi$; because A_{β} is open in $F_{\beta}, A_{\beta} \cap F_{\alpha}$ is open in $F_{\alpha} \subset F_{\beta}$, so $A_{\beta} \cap F_{\alpha} \neq \phi \Rightarrow A_{\beta} \cap F_{\alpha}$ meets $Y \cap A \setminus \bigcup_{\gamma \leq \alpha} A_{\gamma}$, which is absurd.

It remains to show that $\bigcup_{\beta < \alpha} A_{\beta}$ is G_{δ} . To this end consider

$$B = \bigcap_{\beta < \alpha} \left\{ \left(\bigcup_{\gamma < \beta} A_{\gamma} \right) \cup F_{\beta} \right\}.$$

Since $A_{\gamma} \subset F_{\gamma} \subset F_{\beta}$ for $\beta < \gamma < \alpha$,

$$B_{\beta} = \left(\bigcup_{\gamma < \beta} A_{\gamma}\right) \cup F_{\beta} \supset A' = \bigcup_{\gamma < \alpha} A_{\gamma}.$$

From $H_{\beta}(b)$, we have that B_{β} and hence B is G_{δ} in A. We have $B \supset A'$, and if $z \in B \setminus A'$, $z \in F = \bigcap_{\beta < \alpha} F_{\beta'}$ which is disjoint from A', thus

$$A' = B \setminus F$$
 is G_{δ} in A .

Also note that each A_{α} is relatively open in A, thus $F_{\sigma} - G_{\delta}$ in A, and $\bigcup_{\beta < \alpha} A_{\beta}$ is $F_{\sigma} - G_{\delta}$ in A for every α .

LEMMA I.3. Let A be an $F_{\sigma} - G_{\delta}$ Y-dense subset of Z and $\varepsilon > 0$. There exists then a sequence (A_n) of subsets of A such that

- (a) the A_n 's are disjoint $F_{\sigma} G_{\delta}$ ε -moderate subsets of Z;
- (b) $A' = \bigcup_n A_n$ is $F_{\sigma} G_{\delta}$ in Z and contains $Y \cap A$.

Proof. Since A is metrizable and separable the decreasing family F_{α} of closed subsets of A must be stationary at some countable ordinal but clearly $F_{\alpha+1} = F_{\alpha} \Rightarrow F_{\alpha} = \phi$ from our construction.

If $F_{\alpha} = \phi$ we have $Y \cap A \subseteq \bigcup_{\beta < \alpha} A_{\beta'}$ which proves Lemma I.3.

LEMMA I.4. There exists a double sequence $(A_{k,n})$ of subsets of Z such that:

(1) For every fixed k, the $A_{k,n}$'s are disjoint $F_{\sigma} - G_{\delta} 2^{-k}$ -moderate subsets of Z, and $A_{k} = \bigcup_{n} A_{k,n}$ is an $F_{\sigma} - G_{\delta}$ containing Y.

(2) For every k and n, $A_{k+1,n}$ is a subset of some $A_{k,l}$.

Proof. We start with $A = \overline{Y}$ and apply Lemma I.3 with $\varepsilon = 1/2$ to get $(A_{1,n})$ satisfying (1) for k = 1.

Apply again Lemma I.3 to each $A_{1,n}$ with $\varepsilon = 1/4$ to produce a family $(A_{2,n,m})_m$ with the properties.(a) and (b) of Lemma I.3.

Set $A'_{2,n} = \bigcup_m A_{2,n,m} \supseteq Y \cap A_{1,n}$.

Consider the family $(A_{2,n,m})_{n,m}$ and $A_2 = \bigcup_{n,m} A_{2,n,m} = \bigcup_n A'_{2,n}$. We have $A_2 \supseteq \bigcup_n (Y \cap A_{1,n}) \supseteq Y \cap A_1 = Y$.

Everything is clear in (1) and (2) for the family $(A_{2,n,m})$ except that A_2 is a G_{δ} .

But $\bigcup_{m>n} A_{1,m}$ is G_{δ} since A_1 is G_{δ} and each $A_{1,j}$ is $F_{\sigma'}$ thus

$$C_n = \left(\bigcup_{j=1}^n A'_{2,j}\right) \cup \left(\bigcup_{m>n} A_{1,m}\right) \text{ is } G_{\delta},$$

and

$$\bigcap_n C_n = \bigcup_n A'_{2,n} = A_2 \text{ is } G_{\delta}.$$

The family $A_{2,n}$ in Lemma I.4 is just the family $(A_{2,n,m})$ after some reindexing. The step from k to k + 1 is identical to what we just made.

Proof of Theorem I.1. Let (A_k) be as in Lemma I.4. We claim that $Y = \bigcap_k A_k$ thus proving that Y = f(X) is a G_δ subset of Z. Indeed, we have $Y \subseteq \bigcap_k A_k$ by Lemma I.4. If now $z \in \bigcap_k A_k$, there exists by (2) in Lemma I.4 a sequence $A_{1,n_1} \supseteq A_{2,n_2} \supseteq \cdots \supseteq A_{k,n_k} \supseteq \cdots$ of sets containing z, with $B_k = A_{k,n_k}$ being 2^{-k} -moderate.

Using the definition of moderation, it is possible to find a decreasing sequence (V_k) of neighborhoods of z, with $\operatorname{diam}(\overline{V}_k) \leq 2^{-k}$ and $f^{-1}(V_k \cap B_k) 2^{-k}$ -small and non-empty for every k.

It follows that

$$\bigcap_{k} \overline{f^{-1}(V_k \cap B_k)} = K \text{ is non-empty (and compact)}.$$

If now $x \in K$, $f(x) \in \bigcap_k \overline{V}_k = \{z\}$, showing that $z \in Y$.

Remark. If one assumes that f(X) is co-analytic (in particular Borel) in Y, then Theorem I.1 would follow easily from a celebrated result of Hurewicz [13].

THEOREM I.2. Let X and Z be two Banach spaces and let $T: X \rightarrow Z$ be a one-to-one operator. Then the following assertions are equivalent:

(1) T is a G_{δ} -embedding.

(2) For every closed bounded separable subset K of X, $T_{|T(K)|}^{-1}$ has a point of continuity.

(3) For every $\delta > 0$ and every δ -separated sequence $\{x_n\}$ in B_x , the sequence $\{Tx_n\}$ is not dense in itself.

Proof. Note first that we can suppose X and Z separable since we can restrict ourselves to the separable subspaces generated by the separable subsets involved in the discussion. $(1) \Rightarrow (2)$ is clear. For $(2) \Rightarrow (3)$ take any point of continuity of T^{-1} on T(D) whenever D is a δ -separated countable subset of B_X . It is clearly an isolated point of T(D). For $(3) \Rightarrow (1)$ it is enough to apply Theorem I.1 to each closed bounded separable subset of X.

THEOREM I.3. Let X and Z be two Banach spaces such that the ball of Z equipped with the weak topology is a Polish space. Let $T: X \rightarrow Z$ be a one-to-one operator. The following assertions are then equivalent.

(1) T is a nice G_{δ} -embedding.

(2) For every closed bounded separable subset K of X, $T_{|T(K)|}^{-1}$ has a point of weak to norm continuity.

(3) For every $\delta > 0$ and every δ -separated sequence (x_n) in B_X the sequence $\{Tx_n\}$ is not weakly dense in itself.

Remark. Note that (1) implies (2) under the weaker assumption that every weakly closed bounded subset of Z is a Baire space for the weak topology. In view of a result of Edgar and Wheeler [8] this is verified whenever Z has the (PC) property.

We now give an application of Theorem I.2 to a three-space type problem.

THEOREM I.4. Given a separable Banach space X and a subspace Y of X, let $Q: X \to X/Y$ be the quotient map. Let T be an operator from X into a Banach space Z such that the restriction of T to Y is a G_{δ} -embedding, then the operator $(T, Q): X \to Z \oplus X/Y$ is a G_{δ} -embedding.

Proof. Suppose (x_n) is a bounded sequence in X that is δ -separated for some $\delta > 0$ and such that $\{(Tx_n, Qx_n)\}_n$ is dense in itself in $Z \oplus X/Y$. We may assume without loss of generality that $x_0 = 0$. Consider $M = \{m \in M; \|Qx_m\| < \delta/10\}$. The sequence $\{(Tx_m, Qx_m); m \in M\}$ is again dense in itself. Let now R be a continuous lifting from X/Y into X such that $\|RQx_m\| \le \delta/4$ for each $m \in M$. Note that the sequence $y_m = x_m - RQx_m$ is $\delta/2$ -separated and is contained in Y. Given now m_0 in M, there exists a sequence (m_k) such that $(Tx_{m_k}, Qx_{m_k}) \to (Tx_{m_0}, Q_{m_0})$ when $k \to \infty$. Hence $RQx_{m_k} \to RQx_{m_0}$ and $Ty_{m_k} = T(x_{m_k} - RQx_{m_k}) \to T(x_{m_0} - RQx_{m_0}) = Ty_{m_0}$ which shows that $(Ty_m)_m$ is dense in itself hence contradicting the assumption on T_{1Y} .

II. SPACES WITH THE POINT OF CONTINUITY PROPERTY

Recall first that a Banach space X has property (PC) iff for every $\varepsilon > 0$ and every bounded non-empty subset F of X, there exists a weakly open set $V \subset X$ such that $V \cap F \neq \phi$ and diam $(V \cap F) \leq \varepsilon$.

The following lemma reduces most of the problems considered here to the study of the unit ball.

LEMMA II.1. Let X be a separable subspace of a dual space Y^* , then for every norm closed subset F of B_X , we have

$$B_{Y^*} \setminus F = (B_{Y^*} \setminus B_X) \cup \bigcup_n K_n$$

where the K_n 's are weak*-compact convex subsets of Y^* .

Proof. For each x in X, denote by r(x) the distance d(x, F) of x to F, and let $D_X(x, r(x)) = \{y \in X; \|y\| \le 1 \text{ and } \|y - x\| < r(x)/2\}$. These are open

balls in the polish space $(B_X, || ||)$. Since, $B_X \setminus F = \bigcup_{x \in B_X \setminus F} D_X(x, r(x))$, there exists a countable subfamily (x_n) such that $B_X \setminus F = \bigcup_n D(x_n, r(x_n))$.

Let now $\overline{D}_{Y^*}(x, r(x)) = \{y \in Y^*; \|y\| \le 1 \text{ and } \|y - x\| \le r(x)/2\}$. Note that each $\overline{D}_{Y^*}(x, r(x))$ is weak*-compact and convex in Y*. We claim that $F \cap \bigcup_n \overline{D}_{Y^*}(x_n, r(x_n)) = \phi$. Indeed, if not there will be y in F and an x_n in $B_X \setminus F$ such that $\|y - x_n\| \le r(x_n)/2 = \frac{1}{2}d(x_n, F)$, which is absurd. Finally, we get $B_{Y^*} \setminus F = (B_{Y^*} \setminus B_X) \cup \bigcup_n \overline{D}_{Y^*}(x_n, r(x_n))$.

The following is a version of a result of Edgar and Wheeler [8] that is crucial to what follows. We include a proof for completeness. Recall first that an elementary w^* -open neighborhood of x is a set of the form $V(x, G, \alpha) = \{x^{**} \in X^{**}; \sup_{x^* \in G} | (x^{**} - x)(x^*)| < \alpha\}$ where $\alpha > 0$ and G is a finite subset of X^* .

LEMMA II.2. If X is a separable Banach space with property (PC), then for every bounded closed subset F of X, there exists a sequence (γ_n) of countable ordinals, sequences $\{K_{\alpha,n}; \alpha \leq \gamma_n, n \in \mathbb{N}\}$ of weak*-compact sets in X** and sequences $\{V_{\alpha,n}; \alpha \leq \gamma_n, n \in \mathbb{N}\}$ of elementary weak*-open sets such that

$$F = \bigcap_{n} \bigcap_{\alpha \leqslant \gamma_n} \left(K_{\alpha,n} \cup \bigcup_{\beta < \alpha} V_{\beta,n} \right).$$

Proof. Given $\varepsilon > 0$, we construct by transfinite induction a decreasing family of norm closed subsets (F_{α}) of F in the following way:

(i) $F_0 = F$.

(ii) If $\alpha = \beta + 1$ and $F_{\beta} \neq \phi$, use property (PC) to find an elementary w^* -open set V_{β} such that $V_{\beta} \cap F_{\beta} \neq \phi$ and diam $(F_{\beta} \cap V_{\beta}) < \varepsilon$. Set $F_{\alpha} = F_{\beta} \setminus V_{\beta}$.

(iii) If α is a limit ordinal, let $F_{\alpha} = \bigcap_{\beta < \alpha} F_{\beta}$.

Since X is separable, there is $\gamma < \Omega$ (the first uncountable ordinal) such that $F_{\gamma} = \phi$. Let now K_{α} equal the weak *-closure of F_{α} in X**.

Note that $F \subseteq K_{\alpha} \cup (\bigcup_{\beta < \alpha} V_{\beta})$ for each $\alpha \leq \gamma$. On the other hand suppose $x^{**} \in \bigcap_{\alpha < \gamma} (K_{\alpha} \cup (\bigcup_{\beta < \alpha} V_{\beta}))$ and let α_0 be the first ordinal $\alpha_0 \leq \gamma$ such that $x^{**} \notin K_{\alpha_0}$. We have then $x^{**} \in \bigcup_{\beta < \alpha_0} V_{\beta}$. That is there is $\beta < \alpha_0$ with $x^{**} \in K_{\beta} \cap V_{\beta}$. Let now a net (x_j) in F_{β} with $x_j \to x^{**}$ weak*. For large enough *j*, the x_j 's are also in V_{β} . Take now such an x_j in V_{β} and we have

$$||x_j - x^{**}|| \leq \lim_{i} ||x_j - x_i|| \leq \varepsilon$$
 hence $d(x^{**}, F) \leq \varepsilon$.

By taking $\varepsilon = 1/n$ in the above construction, we get a sequence of coun-

table ordinals (γ_n) , weak*-compact sets $\{K_{\alpha,n}; \alpha \leq \gamma_n, n \in \mathbb{N}\}$ and elementary weak*-open sets $\{V_{\alpha,n}; \alpha \leq \gamma_n, n \in \mathbb{N}\}$ such that

$$F = \bigcap_{n} \bigcap_{\alpha \leq \gamma_n} \left(K_{\alpha,n} \cup \bigcup_{\beta < \alpha} V_{\beta,n} \right).$$

LEMMA II.3. If X is a separable Banach space with property (PC), then there exists a separable Banach space Y and an isometry $T: X \to Y^*$ such that $T(B_X)$ is a weak^{*} - G_{δ} in B_{Y^*} .

Proof. By Lemma II.2 applied to $B_{\chi'}$ we write

$$B_{\chi} = \bigcap_{n} \bigcap_{\alpha \leqslant \gamma_{n}} \left(K_{\alpha,n} \cup \left(\bigcup_{\beta < \alpha} V_{\beta,n} \right) \right)$$

where $K_{\alpha,n}$ is weak*-compact and $V_{\beta,n}$ is an elementary weak*-open set of the form $V(x_{\beta,n}, G_{\beta,n}, \varepsilon_{\beta,n})$ where $\varepsilon_{\beta,n} > 0$, $x_{\beta,n} \in X$ and $G_{\beta,n}$ is a finite subset in X*. Let now D be a countable norming subset of X* containing $G_{\beta,n}$ for each $n \in \mathbb{N}$ and $\beta < \gamma_n$ and let Y be the separable closed subspace of X* generated by D.

Consider the inclusion map $S: Y \to X^*$ and $T = S^*: X^{**} \to Y^*$. Then $T_{|X}$ is an isometry. If $x \in X$, $\alpha > 0$ and G is a finite subset of Y, consider $W(Tx, G, \alpha) = \{y^* \in Y^*; \sup_{y \in G} | (y^* - Tx)(y)| < \alpha\}$. It is a weak*-open subset of Y. Note that

$$T^{-1}(W(Tx, G, \alpha)) = \begin{cases} x^{**} \in X^{**}; \sup_{y \in G} |T(x^{**} - x)(y)| < \alpha \end{cases}$$
$$= \begin{cases} x^{**} \in X^{**}; \sup_{y \in G} |(x^{**} - x)(y)| < \alpha \end{cases}.$$

This shows that each $V_{\alpha,n}$ is equal to $T^{-1}(W_{\alpha,n})$ where $W_{\alpha,n}$ is a weak*open subset of Y*, and $T(V_{\alpha,n}) = W_{\alpha,n}$ since T is onto. The same also holds for unions of elementary weak*-open sets. That is, since we can write

 $B_X = \bigcap_m (K_m \cup O_m)$ where the K_m 's are weak*-compact in X^{**} and the O_m 's are countable unions of elementary weak*-open sets determined by functionals in Y we can now write

$$B_{X} = \bigcap_{m} \left(K_{m} \cup T^{-1}(W_{m}) \right)$$

where W_m is weak*-open in Y*. Note now that

$$T(B_X) = T\left(\bigcap_m (K_m \cup T^{-1}(W_m))\right) \subseteq \bigcap_m (T(K_m) \cup W_m).$$

Conversely if $y^* \in \bigcap_m (T(K_m) \cup W_m)$, there exists a subset M of N such that

$$y^* \in \left(\bigcap_{m \in M} T(K_m)\right) \cup \left(\bigcap_{m \notin M} W_m\right).$$

By the compactness of the K_m 's we have $\bigcap_{m \in M} T(K_m) = T(\bigcap_{m \in M} K_m)$. On the other hand

$$\bigcap_{m\notin M} W_m = T\left(T^{-1}\left(\bigcap_{m\notin M} W_m\right)\right) = T\left(\bigcap_{m\notin M} T^{-1}(W_m)\right).$$

Hence $y^* \in T(\bigcap_{m \in M} K_m) \cup T(\bigcap_{m \notin M} T^{-1}(W_m)) \subseteq T(\bigcap_m (K_m \cup T^{-1}(W_m))) = T(B_x).$

It follows that $T(B_X) = \bigcap_m (T(K_m) \cup W_m)$.

Since Y is separable, B_{Y^*} is a metrizable weak *-compact set, hence each K_m is a weak *- G_{δ} in Y* from which follows that $T(B_X)$ is a weak *- G_{δ} in Y*.

Now, we can prove the following:

THEOREM II.1. For a Banach space X, the following properties are equivalent:

(a) X is separable and has the (PC) property.

(b) X has a boundedly complete skipped blocking finite-dimensional decomposition.

(c) There exists a nice G_{δ} -embedding of X into l_2 .

Proof. (a) \Rightarrow (b) Use Lemma II.3 to find a separable Banach space Y such that X is a closed subspace of Y* and $Y^* \setminus X = \bigcup_n K_n$ with (K_n) being an increasing sequence of weak*-compact subsets of Y*. Let (x_n) be a dense sequence in X and let Y_0 be a finite subset of Y such that $X = [x_1] \oplus Y_0^{\perp}$. (All the annihilators will be taken in X.) We shall say that a subset M of Y, C-norms a subspace Z of X for some constant C if for every x in Z we have

$$||x|| \leq (1+C) \sup\{\langle x, y \rangle; y \in M \text{ and } ||y|| \leq 1\}.$$

Set now $X_1 = [x_1]$. Let $x_2 = u_2 + v_2$ where $u_2 = \lambda x_1$ and $v_2 \in Y_0^{\perp}$. We shall choose a finite subset Y_1 of Y such that:

- (a) $Y_0 \subset Y_1$.
- (b) $Y_1 \frac{1}{2}$ -norms X_1 .
- (c) If $v_2 \neq 0$ then $v_2 \notin Y_1^{\perp}$.
- (d) The topology $\sigma(Y^*, Y_1)$ separates Ball(X_1) from K_1 : that is, every

x in Ball(X₁) has a w*-open neighborhood W determined by functionals in Y_1 such that $W \cap K_1 = \phi$.

Indeed since $\text{Ball}(X_1)$ is compact and $K_1 \cap \text{Ball}(X_1) = \phi$, there exists a finite covering $\{V_j; j \in F_1\}$ for $\text{Ball}(X_1)$ such that V_j is a $\sigma(X, Y)$ elementary open set disjoint of K_1 for each j. Let N_1 be the finite set of functionals in Y that determines $\{V_j; j \in F_1\}$. Let M_1 be a $\frac{1}{2}$ -norming set for X_1 . Let y_2 in Y such that $\langle y_2, v_2 \rangle \neq 0$ and set $Y_1 = Y_0 \cup N_1 \cup M_1 \cup \{y_2\}$. It is clear that Y_1 verifies (a), (b), (c) and (d).

Let now X_2 be the finite-dimensional subspace containing v_2 such that $Y_0^{\perp} = X_2 \oplus Y_1^{\perp}$. We get that $x_2 \in X_1 \oplus X_2$. Suppose now $X_1, ..., X_n, Y_0, ..., Y_{n-1}$ are constructed such that for $2 \leq j \leq n$: $Y_{j-2} \subset Y_{j-1}$ and are finite subsets of $Y, Y_{j-2}^{\perp} = X_j \oplus Y_{j-1}^{\perp}$ with dim $X_j < \infty$, $x_j \in X_1 \oplus X_2 \oplus \cdots \oplus X_j$ and $X = X_1 \oplus X_2 \oplus \cdots \oplus X_j \oplus Y_{j-1}^{\perp}$. Write now $x_{n+1} = u_{n+1} + v_{n+1}$, with $u_{n+1} \in X_1 \oplus \cdots \oplus X_n$ and $v_{n+1} \in Y_{n-1}^{\perp}$. Choose as above a finite subset $Y_n \subset Y$ such that:

- (a) $Y_{n-1} \subset Y_n$.
- (b) $Y_n 2^{-n}$ -norms $X_1 \oplus X_2 \oplus \cdots \oplus X_n$.
- (c) If $v_{n+1} \neq 0$, $v_{n+1} \notin Y_n^{\perp}$.

(d) The topology $\sigma(Y^*, Y_n)$ separates $\text{Ball}(X_1 \oplus X_2 \oplus \cdots \oplus X_n)$ from K_n .

Find $X_{n+1} \subset Y_{n-1}^{\perp}$ such that $v_{n+1} \in X_{n+1}$, $Y_{n-1}^{\perp} = X_{n+1} \oplus Y_n^{\perp}$, hence $x_{n+1} \in X_1 \oplus \cdots \oplus X_{n+1}$.

Finally, we get a sequence (X_n) of finite-dimensional subspaces of X such that $X_n \cap (\sum_{m \neq n} \bigoplus X_m) = \{0\}$ and $x_n \in X_1 \bigoplus X_2 \cdots \bigoplus X_n$ for each n, hence $X = \overline{\bigcup}_{n=1}^{\infty} X_1 \oplus X_2 \oplus \cdots \oplus X_n$.

To prove that (X_n) is a boundedly complete skipped blocking decomposition for X we shall only consider a sequence $v_i = u_{2i+1} \in X_{2i+1}$ such that $s_n = \sum_{i=0}^n v_i$ is in the ball of X and prove that s_n is convergent. The same reasoning will hold for the even case and the general case.

Let s be a weak*-limit of (s_n) in Y*. If $s \notin X$, there exists n_0 so that $s \in K_{2n_0+1}$. Let $G_n = X_1 \oplus \cdots \oplus X_n$. For each $n \ge n_0$, we have $s_n = s_{n_0} + w$ where $w \in X_{2n_0+3} \oplus X_{2n_0+5} \cdots \oplus X_{2n+1} \subset Y_{2n_0+1}^{\perp}$. But property (d) gives a w^* -open neighborhood of s_{n_0} of the form $W = \{y^*; \sup_{\alpha} | \langle y^* - s_{n_0}, y_{\alpha} \rangle | \leqslant \varepsilon\}$ such that $(y_{\alpha}) \subset Y_{2n_0+1}$ and $W \cap K_{2n_0+1} = \phi$. Hence $s_n \in W$ for all $n \ge n_0$ and $s \in W$, which is a contradiction.

It follows that $s \in X$; hence there exists m_0 such that $x \in G_{2m_0+1}$ and $||s-x|| \leq \varepsilon$. By (b) there exists y in Y_{2m_0+1} such that $||y|| \leq 1$ and $\langle y, s_{m_0} - x \rangle \geq ||s_{m_0} - x||(1 + 2^{-2m_0-1})^{-1}$. Note that for $n \geq m_0$ we have for such a y:

$$\langle y, s_n - x \rangle = \langle y, s_{m_0} - x \rangle$$
 hence $\langle y, s_{m_0} - x \rangle = \langle y, s - x \rangle$

and

$$||s_{m_0} - x|| \leq ||s - x||(1 + 2^{-2m_0 - 1})|$$

and

$$||s_{m_0} - s|| \leq 2\varepsilon (1 + 2^{-2m_0 - 1}).$$

It follows that (s_n) norm converges to s.

 $(b) \Rightarrow (a)$ by the results of Bourgain and Rosenthal [4].

(a) \Rightarrow (c) By Lemma II.3, there exists a separable Banach space Y and an isometry $T: X \to Y^*$ such that $T(B_X)$ is a weak*- G_δ in B_{Y*} . Write $B_{Y*} \setminus T(B_X) = \bigcup_n K_n$ where the K_n 's are weak*-compact. By applying Lemma II.1 to any closed subset F of B_X we have $B_{Y*} \setminus T(F) = (\bigcup_n K_n) \cup (\bigcup_n D_n)$ where the D_n 's are also weak*-compact. Let now S be a dense range operator from l_2 into Y, then $S^*: Y^* \to l_2$ is one-to-one and weak* to weak continuous. Moreover for each closed F in B_X , $S^*(B_{Y*} \setminus T(F))$ is a weak F_{σ} in l_2 hence the operator S^*T is a nice G_{δ} -embedding of X into l_2 .

(c) \Rightarrow (a) Let $R: X \rightarrow l_2$ be a nice G_{δ} -embedding. Suppose first X nonseparable. There exists then an uncountable family (x_{α}) in B_X such that $||x_{\alpha} - x_{\alpha'}|| > \delta$ whenever $\alpha \neq \alpha'$. Since the ball of l_2 is a Polish space, there exists a countable subfamily $(x_{\alpha_n})_n$ so that $(x_{\alpha_n})_n$ is dense in itself. But it is also a G_{δ} since $F = \{x_{\alpha_n}; n \in \mathbb{N}\}$ is closed and R is a G_{δ} -embedding. This is clearly a contradiction.

To prove that X has (PC) it is enough to take for any closed bounded subset F of X, a point x in F such that Tx is a point of weak to norm continuity for $R_{|R(F)}^{-1}$. It is clearly a point of weak to norm continuity relative to F.

Remark II.1. We may directly construct a nice G_{δ} -embedding into l_2 using the boundedly complete skipped blocking decomposition (X_n) . Indeed, let P_n be a projection from X into X_n , T_n an embedding of X_n into a finitedimensional Hilbert space H_n and $\varepsilon_n > 0$ such that $\sum_{n=1}^{\infty} \varepsilon_n ||T_n P_n|| < \infty$. Let $T: X \to (\sum_n \oplus H_n)_{l_2}$ defined by $Tx = (\varepsilon_n T_n P_n x)_n$. T is a nice G_{δ} embedding. Indeed, suppose (x_α) δ -separated and $(Tx_\alpha)_\alpha$ weakly dense in itself. It follows that for each n, $(P_n x_\alpha)_\alpha$ is norm dense in itself. A reasoning similar to the proof of Theorem (5) of [4] shows that there exists a subsequence $(x_{\alpha_k})_k$ such that $x_{\alpha_{k+1}} - x_{\alpha_k}$ is arbitrarily close to some w_{k+1} in $x_{n_{k+1}+1} \oplus \cdots \oplus X_{n_{k+2}}$, which is obviously a contradiction.

Remark II.2. The proof of Lemma II.3 gives immediately the following "local" result: If C is a closed convex bounded subset of a separable Banach space X, then C has the (PC) property if and only if there exists a separable Banach space Y and an isometry $T: X \to Y^*$ such that T(C) is a w^*-G_{δ} subset of Y^* .

84

COROLLARY II.1. Every Banach space X with property (PC) is somewhat separable dual. Moreover every non-relatively compact sequence in X has a difference subsequence which is a boundedly complete basic sequence.

Proof. Follows immediately from the above theorem and Proposition (3) of [4].

Remark II.3. Note that Corollary II.1 gives the following result proved by Edgar and Wheeler [8]: A Banach space with property (PC) and a separable dual is somewhat reflexive.

COROLLARY II.2. Every separable Banach space whose dual has a subspace with property (PC) has a separable quotient with a shrinking basic sequence.

Proof. Follows from Theorem II.1 and the results of Johnson and Rosenthal [15].

COROLLARY II.3. If X is a separable Banach space with the (PC) property, then there exists a compact nice G_{δ} -embedding $R: X \to l_2$ such that for any Banach space Z containing X as a closed subspace, there exists a compact operator $\tilde{R}: Z \to l_2$ with $\tilde{R} | X = R$.

Proof. Let Y be the separable Banach space associated to X by Lemma II.3. Let T be the isometry from X into Y*. Let Q be a quotient map from l_1 onto Y, and let S be a compact, dense range operator from l_2 into l_1 . Note that $R = S^*Q^*T$ is a compact nice G_{δ} -embedding from X into l_2 . If now Z is a Banach space containing X, then by a well-known property of l_{∞} there exists an operator $N: Z \to l_{\infty}$ such that $N_{1X} = Q^*T$. It follows that $\tilde{R} = S^*N$ is compact and $\tilde{R}_{1X} = R$.

In general, we cannot expect \tilde{R} to be one-to-one. Indeed we have the following result.

COROLLARY II.4. For a Banach space X, the following properties are equivalent:

(a) X has property (PC) and X^* is separable.

(b) There exists a one-to-one operator $R: X^{**} \to l_2$ such that R is weak* to weak continuous and $R_{\downarrow X}$ is a nice G_{δ} -embedding.

Note that such spaces are the ones whose unit ball is Polish for the weak topology [8].

Proof. (a) \Rightarrow (b) By the results of Edgar and Wheeler [8], the ball of X is a weak *-G_{δ} in X** hence if S is a dense range operator from l_2 into X*

(which exists since X^* is separable) then $S^*: X^{**} \to l_2$ is one-to-one and S^*_{1X} is a nice G_{δ} -embedding by Lemma II.1.

(b) \Rightarrow (a) X has (PC) by Theorem II.1 and since $(R_{|X})^*: l_2 \rightarrow X^*$ has a dense range, X^* is weakly compactly generated hence separable since X is [7].

Remark II.4. Note that Corollary II.3 combined with Theorem I.4 gives that a separable Banach space $X G_{\delta}$ -embeds in $l_2 \oplus X/Y$ whenever Y is a subspace of X with property (PC).

COROLLARY II.5. If X is a Banach space with property (PC), then every operator from L_1 into X is a Dunford-Pettis operator.

Proof. Let $T: L_1 \to X$. Let Y be the separable subspace of X generated by $T(L_1)$. Let $R: Y \to l_2$ be a G_{δ} -embedding. By Theorem II.6 of [10], T is a Dunford-Pettis operator since RT obviously is D.P.

The following corollaries solve various questions asked in [5].

COROLLARY II.6. If X is a separable Banach space with property (PC) but failing the (R.N.P), then there exists a nice G_{δ} -embedding of X into l_2 which is not the composition of a finite number of semi-embeddings.

Proof. It follows immediately from Theorem II.1 and the fact proved in [5] that a Banach space belonging to the smallest class \mathscr{R} of spaces stable under semi-embeddings and containing the space l_2 has the (R.N.P.).

Examples of Banach spaces having (PC) but failing (R.N.P.) are:

- (1) The space B predual of the James-tree space JT [17].
- (2) The subspace BR of the Hagler space JH considered in [4].

The following solves affirmatively question (3) of [5]. We shall give a more precise result in the next section.

COROLLARY II.7. A separable Banach space with the Radon-Nikodym property G_{δ} -embeds in l_1 .

Proof. Since spaces with (R.N.P.) have the (P.C.P.), there exists a nice G_{δ} -embedding S_1 from such a space X into l_2 . Consider now any one-to-one operator $S_2: l_2 \rightarrow l_1$. It is easy to see that S_2S_1 is a compact nice G_{δ} -embedding from X into l_1 .

Recall from [10] that the class \mathscr{S} (resp. \mathscr{S}) is the smallest class of separable Banach spaces stable under semi-embeddings (resp. G_{δ} -embeddings) and containing the space L^1 . The following solves negatively questions in [5] and [10].

COROLLARY II.8. There exists a \mathcal{L}_{∞} -space BD and a nice G_{δ} -embedding $S: BD \rightarrow l_2$ such that:

- (i) S does not fix an infinite-dimensional \mathscr{L}_{∞} -subspace of BD.
- (ii) BD belongs to the class \mathcal{G} but not to the class \mathcal{G} .

Proof. It is enough to take the \mathscr{L}_{∞} -space with the (R.N.P.) constructed by Bourgain and Delbaen [2]. Note that by Proposition I.5 of [5] such an S is another G_{δ} -embedding which is not the product of semi-embeddings. For (2) it is enough to notice that l_2 embeds in L_1 , hence $BD \in \mathscr{S}$. It is noted in [10] that BD does not belong to \mathscr{S} .

LEMMA II.4. If X nicely G_{δ} -embeds in a Banach space Y having the (PC) property, then X has the (PC) property as well.

Proof. Let $S: X \to Y$ be such a G_{δ} -embedding and let F be a closed separable bounded subset of X, then S(F) is a weak G_{δ} . Since Y has (PC), a result of Edgar and Wheeler [8] shows that $\overline{S(F)}^{\text{weak}}$ is a Baire space for the weak topology, hence (S(F), weak) is a Baire space. It follows that $S_{|S(F)|}^{-1}$ has a weak to norm point of continuity Sx.

It is clear that such an x is a point of weak to norm continuity for the set F.

COROLLARY II.9. The smallest class of Banach spaces stable under nice G_{δ} -embeddings and containing the space l_2 is exactly the class of separable Banach spaces with property (PC).

Remark II.5. Note that the smallest class of spaces stable under F_{σ} -embeddings and containing the space l_2 is strictly larger than the class of spaces which F_{σ} -embeds in l_2 , since it was noted in [5] that the \mathcal{L}_1 -spaces with (R.N.P.) constructed by Johnson and Lindenstrauss [14] semi-embed in a separable dual which semi-embed in l_2 while these spaces do not F_{σ} -embed in l_2 since they do not embed in separable duals.

In [8] it is shown that the dual of the James-tree space JT has property (PC). It follows from the above discussion that every separable subspace of JT^* nicely G_{δ} -embeds in l_2 . However, in this case we can do better and find a nice G_{δ} -embedding from the whole space JT^* into $l_2 \oplus l_2(\Gamma)$ where Γ is uncountable. This answers negatively a question in [9] since JT^* is a dual space without the (R.N.P.). Note that the range space cannot be taken separable and the G_{δ} -embedding cannot be weak* to weak continuous since in either case the space $(JT)^*$ would have the (R.N.P.) [9].

To construct the nice G_{δ} -embedding, recall that there exists a quotient map $Q: JT^* \to l_2(\Gamma)$ (Γ uncountable) such that $(JT)^{**} = JT \oplus Q^*(l_2(\Gamma))$. (For details see [17].) Let now $T: l_2 \to JT$ be a dense range operator which exists since JT is separable. We shall prove the following. **PROPOSITION II.1.** The map $(T^*, Q): JT^* \to l_2 \oplus l_2(\Gamma)$ is a nice G_{δ} -embedding.

Proof. Let F be a separable bounded closed subset of $(JT)^*$. Let x be a point of weak to norm continuity in F. We shall show that $(T^*, Q)x$ is a point of weak to norm continuity for $(T^*, Q)_{(T^*,Q)(F)}^{-1}$. Indeed, if $(T^*, Q)x_n$ converges weakly to $(T^*, Q)x$ and $x_n \in F$, (x_n) converges to $x \sigma(JT^*, JT)$ since T^* is weak* to weak continuous and is one-to-one, and $x_n \to x \sigma(JT^*, Q^*(l_2(\Gamma)))$ which implies that $x_n \to x$ weakly hence $x_n \to x$ strongly. Theorem I.3 applies to the separable closed linear space X of F since its range is a separable Hilbert space hence Polish for the weak topology and we get that (T, Q) is a nice G_{δ} -embedding.

We do not know if an analog of Theorem I.4 holds for nice G_{δ} embeddings. On the other hand, J. Bourgain showed that the three-space property holds for Banach spaces having a boundedly complete skipped blocking finite-dimensional decomposition (personal communication). In view of Theorem II.1, this gives the following result which answers positively a question of Edgar and Wheeler [8].

PROPOSITION II.2. Let X be a Banach space and let Y be a subspace of X such that Y and X/Y are separable and have property (PC) then X has property (PC).

Remark II.6. If Y is any separable Banach space with property (PC) but without the (R.N.P.), then by a result of Bourgain and Pisier [1], Y embeds in a \mathscr{L}_{∞} -space X in such a way that X/Y has the (R.N.P.). It follows then by Proposition II.2 that X is a \mathscr{L}_{∞} -space with property (PC) but failing the (R.N.P.). This pathology does not exist in \mathscr{L}_1 -spaces since in this case the two properties are equivalent [4].

III. SPACES WITH THE RADON-NIKODYM PROPERTY

Let A be a non-empty bounded subset of a Banach space X. If $x^* \in X^*$, let $M(x^*, A) = \sup x^*(A)$. A slice of A is a set of the form $S(x, a, A) = \{x \in A; x^*(x) \ge M(x^*, A) - a\}$ where $x^* \in X^*$ and a > 0. We denote by $S(x^*, a, A)$ the set $\{x \in A; x^*(x) > M(x^*, A) - a\}$. We recall that X has (R.N.P.) if every closed bounded convex subset of X has slices of arbitrarily small diameter. We shall call a weak*-open half space of X^{**} a set of the form $H(x^*, \delta) = \{x^{**} \in X^{**}; x^{**}(x^*) > \delta\}$.

LEMMA III.1. If X is a separable Banach space with the (R.N.P.), then there exists a sequence (γ_n) of countable ordinals and sequences $\{K_{\alpha,n}; \gamma_n, n \in \mathbb{N}\}, \{H_{\alpha,n}; \alpha \leq \gamma_n, n \in \mathbb{N}\}$ such that: (i) Each $K_{\alpha,n}$ is a weak*-compact convex subset of $B_{\chi^{**}}$.

(ii) Each $H_{\alpha,n}$ is a weak*-open half space of X^{**} such that $H_{\alpha,n} \cap K_{\alpha,n}$ is a slice of $K_{\alpha,n}$.

(iii)
$$B_X = \bigcap_n \bigcap_{\alpha \leqslant \gamma_n} (K_{\alpha,n} \cup (\bigcup_{\beta < \alpha} H_{\beta,n})).$$

Proof. Given $\varepsilon > 0$, we construct by transfinite induction a decreasing family of norm closed convex subsets (F_{α}) of B_{χ} in the following way:

(i) $F_0 = B_X$.

(ii) If $\alpha = \beta + 1$ and $F_{\beta} \neq \phi$, use the (R.N.P.) to find a slice S_{β} of F_{β} such that diam $(S_{\beta}) < \varepsilon$. Set $F_{\alpha} = F_{\beta} \setminus S_{\beta}$. It is norm closed and convex.

(iii) If α is a limit ordinal, let $F_{\alpha} = \bigcap_{\beta < \alpha} F_{\beta}$.

Since X is separable, there is $\gamma < \Omega$ (the first uncountable ordinal) such that $F_{\gamma} = \phi$. Let K_{α} be the weak*-closure of F_{α} . It is a weak*-compact convex subset of B_{χ} ... For each slice $S_{\beta} = S(x_{\beta}^{*}, F_{\beta}, \delta_{\beta}) = \{x \in F_{\beta}; x_{\beta}^{*}(x) \ge M(x_{\beta}^{*}, F_{\beta}) - \delta_{\beta}\}$, let H_{β} be the weak*-open half space.

$$H(x_{\beta}^{*}, M(x_{\beta}^{*}, F_{\beta}) - \delta_{\beta}) = \{x^{**} \in X^{**}; x^{**}(x_{\beta}^{*}) > M(x_{\beta}^{*}, F_{\beta}) - \delta_{\beta}\}.$$

Note that $H_{\beta} \cap F_{\beta} = \tilde{S}_{\beta}$.

Clearly $B_X \subseteq K_{\alpha} \cup \bigcup_{\beta < \alpha} H_{\beta}$ for each $\alpha \leq \gamma$.

Suppose now $x^{**} \in \bigcap_{\alpha < \gamma} \{K_{\alpha} \cup (\bigcup_{\beta < \alpha} H_{\beta})\}$. Let α_0 be the first ordinal $\alpha_0 \leq \gamma$ such that $x^{**} \notin K_{\alpha_0}$. We have then $x^{**} \in \bigcup_{\beta < \alpha_0} H_{\beta}$. That is, there is $\beta < \alpha_0$ with $x^{**} \in K_{\beta} \cap H_{\beta}$. Let now (x_j) be a net in F_{β} with $x_j \to x^{**}$ weak^{*}. For large enough *j*, the x_j 's are also in H_{β} , hence in $F_{\beta} \cap H_{\beta} = S_{\beta}$. Take now such an x_i and we have

 $||x_j - x^{**}|| \leq \lim_i ||x_j - x_i|| \leq \varepsilon$ hence $d(x^{**}, B_x) \leq \varepsilon$.

By taking $\varepsilon = 1/n$ in the above construction, we get a sequence of countable ordinals (γ_n) , weak*-closed convex sets $\{K_{\alpha,n}; \alpha \leq \gamma_n, n \in \mathbb{N}\}$ and weak*-open half spaces $\{H_{\alpha,n}; \alpha \leq \gamma_n, n \in \mathbb{N}\}$ such that $B_X = \bigcap_n \bigcap_{\alpha \leq \gamma_n} \{K_{\alpha,n} \cup (\bigcup_{\beta < \alpha_n} H_{\beta,n})\}.$

LEMMA III.2. If X is a separable Banach space with the (R.N.P.), then there exists a separable Banach space Y and an isometry $T: X \to Y^*$ such that $T(B_X) = \bigcap_n O_n$ where the complement of each O_n is weak*-closed and convex in Y*.

Proof. By Lemma III.1 applied to B_X , we write $B_X = \bigcap_n \bigcap_{\alpha \leq y_n} K_{\alpha,n} \cup (\bigcup_{\beta < \alpha} H_{\beta,n})$ where $K_{\alpha,n}$ is weak*-compact and convex and $H_{\beta,n}$ is a weak*-open half space of X^{**} of the form $H(x_{\beta,n}^*, \delta_{\beta,n})$.

Let now D be a countable norming subset of X^* containing $\{x_{\beta,n}^*; \beta < \gamma_n \text{ and } n \in \mathbb{N}\}$. Let Y be the separable closed subspace of X^* generated by D. Consider the inclusion map $S: Y \to X^*$ and $T = S^*: X^{**} \to Y^*$. Then $T_{|X}$ is an isometry.

If $y \in Y$, consider the half space in Y^* , $W(y, \delta) = \{y^* \in Y^*; y^*(y) > \delta\}$. Note that

$$T^{-1}(W(y,\delta)) = \{x^{**} \in X^{**}; Tx^{**}(y) > \delta\} = \{x^{**} \in X^{**}; x^{**}(y) > \delta\}.$$

This shows that each $H_{\beta,n}$ is equal to $T^{-1}W_{\beta,n}$ where $W_{\beta,n}$ is a weak*-open half space in Y. Moreover $T(H_{\beta,n}) = W_{\beta,n}$ since T is onto. The same also holds for unions of open half spaces. That is, since we can write

$$B_X = \bigcap_m (K_m \cup O_m)$$

where K_m is weak*-convex compact and O_m is a countable union of weak*open half spaces of X^{**} , we have

$$B_X = \bigcap_m K_m \cup T^{-1}(W_m)$$

where W_m is a countable union of weak*-open half spaces in Y*. The same proof as in Lemma II.3 shows that

$$T(B_X) = \bigcap_m T(K_m) \cup W_m.$$

Since $T(K_m)$ is a weak*-compact convex subset of B_{Y^*} , and B_{Y^*} is weak*-metrizable, $T(K_m) = \bigcap_n V_{m,n}$ where $V_{m,n}$ are weak*-open half spaces of Y^* . Hence

$$T(B_X) = \bigcap_m \bigcap_n (V_{m,n} \cup W_m).$$

In other words

$$T(B_{\chi}) = \bigcap_{k} O_{k}$$

where O_k is a countable union of weak*-open half spaces of Y^* . Note now that the complements of the O_n 's are convex and weak*-closed.

Now we can prove the following:

THEOREM III.1. For a Banach space X, the following properties are equivalent:

- (a) X is separable and has the (R.N.P.).
- (b) There exists an H_{δ} -embedding of X into l_2 .

Proof. (a) \Rightarrow (b) By Lemma III.2, there exists a separable Banach space Y and an isometry $T: X \to Y^*$ such that $T(B_X) = \bigcap_n O_n$ with the complements of the O_n 's being weak *-compact and convex. Let $T(B_X)$ be the weak *-closure of $T(B_X)$ in Y^* . Note that

$$\widetilde{T(B_X)}\setminus T(B_X) = \bigcup_n (\widetilde{T(B_X)} \cap O_n^c)$$
 and $\widetilde{T(B_X)} \cap O_n^c$

is convex and weak *-compact in Y^* .

Let now S be a dense range operator from l_2 into Y then $S^*: Y^* \to l_2$ is one-to-one. The same proof as in Theorem II.1 shows that $R = S^*T$ is a nice G_{δ} -embedding. On the other hand $\overline{R(B_X)} = S^*(T(B_X))$, hence

$$\overline{R(B_X)} \setminus R(B_X) = S^*(\widetilde{T(B_X)} \setminus T(B_X)) = \bigcup_n S^*(\widetilde{T(B_X)} \cap O_n^c)$$

where each $K_n = S^*(\widetilde{T(B_X)} \cap O_n^c)$ is convex and weakly-compact.

(b) \Rightarrow (a) Let (Ω, Σ, μ) be a probability space and let $F: \Sigma \to B_X$ be a vector measure with $||F(E)|| \leq \mu(E)$ for all $E \in \Sigma$. The vector measure $R \circ F(E)$ is valued in l_2 , hence there exists a Bochner integrable function $\Phi: \Omega \to \overline{R(B_X)}$ such that

$$R \circ F(E) = \int_E \Phi(t) d\mu(t)$$
 for each $E \in \Sigma$.

We shall prove that Φ has almost all its values in $R(B_X)$. Indeed, suppose not and write $\overline{R(B_X)} \setminus R(B_X) = \bigcup_n K_n$ where the K_n 's are convex and weakly compact.

For each *n*, the sets $D_n = \Phi^{-1}(K_n)$ belong to Σ , and if $\mu(D_n) > 0$, $F(D_n)/\mu(D_n)$ is in B_X , hence $R \circ F(D_n)/\mu(D_n)$ is in $R(B_X)$ but not in K_n . On the other hand, $R \circ F(D_n)/\mu(D_n) = (1/\mu(D_n)) \int_{D_n} \Phi(t) d\mu(t)$ which belongs to K_n since the latter is closed and convex.

It follows that $\mu(D_n) = 0$ for each *n*, so $\phi(t) \in R(B_x)$ for almost all *t*. A theorem of Lusin guarantees then that $R^{-1}\phi$ is measurable and is a Bochner derivative in X for F. Hence X has the (R.N.P.).

The proof of (b) \Rightarrow (a) is essentially the same as the one used by Edgar and Wheeler [8] to show that a Banach space X has the Radon-Nikodym property whenever $X^{**} \setminus X = \bigcup_n K_n$ with each K_n being w*-compact and convex. Note that if X* is separable then the space Y considered in Lemma III.2 can be taken to be the dual of X. We get then the following converse of the result of Edgar and Wheeler [8].

COROLLARY III.1. Let X be a separable Banach space then the following properties are equivalent:

- (1) X has the (R.N.P.) and X^* is separable.
- (2) $X^{**} \setminus X = \bigcup_n K_n$ where each K_n is w*-compact and convex.

Remark III.1. The proof of Lemma III.2 gives immediately the following local result: If C is a closed convex bounded subset of a separable Banach space X, then C has the (R.N.P.) if and only if there exists a separable Banach space Y and an isometry $T: X \to Y^*$ such that T(C) is a w^*-H_{δ} : that is, $Y^* \setminus T(C) = \bigcup_n K_n$ where each K_n is w^* -compact and convex.

Remark III.2. Note that if D is a closed convex bounded w^*-H_{δ} set in Y^* , then the same proof as in (b) \Rightarrow (a) implies, without any assumption of separability on D, that every D-valued vector measure has a w^* -measurable derivative valued almost everywhere in D. Moreover, if one considers the image $T^*(D)$ in l_2 then it is L_1 -convex in the sense of Rosenthal [20] without being necessarily closed. The above proof gives, however, that bounded, L_1 -convex, H_{δ} -subsets of l_2 have the Radon-Nikodym property as defined in [20] for non-necessarily closed sets.

IV. G_8 -EMBEDDINGS IN l_2

In this section we shall investigate the relation between G_{δ} and nice G_{δ} -embeddings.

LEMMA IV.1. Let X be a Banach space such that none of its subspaces is isomorphic to l_2 . If T is a G_{δ} -embedding from X into l_2 then there exists an infinite-dimensional closed subspace Y of X such that $T_{|Y}$ is a nice G_{δ} embedding.

Proof. Since T is not an isomorphism on any subspace of X, it is standard to show the existence of a basic sequence (e_n) in X such that $\lim_n ||Te_n|| = 0$ (Lemma I.a. 6 of [18]). From which follows that T restricted to the closed linear span Y of (e_n) is a compact G_{δ} -embedding, hence a nice G_{δ} -embedding.

THEOREM IV.1. Every Banach space X that G_{δ} -embeds in l_2 is somewhat separable dual.

Proof. Let Y be any subspace of X. Either l_2 embeds in Y or there exists

a subspace Z of Y which has property (PC) by Lemma IV.1. Hence Theorem II.1 applies to give a separable dual isomorphic to a subspace of Z.

We now show that for a large class of Banach spaces the notions of G_{δ} embeddings and nice G_{δ} -embeddings are equivalent.

The key idea is the following result due to H. P. Rosenthal [19]. We sketch a proof for completeness.

PROPOSITION IV.1. Let X be a Banach space such that every closed convex bounded subset of X with the (PC) property has the (R.N.P.). Let S be a G_{δ} -embedding of X into a Banach space Y. Then an operator T from L_1 into X is representable if and only if ST is representable.

Proof. Suppose T is a non-representable operator from L_1 into X such that ST is representable. Then there exists a closed convex subset A of the unit ball of L_1 such that $\overline{T(A)}$ fails the (R.N.P.) while ST(A) is relatively norm compact. This implies that $S_{|\overline{T(A)}}$ is a nice G_{δ} -embedding and that $\overline{T(A)}$ has the (PC) property hence the (R.N.P.), which is a contradiction.

Recently J. Diestel proved that subspaces of weakly sequentially complete Banach lattices verify the hypothesis of the above proposition. The case of L_1 was observed by Bourgain and Rosenthal [3]. In [12], we give proofs of these results using the methods introduced in this paper.

COROLLARY IV.1 (a) If X is a subspace of a weakly sequentially complete Banach lattice, and X G_{δ} -embeds in l_2 , then X has the Radon-Nikodym property, hence it H_{δ} -embeds in l_2 .

(b) If X is a Banach lattice that G_{δ} -embeds in l_2 , then X is isometric to a dual and separable Banach lattice, hence it F_{σ} -embeds in l_2 .

Proof. It follows immediately from the above discussion and the recent result of Talagrand stating that separable Banach lattices with the (R.N.P.) are dual Banach lattices [21].

Remark IV.1. The above discussion shows, for instance, that the subspaces of L_1 with the strong-Schur property constructed by Bourgain and Rosenthal [3] do not G_{δ} -embed in l_2 . Moreover this shows that the Banach lattice *MT* constructed by Talagrand [22] does not G_{δ} -embed in l_2 even though every operator from L_1 into *MT* is a Dunford-Pettis operator. Note that in view of the results in [10], this property is a necessary condition for a space that G_{δ} -embeds in l_2 .

The following example shows, however, that the two notions are not equivalent:

EXAMPLE IV.1. There exists a Banach space B_{∞} which G_{δ} -embeds in l_2

but fails property (PC) hence no operator from B_{∞} to l_2 is a nice G_{δ} -embedding.

Proof. We assume the reader is familiar with the construction of the James-tree space JT and its predual B as analyzed in Lindenstrauss and Stegall [17]. In [11] we showed that the space B nicely G_{δ} -embeds in l_2 . This was mostly due to the fact that in such a space one considers a tree with finitely many branching points: that is, a tree T_1 so that for each $t \in T_1$, the set of immediate successors of t in T_1 is finite, its cardinality may depend on t but it is always larger or equal to 2. To construct our counterexample, we shall use a tree T_{∞} with infinitely many branching points.

For that consider the tree $T_{\infty} = \bigcup_{k=0}^{\infty} \mathbb{N}^k$. If $t = (n_1, n_2, ..., n_k) \in T_{\infty}$, set |t| = k and for $j \leq k$ set $t|j = (n_1, n_2, ..., n_j)$. Define the partial order on T_{∞} by $s \leq t$ if $|s| \leq |t|$ and s = t| |s|. For each element $(n_k) \in \mathbb{N}^{\mathbb{N}}$, we associate the branch $\gamma = \{\phi, (n_1), (n_1, n_2), ..., (n_1, n_2, ..., n_k), ...\} \subset T_{\infty}$. Set $\gamma|k = (n_1, n_2, ..., n_k) \in T_{\infty}$.

Define now on the space of real valued, finitely supported functions on T_∞ the norm

$$\|x\| = \sup\left(\sum_{i=1}^n \left(\sum_{t\in S_i} x_t\right)^2\right)^{1/2},$$

the supremum being taken over all families $(S_1, S_2, ..., S_n)$ of disjoint segments in T_{∞} . Let JT_{∞} be the completion of such a space. Let $(e_t)_{t \in T_{\infty}}$ be the canonical basis; let $(e_t^*)_{t \in T_{\infty}}$ be the biorthogonal functionals. Denote by B_{∞} the closed subspace of JT_{∞}^* generated by the family $(e_t^*)_{t \in T_{\infty}}$.

We shall say that $A \subset T_{\infty}$ is full if $S \cap A$ is a segment of T_{∞} for each segment S of T_{∞} . Note that if Π_A denotes the natural projection on $[e_t]_{t \in A}$, then $\|\Pi_A\| = 1$.

Moreover, for each $t \in T_{\infty}$, we shall set $A_t = \{s \in T_{\infty}; s \ge t\}$ and $\Pi_t = \Pi_{A_t}$. Note that A_t is then full and $\|\Pi_t\| = 1$.

Let now $L_k = \{t \in T_{\infty}; |t| = k\}$ and $\Pi_k = \sum_{t \in L_k} \Pi_t$, we get that $\|\Pi_k\| = 1$ and $\|\sum_{t \in L_k} x_t\|^2 = \sum_{t \in L_k} \|x_t\|^2$ for each family $(x_t)_{t \in L_k}$ in JT_{∞} such that $\Pi_t x_t = x_t$ for each $t \in L_k$. By duality we get that $\|\sum_{t \in L_k} x_t^*\|^2 = \sum_{t \in L_k} \|x_t^*\|^2$ whenever $\Pi_t^* x_t^* = x_t^* \forall t \in L_k$.

We shall prove the following:

THEOREM IV.2. $B_{\infty} = \{x^* \in JT^*_{\infty}; \lim_k \inf ||\Pi^*_{L_k}x^*|| = 0\}.$

For that we need the following lemma.

LEMMA IV.2. For every x^* in JT^*_{∞} and every $\varepsilon > 0$, there exists a full subtree $T_1 \subset T_{\infty}$ with a finite number of branching points such that $||x^* - \Pi^*_{T_1}x^*|| \leq \varepsilon$.

Proof. Let $(\varepsilon_t)_{t \in T_{\infty}}$ be a family of positive real numbers such that $\sum_{t \in T_{\infty}} \varepsilon_t \leq \varepsilon$. Let $t \in T_{\infty}$ and $S_t = \{s \in T_{\infty}; s \geq t \text{ and } |s| = |t| + 1\}$. We have:

$$\left\|\sum_{s\in S_{t}}\Pi_{s}^{*}x^{*}\right\|^{2}=\sum_{s\in S_{t}}\|\Pi_{s}^{*}x^{*}\|^{2}.$$

Let S_{i}^{1} be a finite subset of S_{i} such that

$$\sum_{s\in S_t\setminus S_t^1} \|\Pi_s^* x^*\|^2 = \left\|\sum_{s\in S_t\setminus S_t^1} \Pi_s^* x^*\right\|^2 \leq \varepsilon_t^2.$$

The construction of T_1 is now clear: for each t, we keep only its successors which are in S_t^1 and we use the same procedure again on each element of S_t^1 . Note that the total of the terms eliminated in x^* will have a norm less than $\sum_{t \in T_m} \varepsilon_t \leq \varepsilon$. The details are left to the interested reader.

Before proving the theorem we shall denote by JT the James-tree space modelled on the tree T whenever T has a finite number of branching points. Note that the usual James-tree space is modelled on the diadic tree but that all the estimates proved in [14] extend trivially to the non-diadic case, and we shall use them freely in the following.

Proof of Theorem IV.2. Let $x^* \in (JT_{\infty})^*$ such that $d(x^*, B_{\infty}) = \delta > 0$. We may find a tree T_1 with a finite number of branching points such that $||x^* - \Pi_{T_1}^* x^*|| \le \delta/2$. We may consider $x_1^* = \Pi_{T_1}^* x^*$ as an element of JT_1^* . Note that $d(x_1^*, B_1) \ge \delta/2$ where $B_1 = [e_t^*; t \in T_1]$. By applying the results of Stegall and Lindenstrauss [17] to the space JT_1 , we can find a branch γ in T_1 (which is also a branch in T_{∞}) such that $\lim_k x_1^*(e_{\gamma k}) = \lim_k x^*(e_{\gamma k}) \neq 0$. It follows that $B_{\infty} = \{x^* \in JT_{\infty}^*; \lim_k \inf ||\Pi_{L_k}^* x^*|| = 0\}$.

COROLLARY IV.2. Let U be the operator from $l_2(T_{\infty})$ into JT_{∞} defined by $Ue_t = 2^{-|t|}e_t$ for all $t \in T_{\infty}$. Then the restriction of U^* to B_{∞} is a G_{δ} -embedding into $l_2(T_{\infty})$.

Proof. Note that U has a dense range, hence U^* is one-to-one. Moreover the ranges of Π_{L_k} and $\Pi_{L_k}^*$ are isometric to l_2 . We shall use the same notations for the corresponding projections in $l_2(T_{\infty})$. Note now that $G_n = \{y \in U^*(\text{Ball}(JT_{\infty}^*)); \|\Pi_{L_k}^* y\| \ge 2^{-k}/n, k \ge n\}$ is norm closed and $U^*(\text{Ball}(JT_{\infty}^*)) \setminus U^*(\text{Ball}(B_{\infty})) = \bigcup_n G_n$. Moreover, we get from Lemma II.1 that for any closed subset F of $\text{Ball}(B_{\infty})$, we have

$$\operatorname{Ball}(JT_{\infty}^*) \setminus F = [\operatorname{Ball}(JT_{\infty}^*) \setminus \operatorname{Ball}(B_{\infty})] \cup \bigcup_n K_n$$

where the K_n 's are weak*-compact in JT_{∞}^* . It follows that

 $U^*(\text{Ball}(JT^*_{\infty}))\setminus U^*(F) = (\bigcup_n G_n) \cup (\bigcup_n T^*(K_n))$ is an F_{σ} since U^* is weak * to weak continuous on JT^*_{∞} .

PROPOSITION IV.2. B_{∞} fails the (PC) property hence no operator from B_{∞} into l_2 is a nice G_{δ} -embedding.

Proof. Note that for each $t \in T_{\infty}$, weak $\liminf_{s \in S_{l}} e_{s}^{*} = 0$ since $(e_{s}^{*})_{s \in S_{l}}$ is isometric to the unit vector basis of l_{2} . It follows that the set $A = \{e_{t|0}^{*} + e_{t|1}^{*} + \dots + e_{t|k}^{*}; k \in \mathbb{N}, t \in T_{\infty} \text{ and } |t| \ge k\}$ is weakly dense in itself, is contained in $\operatorname{Ball}(B_{\infty})$ and doesn't have any point of weak to norm continuity.

Note added in proof. The sequence of compact sets (K_m) that appears in the proofs of Lemmas II.3 and III.2 is not necessarily decreasing hence the statement that $T(\bigcap_m K_m) = \bigcap_m T(K_m)$ is not correct. However, by using the notations of Lemmas II.2 and III.1, we get that for each $\varepsilon > 0$, the sequence $(K_{\alpha,\varepsilon})_{\alpha}$ is decreasing hence

$$T\left(\bigcap_{\alpha\leqslant\gamma_{\mathcal{E}}}\left(K_{\alpha,\mathcal{E}}\cup\left(\bigcup_{\beta<\alpha}V_{\beta,\mathcal{E}}\right)\right)\right)=\bigcap_{\alpha\leqslant\gamma_{\mathcal{E}}}\left(T(K_{\alpha,\mathcal{E}})\cup\left(\bigcup_{\beta<\alpha}T(V_{\beta,\mathcal{E}})\right)\right).$$

Since now $B_{\chi} \subseteq \bigcap_{\alpha < \gamma_{\mathcal{E}}} (K_{\alpha,\mathcal{E}} \cup (\bigcup_{\beta < \alpha} V_{\beta,\mathcal{E}})) \subseteq B_{\chi} + \mathcal{E}B_{\chi^{**}}$ and since T is a contraction we get the results claimed in Lemmas II.3 and III.2.

References

- 1. J. BOURGAIN AND G. PISIER, preprint, 1983.
- J. BOURGAIN AND F. DELBAEN, A class of special L_∞-spaces, Acta Math. 145 (1980), 155-176.
- J. BOURGAIN AND H. P. ROSENTHAL, Martingales valued in certain subspaces of L₁, Israel J. Math. 37 (1980), 54-75.
- J. BOURGAIN AND H. P. ROSENTHAL, Geometrical implications of certain finite dimensional decompositions, Bull. Soc. Math. Belg. 32 (1980), 57-82.
- 5. J. BOURGAIN AND H. P. ROSENTHAL, Applications of the theory of semi-embeddings to Banach space theory, J. Funct. Anal. 52 (1983).
- 6. J. DIESTEL, personal communication.
- 7. J. DIESTEL AND J. UHL, JR., Vector measures, Amer. Math. Soc. Surveys 15 (1977).
- 8. G. A. EDGAR AND R. F. WHEELER, Topological properties of Banach spaces, Pac. J. Math. 115 (1984).
- 9. N. GHOUSSOUB, Some remarks concerning G_{δ} -embeddings and semi-quotient maps, in "The Longhorn Seminar—The University of Texas at Austin," 1982/1983.
- N. GHOUSSOUB AND H. P. ROSENTHAL, Martingales, G_δ-embeddings and quotients of L₁, Math. Ann. 264 (1983), 321-332.
- N. GHOUSSOUB AND B. MAUREY, Counterexamples to several problems concerning G_bembeddings, Proc. Amer. Math. Soc. 92 (1984), 409-412.
- 12. N. GHOUSSOUB AND B. MAUREY, On the Radon-Nikodym property in function spaces, Proc. NSF-CBMS Reg. Conf. Univ. Missouri (1984), to appear.
- 13. W. HUREWICZ, Relative perfekte Tule von Punktinengen und Mengen (A), Fund. Math. 12 (1928), 78-109.

- 14. W. B. JOHNSON AND Y. LINDENSTRAUSS, Examples of \mathcal{L}_1 -spaces, Ark. Mat. 18 (1980), 101–106.
- 15. W. B. JOHNSON AND H. P. ROSENTHAL, On weak*-sequences and their applications to the study of Banach spaces, *Studia Math.* 43 (1972), 77-92.
- H. P. LOTZ, N. T. PECK, AND H. PORTA, Semi-embedding of Banach spaces, Proc. Edinburgh Math. Soc. 22(1979), 233-240.
- 17. Y. LINDENSTRAUSS AND C. STEGALL, Examples of separable spaces which do not contain l_1 and whose duals are not separable, *Studia Math.* 54 (1974), 81–105.
- Y. LINDENSTRAUSS AND L. TZAFRIRI, "Classical Banach spaces I", Springer-Verlag, New York, 1977.
- 19. H. P. ROSENTHAL, personal communication.
- 20. H. P. ROSENTHAL, Geometric properties related to the Radon-Nikodym property, Seminaire d'initiation a l'analyse, 20 Année, 22 (1980/1981).
- 21. M. TALAGRAND, La structure du espaces de Banach réticulés ayant la propriété de Radon-Nikodym, Israel J. Math. 44(3)(1983).
- 22. M. TALAGRAND, Un espace de Banach réticulé qui a presque la propriété de Radon-Nikodym, preprint, 1982.