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Abstract

In this paper, we present a new approach to obtain the comparison theorem of two 1-dimensional

SDEs with diffusion and jumps. The two equations is treated as one two-dimensional SDE and the

comparison requirement is regarded as to keep the solution ðX 1
t ;X

2
t Þ within the constraint

K ¼ fðx1; x2Þ; x1px2g. We then apply a new criteria of ‘‘viability condition’’ which is a necessary and

sufficient condition to keep the solution to be inside the constraint K.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We compare the following two one-dimensional stochastic differential equations (SDEs
in short) driven by a Brownian motion ðW tÞtX0 and a Poisson process ðNtÞtX0

X 1
s ¼ x1 þ

Z s

t

b1ðr;X
1
r Þdrþ

Z s

t

s1ðr;X 1
r ÞdW r þ

Z s

t

Z
Z

g1ðr;X
1
r�; zÞ ~NðdzdrÞ,

X 2
s ¼ x2 þ

Z s

t

b2ðr;X
2
r Þdrþ

Z s

t

s2ðr;X 2
r ÞdW r þ

Z s

t

Z
Z

g2ðr;X
2
r�; zÞ ~NðdzdrÞ,
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where x1 and x2 are initial state of these two SDE with initial time t 2 ½0;T �. We are
interested in the following problem: to find a necessary and sufficient condition of the
coefficients bi, si, gi, i ¼ 1; 2, that ensures

x1px2 ) X 1
spX 2

s ; 8sXt; P-a.s.; 8to1.

Anderson [1], Ikeda and Watanabe [7], Skorokhod [11] and Yamada [12] gave
comparison theorems for the solutions of two Itô’s stochastic differential equations with
the same diffusion coefficients. Yan [13] gave some conclusion about equations driven by
general continuous local martingale, continuous increasing process and general increasing
process but still based on the same diffusion coefficients. O’Brien [9] studied a comparison
theorem for solutions of Itô’s equations with different diffusion terms. See also Gal’cuk
and Davis [5], X. Mao [8]. Of all those results only sufficient conditions were proved.

In this paper, we propose a new approach to treat this problem. We consider the above
two equations as a two-dimensional SDE. In this point of view the above comparison
requirement is regarded as a constraint ðX 1

s ;X
2
s Þ 2 K ¼ fðx1;x2Þ; x1px2g. We then apply a

new criteria of ‘‘viability condition’’ which is a necessary and sufficient condition to keep
the solution to be inside the constraint K. We thus obtain a necessary and sufficient
condition (see (15)) of the comparison theorem. Up to our knowledge, this result is new
even in the case without jumps, i.e., g1 � g2 � 0.

In Section 2 the new criteria will be given. Then in Section 3 we will get the sufficient and
necessary conditions of the comparison theorem.

This approach can also be applied to multi-dimensional situation (see [6]).
2. A criteria of SDE under state constraint

Let ðO;F;PÞ be a complete probability space in which two mutually independent
processes are defined: ðW tÞtX0 a standard d-dimensional Brownian motion and N a
Poisson random measure on ð0;þ1Þ � ðZnf0gÞ, where Z � Rk is equipped with its Borel
field BZ, with the Lévy compensator N̂ðdtdzÞ ¼ dt nðdzÞ, i.e., f ~Nðð0; t� � AÞ ¼ ðN � N̂Þ

ðð0; t� � AÞgt40 is a Ft-martingale for each A 2 BZ. Here nðdzÞ is a positive s-finite
measure satisfyingZ

Z

nðdzÞo1.

Let ðFtÞtX0 be the filtration generated by the above two process and augmented by the
P-null sets of F.

We consider the following SDEs with jumps starting from a point x 2 Rn at a time tX0:

X t;x
s ¼ xþ

Z s

t

bðr;X t;x
r Þdrþ

Z s

t

sðr;X t;x
r ÞdW r þ

Z s

t

Z
Z

gðr;X t;x
r�; zÞ ~NðdzdrÞ, (1)

where b, s and g are given continuous coefficients of ðt;xÞ:

b : ½0;1Þ � Rn ! Rn; s : ½0;1Þ � Rn ! Rn � d,

g : ½0;1Þ � Rn � Rk ! R.
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We assume that, there exists a sufficiently large constant m40 and a function r : Rk ! Rþ
with Z

Z

r2ðzÞnðdzÞo1,

such that
(H1)
 for all x;x0 2 Rn, t 2 ½0;þ1Þ

hbðt;xÞ � bðt;x0Þ; x� x0ipmjx� x0j2,

jsðt;xÞ � sðt;x0Þjpmjx� x0j,

jbðt;xÞj þ jsðt; xÞjpmð1þ jxjÞ,

jgðt;x; zÞ � gðt;x0; zÞjprðzÞjx� x0j,

jgðt;x; zÞjprðzÞð1þ jxjÞ.
Here h�; �i and j � j denote, respectively, the Euclidian scalar product and norm. Obviously
under the above assumptions there exists a unique strong solution to (1).
Let K be a given closed subset of Rn. We are interested in the following property for

SDE (18) in a fixed time interval ½0;T �:

For each ðt;xÞ 2 ½0;TÞ � K ; X t;x
s 2 K ; 8s 2 ½0;T �; a.s. (2)

We will find a necessary and sufficient condition of the coefficients ðb; s; gÞ that ensues
(2).This corresponds the so-called ‘‘viability property’’ in deterministic control theory.
To this end, we define the following real valued function u:

uðt;xÞ:¼E

Z T

t

e�Cðs�tÞd2
K ðX

t;x
s Þdsþ e�CðT�tÞd2

K ðX
t;x
T Þ

� �
; ðt;xÞ 2 ½0;T � � Rn, (3)

where dK ðxÞ, x 2 Rn, denotes the distance function of K:

dK ðxÞ ¼ inffjx� x0j : x0 2 Kg.

It is a Lipschitz function. In fact we have jdK ðxÞ � dK ðxÞjpjx� x0j, 8x, x0 2 Rn. Here the
constant C is

C ¼ 1þ 2mþ m2 þ
Z

Z

r2ðzÞnðdzÞ. (4)

It is easy to check that u is continuous in ½0;T � � Rn with quadratic growth in x. Property
(2) is equivalent

uðt;xÞ � 0; 8ðt;xÞ 2 ½0;T � � K . (5)

It is also well-known that u is the viscosity solution (see [4,2,10,14]) of the following linear
parabolic PDE:

Luðt; xÞ þBuðt;xÞ � Cuðt; xÞ þ d2
K ðxÞ ¼ 0; ðt;xÞ 2 ð0;TÞ � Rn;

uðT ; xÞ ¼ d2
K ðxÞ;

(
(6)
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where we denote, for j 2 C1;2ð½0;T � � RnÞ,

Ljðt;xÞ ¼
qjðt;xÞ

qt
þ hDjðt; xÞ; bðt; xÞi þ

1

2
tr½D2jðt;xÞssTðt;xÞ�

and

Bjðt; xÞ:¼
Z

Z

½jðt; xþ gðt;x; zÞÞ � jðt;xÞ � hDjðt;xÞ; gðt;x; zÞi�nðdzÞ.

But it is still not easy to check (5) from (6).
The main idea, introduced in [3] for the situation without jumps, is that the condition

uðt; xÞ � 0;8x 2 K holds if and only if d2
K ðxÞ is a viscosity supersolution of the PDE (6). By

this we will obtain our necessary and sufficient conditions for the comparison theorem in
the next section.

We now give the definition of viscosity solutions for PDE (6). We denote by
UCx;2ð½0;T � � RnÞ the set of continuous functions in ½0;T � � Rn uniformly continuous in x,
uniformly in t, with at most quadratic growth in x.

Definition 2.1. A function u 2 UCx;2ð½0;T � � RnÞ is called a viscosity supersolution (resp.,
subsolution) of (6) if uðT ;xÞXd2

K ðxÞ (resp., uðT ;xÞpd2
K ðxÞ) and for any j 2 C1;2ð½0;T � �

R2Þ such that j is at most quadratic growth in x and at any point ðt;xÞ 2 ½0;T � � R2 at
which u� j attains its minimum (resp., maximum),

qj
qt
þLjðt;xÞ þBjðt;xÞ � Cjðt;xÞ þ d2

K ðxÞp0; ðresp:;X0Þ. (7)

u is called a viscosity solution if it is both viscosity supersolution and subsolution.

It is interesting that the following comparison theorem of PDE, often called ‘‘maximum
principle’’ relates closely the comparison theorem in SDE.

Proposition 2.1 (Comparison Theorem of Integral-PDE). We assume (H1). Let u 2

UCx;2ð½0;T � � RnÞ (resp., v 2 UCx;2ð½0;T � � RnÞ) be a viscosity subsolution (resp., super-

solution) of PDE (6). Then we have

vðt;xÞXuðt;xÞ; 8ðt;xÞ 2 ½0;T � � Rn.
Remark 2.1. This result is mainly due to [10] with a slight modification: the function u, v

and the coefficient d2
K ð�Þ are not linear growth function in x. They are in fact quadratic

growth. The proof is also analogous to that of [10], with the following modification: the
well-known penalization function is

Fðt; s;x; yÞ ¼ uðt;xÞ � vðs; yÞ �
b
t
�

1

2�
jx� yj2 � delðT�tÞðjxj4 þ jyj4Þ.

In (4.2) of [10] the last term is �delðT�tÞðjxj2 þ jyj2Þ. A more general situation was treated
in [14].

Proposition 2.2. We assume (H1). Then the following claims are equivalent:
(i)
 d2
K is a viscosity supersolution of PDE (6);
(ii)
 The ‘‘viability property’’ (2) holds.
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Proof. ðiÞ ) ðiiÞ: Since dK is a viscosity supersolution. By the above comparison theorem
of integral PDE, d2

K ðxÞXuðt; xÞ, 8ðt;xÞ. Since u is nonnegative and dK ðxÞ ¼ 0, 8x 2 K , thus
2

uðt;xÞ � 0, 8x 2 K . Thus (2) holds.
ðiiÞ ) ðiÞ: For each ðt;xÞ 2 ½0;T � � Rn, let x̄ 2 K be such that dK ðxÞ ¼ jx� x̄j (if x 2 K

then x̄ ¼ x). From (ii) we have X t;x̄
s 2 K , for each s 2 ½t;T �, a.s.. Let j 2 C1;2 be such that

d2
K ðxÞ � jðt; xÞ ¼ 0pd2

K ðx
0Þ � jðt;x0Þ; 8ðt0;x0Þ 2 ½0;T � � Rn. (8)

For each �40, we define the following stopping time:

t� :¼ � ^ inffsXt; jX t;x
s � xj4�g ^ inffsXt; jX t;x̄

s � xj4�g.

By (8) we have

jðt�;X t;x
t� Þ � jðt; xÞpd2

K ðX
t;x
t� Þ � d2

K ðxÞ. (9)

We apply Itô’s formula to jðt�;X t;x
t� Þ,

E½jðt�;X t;x
t� Þ � jðt; xÞ� ¼ E

Z t�

t

½Ljðs;X t;x
s Þ þBjðs;X t;x

s Þ�ds

¼ ½Ljðt;xÞ þBjðt; xÞ�E½t� � t� þ rð�Þ

pd2
K ðX

t;x
t� Þ � d2

K ðxÞ, ð10Þ

where lim�!0 rð�Þ=E½t� � t� ¼ 0.
Since X t;x̄

s 2 K , thus d2
K ðX

t;x
t� ÞpjX

t;x
t� � X t;x̄

t� j
2. Thus the right-hand-side of (10) is

dominated by

E½jX t;x
t� � X t;x̄

t� j
2� � jx� x̄j2

¼ E

Z t�

t

½2hX t;x
s � X t;x̄

s ; bðs;X
t;x
s Þ � bðs;X t;x̄

s Þi

þ jsðs;X t;x
s Þ � sðs;X t;x̄

s Þj
2 þ

Z
Z

jgðs;X t;x
s ; zÞ � gðs;X t;x̄

s ; zÞj
2nðdzÞ�ds

pðC � 1ÞE

Z t�

t

jX t;x
s � X t;x̄

s j
2 ds, ð11Þ

where C ¼ 1þ 2mþ m2 þ
R

Z
r2ðzÞnðdzÞ. Since

E

Z t�

t

jX t;x
s � X t;x̄

s j
2 dspð1þ 1=�ÞE

Z t�

t

jX t;x
s � X t;x̄

s � x� x̄j2 ds

þ ð1þ �ÞE½t� � t�jx� x̄j2

pð1þ 1=�Þ4�2E½t� � t� þ ð1þ �ÞE½t� � t�jx� x̄j2.

This with (10) and (11) implies that

½Ljðt; xÞ þBjðt;xÞ�E½t� � t� þ rð�Þ

pE½t� � t�ðC � 1Þ½ð1þ 1=�Þ4�2 þ ð1þ �Þjx� x̄j2�.

Dividing by E½t� � t� and letting �! 0, the limit is

Ljðt; xÞ þBjðt;xÞ þ d2
K ðxÞ � Cjðt;xÞp0.

Thus dK ðxÞ is a supersolution of (6). The proof is complete. &

S. Peng, X. Zhu / Stochastic Processes and their Applications 116 (2006) 370–380374



ARTICLE IN PRESS
S. Peng, X. Zhu / Stochastic Processes and their Applications 116 (2006) 370–380 375
3. Comparison theorem: a necessary and sufficient condition
We now apply Proposition 2.2 to our comparison theorem of SDE. Consider the
following two one-dimensional SDEs with jumps, defined on ½t;1Þ:

X 1
s ¼ x1 þ

Z s

t

b1ðr;X
1
r Þdrþ

Z s

t

s1ðr;X 1
r ÞdW r þ

Z s

t

Z
Z

g1ðr;X
1
r�; zÞ ~Nðdz drÞ, (12)

X 2
s ¼ x2 þ

Z s

t

b2ðr;X
2
r Þdrþ

Z s

t

s2ðr;X 2
r ÞdW r þ

Z s

t

Z
Z

g2ðr;X
2
r�; zÞ ~Nðdz drÞ, (13)

where x1 and x2 are the initial conditions of (12) and (13), respectively. We assume that, for
i ¼ 1; 2, that

(H3.1) bi; si; gi are continuous in ðt;xÞ;
(H3.2) for each x;x0 2 R and tX0

ðx� x0Þðbiðt;xÞ � biðt;x
0ÞÞpmjx� x0j2,

jsiðt;xÞ � siðt;x
0Þjpmjx� x0j,

jgiðt; x; zÞ � giðt;x
0; zÞjprðzÞjx� x0j,

jbiðt; xÞj þ jsiðt; xÞjpmð1þ jxjÞ,

jgiðt; x; zÞjprðzÞð1þ jxjÞ,

where m and rð�Þ are given in Section 2.
The main objective of this paper is to find a necessary and sufficient condition of the

above coefficients that ensures

x2Xx1 ) X 2
sXX 2

s ; 8s 2 ½t;T �; P-a.s::; 8tpT . (14)

We now assert the main result of this paper:

Theorem 3.1. We assume (H3.1) and (H3.2). Then the following conditions are equivalent:
(a)
 (14) holds for SDEs (12) and (13);

(b)
 For each ðt;xÞ 2 ½0;T � � R, the coefficients bi, si, gi, i ¼ 1; 2, satisfy:

ðiÞ s1ðt;xÞ ¼ s2ðt;xÞ;

ðiiÞ b1ðt;xÞpb2ðt;xÞ;

ðiiiÞ g1ðt;x; zÞ ¼ g2ðt; x; zÞ; nðdzÞ-a.s.;

ðivÞ g1ðt; x1; zÞ � g1ðt;x2; zÞpx2 � x1;8x1px2; nðdzÞ-a.s.

8>>>><
>>>>:

(15)
For the situation without jumps, we have

Corollary 3.1. We assume (H3.1) and (H3.2) as well as g1 � g2 � 0. Then the following

conditions are equivalent:
(a)
 (14) holds for SDEs (12) and (13);
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(b)
 For each ðt; xÞ 2 ½0;T � � R, the coefficients bi, si, i ¼ 1; 2, satisfy:

ðiÞ s1ðt;xÞ ¼ s2ðt;xÞ;

ðiiÞ b1ðt;xÞpb2ðt;xÞ:

(
(16)
To prove Theorem 3.1, we first make the following criteria:

Proposition 3.1. We assume (H3.1) and (H3.2). Then the following claims are equivalent:
(i)
 (14) holds for SDEs (12) and (13);

(ii)
 For each ðt; x1;x2Þ 2 ½0;T � � R� R,

0X2ðx1 � x2Þ
þ
ðb1ðt; x1Þ � b2ðt; x2ÞÞ þ ðs1ðt;x1Þ � s2ðt; x2ÞÞ

21fx14x2gðxÞ

þ ð1� CÞððx1 � x2Þ
þ
Þ
2
þ IK ðx1; x2Þ, ð17Þ

where we denote

IK ðx1; x2Þ ¼

Z
Z

½ððx1 þ g1ðt;x1; zÞ � x2 þ g2ðt; x2; zÞÞ
þ
Þ
2

� ððx1 � x2Þ
þ
Þ
2
� 2ðx1 � x2Þ

þ
ðg1ðt; x1; zÞ � g2ðt;x2; zÞÞ�nðdzÞ.
Proof. We trivially set X t;x
s ¼ ðX

1
s ;X

2
s Þ, sX0, and treat (12) and (13) as a 2-dimensional

SDE defined on s 2 ½t;1Þ:

X t;x
s ¼ xþ

Z s

t

bðr;X t;x
r Þdrþ

Z s

t

sðr;X t;x
r ÞdW r þ

Z s

t

Z
Z

gðr;X t;x
r�; zÞ ~Nðdz drÞ, (18)

where we denote, for each tX0 and x1; x2 2 R,

x ¼ ðx1;x2Þ
T; gðt;x; zÞ ¼ ðg1ðt; x1; zÞ; g2ðt; x2; zÞÞ

T,

bðt;xÞ ¼ ðb1ðt;x1Þ; b2ðt; x2ÞÞ
T; sðt; xÞ ¼ ðs1ðt; x1Þ;s2ðt; x2ÞÞ

T.

By Assumptions (H3.1) and (H3.2), we have, for each x;x0 2 R2 and tX0,

hx� x0; bðt;xÞ � bðt;x0Þipmjx� x0j2,

jsðt;xÞ � sðt;x0Þjpmjx� x0j,

jgðt; x; zÞ � gðt;x0; zÞjprðzÞjx� x0j,

jbðt; xÞj þ jsðt;xÞjpmð1þ jxjÞ,

jgðt; x; zÞjprðzÞð1þ jxjÞ.

With this formulation condition (14) is equivalent to the ‘‘viability property’’ (2), where the
constraint K is

K :¼fx ¼ ðx1;x2Þ
T
2 R2 : x1px2g.
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It follows by Proposition 2.2 that (14) is equivalent to that d2
K is a viscosity supersolution

of the following PDE:

Luðt; xÞ þBuðt; xÞ þ d2
K ðt;xÞ � Cuðt;xÞ ¼ 0; uðT ; xÞ ¼ d2

K ðxÞ.

Since for each x ¼ ðx1; x2Þ
T
2 R2, we have d2

K ðxÞ ¼ ððx1 � x2Þ
þ
Þ
2=2. It is then easy to check

that each function j 2 C1;2ð½0;T � � R2Þ such that d2
K � j attains its minimum at ðt;xÞ

satisfies

qj
qt
ðt;xÞ ¼

qd2
K ðxÞ

qt
¼ 0; Djðt;xÞ ¼ D½d2

K ðxÞ� ¼
x1 � x2

x2 � x1

 !
1fx14x2gðxÞ,

D2
xxjðt;xÞ 2 Yðx1;x2Þ,

where YðxÞ is the following subset of S2, the space of 2� 2 symmetric matrices:

Yðx1;x2Þ :¼ X 2 S2 : Xp1fx14x2gðxÞ
1 �1

�1 1

� �� �
.

We then can easily check that (14) is equivalent to (17). &

Proof of Theorem 3.1. From Proposition 3.1, it suffices to prove that (15) 3 (17).
(17)) (15): For the case x1px2, (17) becomesZ

Z

½fx1 þ g1ðt;x1; zÞ � x2 � g2ðt;x2; zÞg
þ�2nðdzÞp0.

Thus

g1ðt;x1; zÞ � g2ðt;x2; zÞpx2 � x1; 8t; nðdzÞ-a.s. in z. (19)

In particular, we have

g1ðt;x; zÞpg2ðt; x; zÞ; nðdzÞ-a.s. in z. (20)

Now for each x 2 R and dX0, by setting x2 ¼ x, x1 ¼ xþ d in (17), we have

0X2d½b1ðt;xþ dÞ � b2ðt;xÞ� þ ½s1ðt; xþ dÞ � s2ðt;xÞ�2 þ ð1� CÞd2

þ

Z
Z

½ðfdþ g1ðt;xþ d; zÞ � g2ðt;x; zÞg
þÞ

2
� d2

� 2dðg1ðt; xþ d; zÞ � g2ðt;x; zÞÞ�nðdzÞ. ð21Þ

By the linear growth conditions of gi and bi in (H3.2), we have

jðg1ðt;xþ d; zÞ � g2ðt; x; zÞÞjprðzÞð2þ 2jxj þ dÞ,

jb1ðt;xþ dÞ � b2ðt; xÞjp2mð1þ jxj þ jdjÞ.
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Thus, by (21), there exists a constant c1, independent of x and d, such that

½s1ðt;xþ dÞ � s2ðt;xÞ�2pc1ð1þ dþ jxjÞd.

Letting d! 0 yields (i) of (15).
Again from (21) in considering s1ðt;xÞ � s2ðt; xÞ, we have

2d½b1ðt; xþ dÞ � b2ðt;xÞ�

pd2ðnðZÞ þ C � 1Þ þ 2d
Z

Z

½g1ðt; xþ d; zÞ � g2ðt;x; zÞ�nðdzÞ

pd2ðnðZÞ þ C � 1Þ þ 2d
Z

Z

½g1ðt; xþ d; zÞ � g1ðt;x; zÞ�nðdzÞ

pd2ðnðZÞ þ C � 1Þ þ 2d2
Z

Z

rðzÞnðdzÞ.

Or

2½b1ðt;xþ dÞ � b2ðt; xÞ�pdðnðZÞ þ C � 1Þ þ 2d
Z

Z

rðzÞnðdzÞ.

Thus

2½b1ðt; xÞ � b2ðt;xÞ�p2jb1ðt;xþ dÞ � b1ðt;xÞj

þ dðnðZÞ þ C � 1Þ þ 2d
Z

Z

rðzÞnðdzÞ.

We let d! 0 on both sides. Then (ii) of (15) holds.
We return once more to (21). By (ii) and the Lipschitz conditions of b1, g1,

0X2d½b1ðt;xþ dÞ � b2ðt;xÞ� � d2ðnðZÞ þ C � 1Þ

� 2d
Z

Z

½g1ðt;xþ d; zÞ � g2ðt;x; zÞ�nðdzÞ

X2d½b1ðt;xþ dÞ � b1ðt;xÞ� � d2ðnðZÞ þ C � 1Þ

� 2d
Z

Z

½g1ðt;xþ d; zÞ � g1ðt;x; zÞ�nðdzÞ

þ 2d
Z

Z

½g2ðt;x; zÞ � g1ðt;x; zÞ�nðdzÞ

X� ð2mþ 2

Z
Z

rðzÞnðdzÞ þ ðnðZÞ þ C � 1ÞÞd2

þ 2d
Z

Z

½g2ðt;x; zÞ � g1ðt;x; zÞ�nðdzÞ.

Since d can be arbitrarily small, we then haveZ
Z

½g2ðt; x; zÞ � g1ðt; x; zÞ�nðdzÞp0.

This with (20) yields g2ðt; x; zÞ � g1ðt; x; zÞ ¼ 0, nðdzÞ-a.s. i.e., (iii) holds. The proof of
(17) ) (15) is complete.
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(15)) (17): Given real numbers x and Z, we set x2 ¼ x, x1 ¼ xþ Z and g1 � g2, s1 � s2.
(17) becomes

2Zþ½b1ðt; xþ ZÞ � b2ðt;xÞ� þ ½s1ðt;xþ ZÞ � s1ðt;xÞ�21ð0;þ1ÞðZÞ

þ ð1� CÞðZþÞ2 þ IZp0, ð22Þ

where we set

IZ :¼

Z
Z

½ðfZþ g1ðt;xþ Z; zÞ � g1ðt;x; zÞg
þÞ

2
� ðZþÞ2

� 2Zþðg1ðt;xþ Z; zÞ � g1ðt; x; zÞÞ�nðdzÞ.

By (iv) of (15), we have

IZ ¼
0 if Zp0;R

Z
½g1ðt;xþ Z; zÞ � g1ðt;x; zÞ�

2nðdzÞ if Z40:

(

It is clear that (22) hold true for the case Zp0. For the case Z40, we have

2Z½b1ðt; xþ ZÞ � b2ðt;xÞ�p2Z½b1ðt;xþ ZÞ � b1ðt;xÞ�p2mZ2,

½s1ðt; xþ ZÞ � s1ðt;xÞ�2pm2Z2,

IZpZ2
Z

Z

r2ðzÞnðdzÞ.

Recall that C ¼ 1þ 2mþ m2 þ
R

Z
r2ðzÞnðdzÞ. Thus the above three inequalities implies (22)

and thus (17). &
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