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Low energy pp̄ interaction is considered taking into account the polarization of both particles. The
corresponding cross sections are calculated using the Nijmegen nucleon–antinucleon optical potential.
Then they are applied to the analysis of the polarization buildup which is due to the interaction of
stored antiprotons with polarized protons of a hydrogen target. It is shown that, at realistic parameters
of a storage ring and a target, the filtering mechanism may provide a noticeable polarization in a time
comparable with the beam lifetime.
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1. Introduction

An extensive research program with polarized antiprotons has
been proposed recently by the PAX Collaboration [1]. This program
has initiated a discussion of various methods to polarize stored
antiprotons. One of the methods is to use multiple scattering on
a polarized hydrogen target. If all particles remain in the beam
(scattering angle is smaller than acceptance angle θacc), only spin
flip can lead to polarization buildup, as was shown in Refs. [2,3].
However, spin-flip cross section is negligibly small in both cases
of proton–antiproton [2] and electron–antiproton [4] scattering.
Hence the most realistic method is spin filtering [5]. This method
implements the dependence of scattering cross section on orienta-
tion of particles spins. Therefore number of antiprotons scattered
out of the beam after interaction with a polarized target depends
on their spins, which results in the polarization buildup. Interac-
tion with atomic electrons cannot provide noticeable polarization
because in this case antiprotons will scatter only in small angles
and all antiprotons remain in the beam [2]. Thus it is necessary to
study proton–antiproton scattering.

At present, quantum chromodynamics cannot give reliable pre-
dictions for pp cross section below 1 GeV and different phe-
nomenological models are usually used for numerical estimations.
As a result, the cross sections obtained are model-dependent. All
models are based on fitting of experimental data for scattering
of unpolarized particles. These models give similar predictions for
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spin-independent part of the scattering cross sections, but predic-
tions for spin-dependent parts may differ drastically.

Different nucleon–antinucleon potentials have similar behav-
ior at large distance (r � 1 fm) because long-range potentials
are obtained by applying G-parity transformation to well-known
nucleon–nucleon potential. The most important difference between
nucleon–antinucleon and nucleon–nucleon scattering is existence
of annihilation channels. A phenomenological description of anni-
hilation is usually based on an optical potential of the form

V N N = U N N − iW N N . (1)

Imaginary part of this potential describes annihilation into mesons
and is important at small distance. The process of annihilation has
no uniform description, and short-range potentials in various mod-
els are different.

Spin-dependent part of the cross section of pp interaction was
previously calculated in Ref. [6] using the Paris potential. In Ref. [6]
a possibility to obtain a noticeable beam polarization in a rea-
sonable time was also investigated. Similar calculations were per-
formed in Ref. [7] where various forms of Julich potentials were
explored. Note that the contribution of interference between the
Coulomb and strong amplitudes to the scattering cross section has
been omitted in Ref. [7]. In the present Letter, we calculate the
spin-dependent part of the cross section of pp scattering using the
Nijmegen model and analyze the polarization buildup which is due
to the interaction of stored antiprotons with polarized protons.

2. Cross sections

It is convenient to calculate the cross section in the center-
of-mass frame, where antiproton and proton have momenta p
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and −p, respectively. In the nonrelativistic approximation (p � M ,
where M is the nucleon mass), the antiproton momentum in the
lab frame is plab = 2p. Therefore the acceptance angle (maximum
scattering angle when antiprotons remain in the beam) in the lab
frame is connected with the acceptance angle in the center-of-
mass frame by the relation θacc = 2θ

(l)
acc.

The pp scattering process has several channels: elastic scatter-
ing (pp → pp), charge exchange (pp → nn), and annihilation into
mesons (pp → mesons). As explained above, noticeable polariza-
tion can be obtained only if some antiprotons are dropped out of
the beam. The corresponding cross section can be written in the
form

σ = σel + σcex + σann, (2)

where σcex is the charge exchange cross section, σann is the an-
nihilation cross section, and σel is the elastic cross section inte-
grated over scattering angle from θacc to π . All cross sections are
summed up over final spin states. The cross section σel includes
pure Coulomb cross section, hadronic cross section, and interfer-
ence term, which cannot be omitted.

Spin-dependent cross section can be written in the form

σ = σ0 + (ζ 1 · ζ 2)σ1 + (ζ 1 · v)(ζ 2 · v)(σ2 − σ1), (3)

where ζ 1 and ζ 2 are unit vectors collinear to the particles spins,
and v = p/p is unit momentum vector. Here σ0 is the spin-
independent cross section, σ1 describes spin effects in the case
when both vectors of polarization are perpendicular to v , and
σ2 describes spin effects in the case when all three vectors are
collinear. We direct quantization axis along the vector v and ex-
press the cross sections (3) via cross sections ΣSμ calculated for
states with total spin S and projection of total angular momen-
tum μ:

σ0 = 1

2
Σ11 + 1

4
(Σ10 + Σ00),

σ1 = 1

4
(Σ10 − Σ00),

σ2 = 1

2
Σ11 − 1

4
(Σ10 + Σ00). (4)

Here we use the relation Σ1−1 = Σ11.
The potential of proton–antiproton interaction is a sum of the

Coulomb potential and optical Nijmegen potential [8]. Therefore
the amplitude of elastic scattering can be written as a sum of the
Coulomb amplitude and strong amplitude, which doesn’t coincide
with the amplitude calculated in the absence of the Coulomb field.
Strong amplitude is not singular at small scattering angles, so that
we can integrate hadronic cross section over the whole range from
0 to π . However, finite θacc should be taken into account at calcu-
lation of the Coulomb cross section and the interference between
the Coulomb and strong amplitudes. In the nonrelativistic limit,
the Coulomb amplitude is spin-independent and has the form

F C
1μ = F C

00 = F C(θ)

= α

4vp sin2(θ/2)
exp

{−2iη ln
[
sin(θ/2)

] + 2iχ0
}
, (5)

where χL = argΓ (L +1+ iη) are the Coulomb phases, η = − α
v lab

is
the Sommerfeld parameter, v lab = plab/M , and α is the fine struc-
ture constant.

For the strong elastic triplet scattering amplitude, we have

F el
1μ = i

√
4π

2p

∑
C Jμ

Lm,1μ−m R J
LμY Lm(θ,ϕ),
m,L, J
R J
Lμ =

∑
L′

(−1)
L−L′

2
√

2L′ + 1C Jμ
L′0,1μ

× exp(iχL + iχL′)
(
δLL′ − S J

LL′
)
. (6)

The sum over L, L′ is performed under conditions L, L′ = J , J ± 1
and |L − L′| = 0,2. Strong singlet amplitude reads

F el
00 = i

√
4π

2p

∑
L

√
2L + 1 exp(2iχL)(1 − SL)Y L0(θ,ϕ). (7)

Here S J
LL′ and SL are partial elastic triplet and singlet scattering

amplitudes, respectively, Y Lm(θ,ϕ) are the spherical functions and
C Jμ

Lm,1μ−m are the Clebsch–Gordan coefficients.
Charge exchange scattering amplitudes have the form

F cex
1μ = − i

√
4π

2p

∑
m,L, J

C Jμ
Lm,1μ−m R̃ J

LμY Lm(θ,ϕ),

R̃ J
Lμ =

∑
L′

(−1)
L−L′

2
√

2L′ + 1C Jμ
L′0,1μ exp(iχL′ )̃S J

LL′ (8)

and

F cex
00 = − i

√
4π

2p

∑
L

√
2L + 1 exp(iχL )̃SL Y L0(θ,ϕ). (9)

Here S̃ J
LL′ and S̃ L are partial charge exchange triplet and singlet

scattering amplitudes, respectively.
The cross sections Σ1μ and Σ00 can be represented as a sum

of pure Coulomb cross sections ΣC
1μ and ΣC

00, hadronic contribu-

tions Σh
1μ and Σh

00, and interference terms Σ int
1μ and Σ int

00 . For the
Coulomb contribution we have

ΣC
1μ = ΣC

00 = πα2

(vpθacc)2
, (10)

where smallness of θacc is taken into account. The total hadronic
cross section can be calculated using the optical theorem

Σh
1μ = 2π

p2

∑
L, J

√
2L + 1C Jμ

L0,1μ Re R J
Lμ,

Σh
00 = 2π

p2

∑
L

(2L + 1)Re
[
exp(2iχL)(1 − SL)

]
. (11)

The interference contributions can be calculated in the logarithmic
approximation,

Σ int
1μ = −2πα

vp2
ln

(
2

θacc

)∑
L, J

√
2L + 1C Jμ

L0,1μ

×
{

Im
[
exp(−2iχ0)R J

Lμ

]
+ α

2v
ln

(
2

θacc

)
Re

[
exp(−2iχ0)R J

Lμ

]}
,

Σ int
00 = −2πα

vp2
ln

(
2

θacc

)∑
L

(2L + 1)

×
{

Im
[
exp

(
2i(χL − χ0)

)
(1 − SL)

]
+ α

ln

(
2

)
Re

[
exp

(
2i(χL − χ0)

)
(1 − SL)

]}
. (12)
2v θacc
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The hadronic contributions to the elastic cross sections have the
form

Σel
1μ = π

p2

∑
L, J

∣∣R J
Lμ

∣∣2
,

Σel
00 = π

p2

∑
L

(2L + 1)|1 − SL |2. (13)

The charge exchange cross sections are given by

Σcex
1μ = π

p2

∑
L, J

∣∣R̃ J
Lμ

∣∣2
,

Σcex
00 = π

p2

∑
L

(2L + 1)|̃SL |2. (14)

3. Numerical results

We follow the method of calculations of scattering amplitudes
S described in Refs. [8,9]. To calculate S-matrix and cross sec-
tions (10)–(14), we use formula (15) of Ref. [8]. The partial cross
sections obtained are in agreement with the values from Table V
of Ref. [8].

Fig. 1. The dependence of t0 (hour) on T lab (MeV) for n = 1014 cm−2 and f =
106 c−1. The acceptance angles in the lab frame are θ

(l)
acc = 10 mrad (solid curve),

θ
(l)
acc = 20 mrad (dashed curve), θ

(l)
acc = 30 mrad (dashed–dotted curve).
Let us analyze the kinetics of polarization. Let P T be the target
polarization vector and ζ T = P T /P T . Antiproton beam polarization
vector P B is collinear to ζ T in both cases ζ T ⊥ v and ζ T ‖ v . Gen-
eral solution of the kinetic equation is given in Refs. [2,3]. In our
case, when only spin-filtering mechanism is important, we have

P B(t) = tanh

[
t

2

(
Ωout− − Ωout+

)]
,

N(t) = 1

2
N(0)

[
exp

(−Ωout+ t
) + exp

(−Ωout− t
)]

, (15)

where

Ωout± = nf
{
σ0 ± P T

[
σ1 + (ζ T · v)2(σ2 − σ1)

]}
. (16)

Here n is the areal density of the target and f is the beam revolv-
ing frequency. It follows from our calculations that |Ωout− −Ωout+ | �
(Ωout− + Ωout+ ) which allows us to simplify Eq. (15). The beam life-
time due to the interaction with a target is

τb = 2

Ωout− + Ωout+
= 1

nf σ0
. (17)

Note that figure of merit FOM(t) = P 2
B(t)N(t) is maximal at t0 =

2τb , when the number of antiprotons is N(t0) ≈ 0.14N(0). The po-
larization time t0 as a function of the kinetic energy T lab in the lab
frame is shown in Fig. 1.

For the polarization degree at t0, we have

P B(t0) =
{−2P T

σ1
σ0

, if ζ T · v = 0,

−2P T
σ2
σ0

, if |ζ T · v| = 1.
(18)

Positive (negative) sign of P B(t0) means that the beam polarization
is parallel (antiparallel) to ζ T .

The dependence of σ1 and σ2 on T lab for different acceptance
angles is shown in Fig. 2. These cross sections depend on the ac-
ceptance angle completely due the interference contribution. It was
necessary to take interference into account in the case of pp scat-
tering [2]. In the case of pp scattering the interference contribu-
tion is also important. Corresponding contributions σ int

1,2 are also
shown in Fig. 2.
Fig. 2. The dependence of σ1, σ2 and interference contributions σ int
1 , σ int

2 (mb) on T lab (MeV). The acceptance angles in the lab frame are θ
(l)
acc = 10 mrad (solid curve),

θ
(l)
acc = 20 mrad (dashed curve), θ

(l)
acc = 30 mrad (dashed–dotted curve).
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Fig. 3. The dependence of P B (t0) for P T = 1 on T lab (MeV) for ζ T · v = 0 (P⊥) and |ζ T · v| = 1 (P‖). The acceptance angles in the lab frame are θ
(l)
acc = 10 mrad (solid curve),

θ
(l)
acc = 20 mrad (dashed curve), θ

(l)
acc = 30 mrad (dashed–dotted curve).
The dependence of polarization degree P B(t0) for P T = 1 on
T lab (MeV) for ζ T · v = 0 (P⊥) and |ζ T · v| = 1 (P‖) is shown
in Fig. 3. In the case ζ T · v = 0, the polarization degree becomes
independent of antiproton energy at T lab about 100 MeV. With in-
creasing acceptance angle the polarization degree raises faster. In
the case |ζ T · v| = 1, the polarization degree increases slower but
amounts to 40% at energy about 200 MeV.

Let us compare our results with the previous calculations. In
Ref. [6], spin-dependent part of the cross section of pp scat-
tering has been calculated using Paris potential in energy range
20–100 MeV. Authors predict positive P⊥ with maximum 8% at
energy about 60 MeV and negative P‖ , raising up to 12%. Anal-
ogous calculations have been performed in Ref. [7] using several
modifications of the Julich model. Note that the contribution of in-
terference between the Coulomb and strong amplitudes has been
omitted. Qualitatively, the dependence of polarization degree on
the antiproton energy, obtained in our Letter, is similar to that in
Ref. [7], but quantitative disagreement is rather big.

In conclusion, using the Nijmegen nucleon–antinucleon opti-
cal potential, we have calculated the spin-dependent part of the
cross section of pp interaction and the corresponding degree of
the beam polarization. Our results indicate that a filtering mech-
anism can provide a noticeable beam polarization in a reasonable
time. However, we state that today it is impossible to predict the
beam polarization with high accuracy because different models
give essentially different predictions. Only experimental investiga-
tion of the spin-dependent part of the cross section of pp scatter-
ing can prove the applicability of potential models. Nevertheless,
since polarization degree in all models are rather big, we can hope
that filtering mechanism can be used to get polarized antiproton
beam.
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