Inequalities for Singular Values and Traces

Ling Chen
Department of Mathematics
Jinan University
Guangzhou, China

and

Chi Song Wong*
Department of Mathematics and Statistics
University of Windsor
Windsor, Ontario, Canada N9B 3P4

Submitted by Richard A. Brualdi

ABSTRACT

Let \(A_1, A_2, \ldots, A_m \) be \(n \times n \) matrices over the complex field \(\mathbb{C} \), and \(\alpha_1, \alpha_2, \ldots, \alpha_m \) be positive real numbers. It is proved that if \(\sum_{j=1}^{m} \alpha_j \geq 1 \) and if the \(A_j \)'s are nonnegative definite, then \(|\text{tr} \prod_{j=1}^{m} A_j^{\alpha_j} | \leq \prod_{j=1}^{m} (\text{tr} A_j)^{\alpha_j} \) and equality occurs if and only if (a) for \(\sum_{j=1}^{m} \alpha_j = 1 \), all \(A_j \)'s are scalar multiples of one another, (b) for \(\sum_{j=1}^{m} \alpha_j > 1 \), all \(A_j \)'s are scalar multiples of \(A_1 \) and are of rank 1. This result generalizes many classical inequalities and gives a multivariate version of the recent paper by Magnus (1987). The above inequality can be generalized further: Let \(\sigma_1(C) \geq \sigma_2(C) \geq \cdots \geq \sigma_n(C) \) be singular values of an \(n \times n \) matrix \(C \) over \(\mathbb{C} \). Then for all \(k = 1, 2, \ldots, n \), \(\sum_{j=1}^{k} \sigma_j(\prod_{i=1}^{j} A_j) \leq \sum_{i=1}^{k} \prod_{j=1}^{i} \sigma_i(A_j) \leq \prod_{j=1}^{m} (\sum_{i=1}^{k} \sigma_i(A_j)^{\alpha_j})^{\alpha_j} \). \(\leq \sum_{j=1}^{m} (\sum_{i=1}^{k} \alpha_j)^{\frac{k-1}{\alpha_j}}(\sigma_i(A_j))^{\alpha_j} \).

1. INTRODUCTION

Throughout the paper, \(M_{n \times n} \) will denote the set of all \(n \times n \) matrices over the complex field \(\mathbb{C} \).

* Partially supported by NSERC grant 9689. This work was completed while this author was at Jinan University.

655 Avenue of the Americas, New York, NY 10010 0024-3795/92/$5.00
Magnus (1987) obtained the following result:

Lemma 1. Let \(p > 1, q = p/(p - 1), \) and \(A \) be a nonzero nonnegative definite (n.n.d.) matrix in \(M_{n \times n} \). The \(\text{tr}(AX) \leq (\text{tr}A^p)^{1/p} \) for all n.n.d. \(X \in M_{n \times n} \) with \(\text{tr} X^q = 1 \), and equality occurs if and only if \(X^q = A^q/\text{tr}A^q \).

As an immediate consequence of Lemma 1, Magnus (1987, Theorem 5) proved the following result of Thompson (1965).

Lemma 2. Let \(A_1, A_2 \) be n.n.d. matrices in \(M_{n \times n} \), and let \(\alpha_1, \alpha_2 \) be positive real numbers such that \(\alpha_1 + \alpha_2 = 1 \). Then

\[
\text{tr}(A_1^{\alpha_1}A_2^{\alpha_2}) \leq (\text{tr}A_1)^{\alpha_1}(\text{tr}A_2)^{\alpha_2},
\]

and equality occurs if and only if \(A_1, A_2 \) are scalar multiples of each other.

In this paper, we shall generalize the above result from \(A_1, A_2 \) to \(A_1, A_2, \ldots, A_m \) [Theorem 3(a)]. We then extend Theorem 3(a) to include the \(\alpha_1 \)'s with \(\sum_{j=1}^{m} \alpha_j > 1 \) [Theorem 3(b)]. Theorem 3 is best in that if \(\alpha_1, \alpha_2 > 0 \) with \(\alpha_1 + \alpha_2 < 1 \), then (1.1) may not hold. The inequality in Theorem 3 can be generalized to that for sums and products of the singular values of \(A_1, A_2, \ldots, A_m \) [Theorem 1]. A formula (Theorem 2) that involves only sums of singular values can also be obtained. This theorem gives a matrix version of Minkowski's inequality and generalizes a result of Chen (1990). Among others, we shall use both Lemma 2 and a result of Kiers and Ten Berge (1989) to furnish a proof of Theorem 3. Through various choices of \(\alpha_1, \alpha_2, \ldots, \alpha_m \), we are able to generalize the classical Hölder's inequality and certain mean inequalities for \(y_1, y_2, \ldots, y_m > 0 \) to that for \(n \times n \) n.n.d. matrices \(A_1, A_2, \ldots, A_m \). Theorem 3 can also be used to obtain a multivariate version of the main result in Magnus (1987): \((\text{tr}A^p)^{1/p} = \max(\text{tr}(AX): X \text{ is n.n.d., } \text{tr} X^q = 1) \).

2. **INEQUALITIES FOR SINGULAR VALUES**

Certain results on majorization will be used. For recent references on majorization and inequalities, we refer the reader to Marshall and Olkin (1979), Bellman (1980), and Wong (1986).

Let \(C \in M_{n \times n} \). Then \(\sigma_1(C) \geq \sigma_2(C) \geq \cdots \geq \sigma_n(C) \) will denote the singular values of \(C \), and \(\sigma(C) \) will denote the column vector \((\sigma_1(C))_{i=1}^n \) in the \(n \)-dimensional Euclidean space \(\mathbb{R}^n \); the \(x_{[i]} \)'s will denote the rearrangement
of the x_i's with $x_{[1]} \geq x_{[2]} \geq \cdots \geq x_{[n]}$. Let $x = (x_i), y = (y_i) \in \mathbb{R}^n$. Then x is said to be weakly majorized by y, written as $x \prec_w y$, if $\sum_{i=1}^k x_{[i]} \leq \sum_{i=1}^k y_{[i]}$ for all $k = 1, 2, \ldots, n$; x is said to be majorized by y if $x \prec_w y$ and if $\sum_{i=1}^n x_i = \sum_{i=1}^n y_i$. By a result of Gel'fand and Naimark (1950) [or p. 248 of Marshall and Olkin (1979)], we obtain

$$\sigma(A_1 A_2 \cdots A_m) <_w \sigma(A_1) * \sigma(A_2) * \cdots * \sigma(A_m). \quad (2.1)$$

where each $A_i \in M_{n \times n}$ and $*$ is the Hadamard product (or pointwise product if we view $x \in \mathbb{R}^n$ as a function on $\{1, 2, \ldots, n\}$). By a result of Fan (1951) [or p. 214 of Ando, Horn, and Johnson (1987)],

$$\sigma(A_1 + A_2 + \cdots + A_m) <_w \sigma(A_1) + \sigma(A_2) + \cdots + \sigma(A_m). \quad (2.2)$$

Theorem 1. Let $A_1, A_2, \ldots, A_m \in M_{n \times n}$, $\alpha_1, \alpha_2, \ldots, \alpha_m > 0$ with $\sum_{j=1}^n \alpha_j = 1$ and $k \in \{1, 2, \ldots, n\}$. Then

$$\sum_{i=1}^k \sigma_i \left(\prod_{j=1}^m A_j \right) \leq \sum_{i=1}^k \prod_{j=1}^m \sigma_i(A_j) \leq \prod_{i=1}^k \left(\sum_{j=1}^m \sigma_i(A_j) \right)^{1/\alpha_j} \quad \leq \sum_{j=1}^m \left(\sum_{i=1}^k \alpha_j [\sigma_i(A_j)]^{1/\alpha_j} \right).$$

Proof. By (2.1),

$$\sum_{i=1}^k \sigma_i \left(\prod_{j=1}^m A_j \right) \leq \sum_{i=1}^k \prod_{j=1}^m \sigma_i(A_j). \quad (2.3)$$

By Hölder's inequality [see e.g. Hardy, Littlewood, and Polya (1952, p. 22)],

$$\sum_{i=1}^k \prod_{j=1}^m \sigma_i(A_j) \leq \prod_{j=1}^m \left(\sum_{i=1}^k [\sigma_i(A_j)]^{1/\alpha_j} \right)^{\alpha_j}. \quad (2.4)$$
By the mean inequality [see e.g. Mitrinovic (1970, p. 100)],

$$\sum_{j=1}^{m} \left(\frac{1}{\alpha_j} \sum_{i=1}^{k} \sigma_i(A_j) \right)^{1/\alpha_j} \leq \sum_{j=1}^{m} \left(\sum_{i=1}^{k} \alpha_j \sigma_i(A_j) \right)^{1/\alpha_j}. \quad (2.5)$$

By (2.3)–(2.5), we obtain the desired result.

The corresponding result of Chen (1990) is a special case of Theorem 1 with each $\alpha_i = 1/m$.

Theorem 2. Let $A_1, A_2, \ldots, A_m \in M_{n \times n}$, $p > 1$, and $k \in \{1, 2, \ldots, n\}$. Then

$$\left(\sum_{i=1}^{k} \left(\sum_{j=1}^{m} \sigma_i(A_j) \right)^{\frac{p}{r}} \right)^{1/p} \leq \left(\sum_{i=1}^{m} \left(\sum_{j=1}^{k} \sigma_i(A_j) \right)^{\frac{p}{r}} \right)^{1/p} \leq \sum_{i=1}^{m} \left(\sum_{j=1}^{k} \sigma_i(A_j) \right)^{\frac{p}{r}}. \quad (2.6)$$

Proof. By (2.2), for any increasing convex function g on $[0, \infty)$,

$$(g(\sigma_i(A_1 + A_2 + \cdots + A_m))) \leq (g(\sigma_i(A_1) + \sigma_i(A_2) + \cdots + \sigma_i(A_m))). \quad (2.7)$$

Let $g(t) = t^p$ for $t \geq 0$. Then (2.6) is

$$\sum_{i=1}^{k} \left(\sum_{j=1}^{m} \sigma_i(A_1 + \cdots + A_m) \right)^{p} \leq \sum_{i=1}^{k} \left(\sum_{j=1}^{m} \sigma_i(A_1) + \sigma_i(A_2) + \cdots + \sigma_i(A_m) \right)^{p}. \quad (2.8)$$

By Minkowski’s inequality [see e.g. Marshall and Olkin (1979, p. 459)],

$$\left(\sum_{i=1}^{k} \left(\sigma_i(A_1) + \sigma_i(A_2) + \cdots + \sigma_i(A_m) \right) \right)^{1/p} \leq \sum_{j=1}^{m} \left(\sum_{i=1}^{k} \sigma_i(A_j) \right)^{1/p}. \quad (2.9)$$

By (2.7) and (2.8), we obtain the desired inequality.
Two remarks are in order:

Remark 1. By varying g in (2.6), we can obtain various inequalities.

Remark 2. If the A_j's in Theorem 2 are n.n.d., then Theorem 2 gives rise to the matrix version of Minkowski's inequality:

$$
\left[\text{tr} \left(\sum_{j=1}^{m} A_j \right)^p \right]^{1/p} \leq \sum_{j=1}^{m} (\text{tr} A_j_j)^{1/p}.
$$

By Theorem 6 in Section 3 (or even Lemma 1 above), equality occurs in (2.9) if and only if all A_j's are scalar multiples of one another.

3. INEQUALITIES FOR TRACES

We shall now prove the main result of this paper.

Theorem 3. Let A_1, A_2, \ldots, A_m be nonzero n.n.d. matrices in $M_{n \times n}$ and $\alpha_1, \alpha_2, \ldots, \alpha_m > 0$.

(a) Suppose that $\sum_{i=1}^{m} \alpha_i = 1$. Then

$$
\left| \text{tr} \left(\prod_{j=1}^{m} A_j^\alpha_j \right) \right| \leq \prod_{j=1}^{m} (\text{tr} A_j)^{\alpha_j},
$$

and equality occurs if and only if all A_j's are scalar multiples of A_1.

(b) Suppose that $\sum_{i=1}^{m} \alpha_i > 1$. Then (3.1) holds and equality occurs if and only if all A_j's are scalar multiples of A_1 and $r(A_j) = 1$.

Proof. (a): For $C = (c_{ij}) \in M_{n \times n}$, $|\text{tr} C| \leq \sum_{i=1}^{n} |c_{ii}| \leq \sum_{i=1}^{n} \sigma_i(C)$. So

$$
\left| \text{tr} \left(\prod_{j=1}^{m} A_j^\alpha_j \right) \right| \leq \sum_{i=1}^{n} \sigma_i \left(\prod_{j=1}^{m} A_j^\alpha_j \right),
$$

(3.2)
By Theorem 1,
\[
\sum_{i=1}^{n} \sigma_i \left(\prod_{j=1}^{m} A_{ij}^{j} \right) \leq \prod_{j=1}^{m} \left\{ \sum_{i=1}^{n} \left[\sigma_i (A_j^{ij}) \right]^{1/\alpha_j} \right\}^{\alpha_j}.
\] (3.3)

Since \(A_j\) is n.n.d., \(\sigma_i(A_j^{ij}) = \lambda_i(A_j^{ij}) = \lambda_i(A_j)^{\alpha_j}\), where \(\lambda_i(A_j)\) is the \(i\)th largest eigenvalues of \(A_j\). Thus
\[
\prod_{j=1}^{m} \left\{ \sum_{i=1}^{n} \left[\sigma_i (A_j^{ij}) \right]^{1/\alpha_j} \right\}^{\alpha_j} = \prod_{j=1}^{m} (\text{tr} A_j)^{\alpha_j}.
\] (3.4)

By (3.2), (3.3), and (3.4), we obtain (3.1).

Now for the occurrence of equality in (3.1), let \(j = 1, 2, \ldots, m\) and write
\[
A_j = P_j D_j P_j^*,
\] (3.5)
where \(P_j\) is unitary and \(D_j = (\delta_{ik} \lambda_k(A_j))\) is diagonal. Thus
\[
|\text{tr}(A_1 \alpha_1 A_2 \alpha_2 \cdots A_m \alpha_m)| = \text{tr}(P_m^* P_1^* D_1 \alpha_1 P_2 \alpha_2 D_2 \alpha_2 P_3 \alpha_3 \cdots P_m^* P_m D_m \alpha_m).
\] (3.6)

By a complex version of Theorem 5 of Kiers and Ten Berge (1989),
\[
|\text{tr}(P_m^* P_1 D_1 \alpha_1 P_2 \alpha_2 D_2 \alpha_2 P_3 \alpha_3 \cdots P_m^* P_m D_m \alpha_m)| \leq \text{tr}(D_1 \alpha_1 D_2 \alpha_2 \cdots D_m \alpha_m),
\] (3.7)
and equality occurs (if and) only if
\[
P_m^* P_1 = \pm N_m M_1^*, \quad P_j^* P_{j-1} = N_{j-1} M_j^*, \quad j = 2, 3, \ldots, m,
\] (3.8)
for some unitary matrices \(N_j\), \(M_j\), and \(L_j\) satisfying
\[
N_j C = M_j C = L_j C,
\] (3.9)
where
\[
C = (I_r, 0)', \quad L_j D_j \alpha_j = D_j \alpha_j L_j, \quad r = \min_{1 \leq j \leq m} r(D_j \alpha_j).
\] (3.10)
Since the product of two diagonal matrices is itself diagonal, (1.1) gives

$$\text{tr}(D_1^{a_1}D_2^{a_2} \cdots D_m^{a_m}) \leq \prod_{j=1}^{m} (\text{tr} D_j)^{a_j} = \prod_{j=1}^{m} (\text{tr} A_j)^{a_j},$$

and equality occurs if and only if for any $k = 2, 3, \ldots, m$,

$$D_k = a_k D_1 \quad \text{for some } a_k > 0.$$

So $r = r(D_j)$ for each $j = 1, 2, \ldots, m$. Write

$$N_1 = \begin{pmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{pmatrix}, \quad L_1 = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix},$$

where N_{11} and L_{11} are $r \times r$ matrices. By (3.9) and (3.10),

$$N_{11} = L_{11}, \quad N_{21} = L_{21}.$$

Since L_1 commutes with $D_1^{a_1}$, it commutes with

$$D_1 = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix},$$

where D is a nonsingular diagonal matrix. Thus

$$DL_{11} = L_{11}D, \quad L_{12} = 0, \quad L_{21} = 0.$$

By (3.15),

$$L_1 = \begin{pmatrix} L_{11} & 0 \\ 0 & L_{22} \end{pmatrix}.$$

Since L_1 is unitary,

$$L_{11}^{*}L_{11} = I_r = L_{11}L_{11}^{*}, \quad L_{22}^{*}L_{22} = I_{n-r} = L_{22}L_{22}^{*}.$$
Since N_1 is unitary, $N_1 N_1^* = I_n$ and therefore
\[N_{11} N_{11}^* + N_{12} N_{12}^* = I_r. \]
(3.18)

By (3.13), (3.17), and (3.18), $N_{12} N_{12}^* = 0$, whence $N_{12} = 0$. Thus
\[N_1 = \begin{pmatrix} N_{11} & 0 \\ 0 & N_{22} \end{pmatrix} = \begin{pmatrix} L_{11} & 0 \\ 0 & L_{22} \end{pmatrix}. \]
(3.19)

By (3.13), (3.15), and (3.19), $N_1 D_1 = D_1 N_1$. By the same argument, we obtain
\[N_j D_1 = D_1 N_j, \quad M_j D_1 = D_1 M_j. \]
(3.20)

By (3.5), (3.12), and (3.8),
\[
A_j = a_j P_j D_1 P_j^* \\
= a_j P_1 P_2^* P_3^* \cdots P_{j-1}^* P_j D_1 P_j^* P_{j-1} P_{j-1}^* \cdots P_2 P_2^* P_1 P_1^* \\
= a_j P_1 N_1 M_2^* N_2 M_3^* \cdots N_{j-1} M_j^* D_1 M_j N_j^* \cdots M_3 N_2^* M_2 N_1^* P_1^*.
\]

So by (3.20),
\[
A_j = a_j P_1 D_1 N_1 M_2^* N_2 M_3^* \cdots N_{j-1} M_j^* M_j N_j^* \cdots M_3 N_2^* M_2 N_1^* P_1^*.
\]

Since the N_j's and M_j's are unitary,
\[A_j = a_j P_1 D_1 P_1^* = a_j A_1. \]
(3.21)

Thus equality occurs in (3.1) only if (3.21) holds. It is easy to prove that (3.21) implies that equality occurs in (3.1).

(b): Let $\alpha = \sum_{j=1}^{m} \alpha_j$. Then by (a),
\[
\left| \text{tr} \left(\prod_{j=1}^{m} A_j^{\alpha} \right) \right| = \left| \text{tr} \left(\prod_{j=1}^{m} (A_j^{\alpha})^{\alpha_j/\alpha} \right) \right| \leq \prod_{j=1}^{m} \left(\text{tr} A_j^{\alpha_j/\alpha} \right),
\]
and equality occurs if and only if the A_j^α's are scalar multiples of one another.
Note now that for any nonzero n.n.d. matrix A in $M_{n \times n}$,

$$\text{tr} A^\alpha \leq (\text{tr} A)^\alpha,$$ \hspace{1cm} (3.22)

and equality occurs if and only if A is of rank 1. So (3.1) holds, and equality occurs only if all A_j's are scalar multiples of one another and are of rank 1.

We note that Chen (1988) obtained a special case of Theorem 3(b) where all $\alpha_j = 1$. By Theorem 3 and the arithmetic–geometric-mean inequality [see p. 455 of Marshall and Olkin (1979)], we obtained sharper lower and upper bounds for $\prod_{j=1}^m (\text{tr} A_j)^{\alpha_j}$:

Theorem 4. Let A_1, A_2, \ldots, A_m be nonzero n.n.d. matrices in $M_{n \times n}$ and $\alpha_1, \alpha_2, \ldots, \alpha_m$ be positive real numbers.

(a) Suppose that $\sum_{j=1}^m \alpha_j = 1$. Then

$$\left| \text{tr} \left(\prod_{j=1}^m A_j^{\alpha_j} \right) \right| \leq \prod_{j=1}^m (\text{tr} A_j)^{\alpha_j} \leq \sum_{j=1}^m \alpha_j \text{tr} A_j,$$ \hspace{1cm} (3.23)

and equality in the right-hand side occurs if and only if all $\text{tr} A_j$'s are equal; hence equality occurs in the left-hand side and in the right-hand side if and only if all A_j's are equal.

(b) Suppose that $\alpha = \sum_{j=1}^m \alpha_j > 1$. Then

$$\left| \text{tr} \left(\prod_{j=1}^m A_j^{\alpha_j} \right) \right| \leq \prod_{j=1}^m (\text{tr} A_j)^{\alpha_j} \leq \left(\sum_{j=1}^m \frac{\alpha_j}{\alpha} \text{tr} A_j \right)^{\alpha},$$ \hspace{1cm} (3.24)

and equality in the right-hand side occurs if and only if all $\text{tr} A_j$'s are equal; hence equality occurs in the left-hand side and in the right-hand side if and only if all A_j's are equal and are of rank 1.

Note that in (3.24): (a) if each $\alpha_j = 1$, then the inequality in the right-hand side is nothing but the matrix version of the geometric–arithmetic-mean inequality; (b) if $\alpha < 1$, then the inequality in the right-hand side holds; but the inequality in the left-hand side may not hold.
THEOREM 5. Let $i = 1, 2, \ldots, p, A_{i1}, A_{i2}, \ldots, A_{im}$ be nonzero n.n.d. matrices in $M_{n \times n}$, and $\alpha_1, \alpha_2, \ldots, \alpha_m$ be positive numbers such that $\sum_{j=1}^{m} \alpha_j = 1$. Then

$$\sum_{i=1}^{p} \left| \text{tr} \left(\prod_{j=1}^{m} A_{ij} \right) \right| \leq \prod_{j=1}^{m} \left(\sum_{i=1}^{p} \text{tr} A_{ij}^{1/\alpha_j} \right)^{\alpha_j}. \quad (3.25)$$

Proof. Let

$$b_j = \left(\sum_{i=1}^{p} \text{tr} A_{ij}^{1/\alpha_j} \right)^{-1}, \quad B_{ij} = b_j A_{ij}^{1/\alpha_j}. \quad (3.26)$$

Then by Theorem 4,

$$\left| \text{tr} \left(\prod_{j=1}^{m} B_{ij}^{\alpha_j} \right) \right| \leq \sum_{j=1}^{m} \alpha_j \text{tr} B_{ij}. \quad (3.27)$$

By (3.26) and (3.27),

$$\left| \text{tr} \left(\prod_{j=1}^{m} A_{ij} \right) \right| \prod_{j=1}^{m} b_j \leq \sum_{j=1}^{m} \alpha_j b_j \text{tr} A_{ij}^{1/\alpha_j},$$

whence

$$\sum_{i=1}^{p} \left| \text{tr} \left(\prod_{j=1}^{m} A_{ij} \right) \right| \prod_{j=1}^{m} b_j \leq \sum_{i=1}^{p} \sum_{j=1}^{m} \alpha_j b_j \text{tr} A_{ij}^{1/\alpha_j}$$

$$= \sum_{j=1}^{m} \alpha_j b_j \left(\sum_{i=1}^{p} \text{tr} A_{ij}^{1/\alpha_j} \right) = 1;$$

hence (3.25) follows from (3.26). \hfill \Box

Among other things, the proof of our main result, Theorem 3, requires Lemma 2 or, equivalently, Lemma 1, a result of Magnus (1987). In fact we
can use Theorem 3 to generalize Lemma 1:

THEOREM 6. Let A be a nonzero n.n.d. matrix in $M_{n \times n}$, p_1, p_2, \ldots, p_m be positive real numbers, and $p = p_1$.

(a) Suppose that $\sum_{i=1}^{m} 1/p_i = 1$. Then for any n.n.d. X_2, \ldots, X_m with each $\text{tr } X_j^{p_j} = 1$,

$$\left| \text{tr}(AX_2X_3 \cdots X_m) \right| \leq \left[\text{tr}(A^n) \right]^{1/p},$$

and equality occurs if and only if each $X_j^{p_j} = A^n/\text{tr } A^n$.

(b) Suppose that $\sum_{i=1}^{m} 1/p_i > 1$ and $r(A) = 1$. Then the conclusions of (a) still hold.

Theorem 3 can also be derived easily from Theorem 6. So Theorem 6 is just another way of stating Theorem 3. It is clear that Theorem 6 generalizes Lemma 1 and gives a representation of $(\text{tr } A^n)^{1/p}$ in terms of several variables. From this aspect, our paper can be viewed as a multivariate version of the paper by Magnus (1987) and generalizes all results therein.

We wish to thank the referee for his valuable suggestions and to thank Professor Kiers and Ten Berge for sending us their inductive proof of Theorem 5 in [8].

REFERENCES

Received 14 January 1991; final manuscript accepted 5 June 1991