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Licorice (Glycyrrhizae radix) is the roots and stolons of Glycyrrhiza uralensis Fischer or Glycyrrhiza glabra
Linnaeus in the Japanese Pharmacopoeia. Glycyrrhizae radix has been widely used as a sweetener and a
traditional medicine. A Glycyrrhizae radix extract contains many constituents and has antispasmodic,
antitussive, anti-ulcer, and anti-inflammatory effects. However, reports comparing the anti-inflammatory
effects of these constituents are very few. Here, we purified several constituents from the roots and
stolons of G. uralensis and examined and compared their anti-inflammatory effects by monitoring the
levels of the inflammatory mediator, nitric oxide (NO), in interleukin (IL)-1β-treated rat hepatocytes.
From the G. uralensis extract, we purified the main constituent glycyrrhizin and the constituents that are
characteristic of G. uralensis (chalcones and flavanones). These constituents suppressed NO production in
IL-1β-treated rat hepatocytes, and isoliquiritigenin showed the greatest suppression activity. Iso-
liquiritigenin, isoliquiritin, and liquiritigenin significantly decreased both protein and mRNA for the in-
ducible nitric oxide synthase. These constituents reduced the levels of mRNAs encoding tumor necrosis
factor α and IL-6. In contrast, although glycyrrhizin is abundant, it showed a 100-fold lower potency in
NO suppression. Therefore, both glycyrrhizin and the minor constituents (isoliquiritigenin, isoliquiritin,
and liquiritigenin) may be responsible for the anti-inflammatory effects of G. uralensis. It is also implied
that these constituents may have a therapeutic potential for inflammatory hepatic disorders.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Licorice is as a natural sweetener in foods and a traditional
medicine that is used worldwide to treat a variety of diseases, such
as peptic ulcer and hepatitis [1]. In the Japanese Pharmacopoeia,
licorices are defined as the dried roots and stolons of Glycyrrhiza
uralensis Fischer and Glycyrrhiza glabra Linnaeus and are desig-
nated Glycyrrhizae radix (kanzo in Japanese) [2]. Glycyrrhizae ra-
dix has been used in many formulae of Japanese herbal (Kampo)
medicines, such as kanzoto and shakuyakukanzoto. Glycyrrhizae
radix has a variety of pharmacological properties, including anti-
spasmodic, antitussive, anti-ulcer, and anti-inflammatory effects,
and attenuates the adverse effects of other components in the
Kampo formulae [3].

Glycyrrhizae radix includes many constituents: triterpene
B.V. This is an open access article u
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glycosides (mainly, glycyrrhizin), chalcones (e.g., isoliquiritigenin
and isoliquiritin), and flavanones (e.g., liquiritigenin and liquiritin)
[4,5]. Glycyrrhizin (also designated glycyrrhizic acid) is a glycoside
of glycyrrhetinic acid (also designated glycyrrhetic acid) (Fig. 1A)
and is abundantly present in the roots and stolons. This saponin is
the major sweet constituent and the main bioactive compound in
Glycyrrhizae radix [1], which displays hepatoprotective properties
in humans and mice [6,7]. The contents of isoliquiritin, liquir-
itigenin, and liquiritin in G. uralensis are significantly higher than
those of G. glabra; therefore, these constituents are characteristic
of G. uralensis [4,5]. As far as we searched the literatures to date,
there are no reports that compare anti-inflammatory activity of
several Glycyrrhizae radix constituents using any types of cells.

The inflammatory mediator nitric oxide (NO) plays a pivotal
role in innate immunity and pathophysiology of various diseases,
and inducible nitric oxide synthase (iNOS) synthesizes NO in he-
patocytes and macrophages [8,9]. Similarly in the hepatocytes in
the liver, the iNOS gene is induced by the inflammatory cytokine
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Identification of the constituents in a G. uralensis water extract. (A) The
chemical structures of the constituents of G. uralensis. GlcA, glucuronic acid. The
C-30 of glycyrrhizin may be conjugated with glucuronic acid in the liver [34].
(B) The fractions of a G. uralensis extract suppress NO induction in rat hepatocytes.
A G. uralensis extract was stepwise fractionated by methanol (0–100%) to give
fractions (GR-0 to 100). The hepatocytes were treated with IL-1β and/or each
fraction for 8 h. The NO levels in the medium (mean7SD) are shown. **Po0.01
versus IL-1β alone.
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interleukin-1β (IL-1β) in primary cultured rat hepatocytes, and
this induction mimics liver injury, such as acute hepatitis [9,10]. As
iNOS protein is induced, the NO level linearly increases from 6 h to
12 h after the addition of IL-1β.

Using the hepatocytes, we demonstrated that NO is a sensitive
marker that can be used to monitor inflammatory responses to
anti-inflammatory drugs [11], Japanese herbal medicines [12] and
their constituents, such as chlorogenic acid (i.e., 5-O-caffeoylquinic
acid) in the flowers and buds of the Japanese honeysuckle (Loni-
cera japonica) [13] and nobiletin (polymethoxylated flavone) in the
peels of Citrus unshiu [14]. Only one paper using primary cultured
hepatocytes, which described anti-inflammatory effects of gly-
cyrrhizin, was found in the literatures that we have searched to
date [15]. This report suggested NO suppression activity of gly-
cyrrhizin in primary cultured hepatocytes that were isolated from
Bacillus Calmette-Guérin (BCG)-vaccinated rats. Hepatoprotective
herbal medicines suppress the IL-1β-induced expression of iNOS
and inflammatory cytokines, such as tumor necrosis factor α (TNF-
α) and interleukin-6 (IL-6), in hepatocytes [13,14]. The transcrip-
tion factor nuclear factor κB (NF-κB) is involved in these processes
by regulating the expression of iNOS gene and these inflammatory
genes [16–18].

iNOS induction is also regulated via a post-transcriptional
mechanism that is mediated by antisense transcripts (asRNAs) [9].
asRNAs are transcribed from the iNOS gene and interact with iNOS
mRNA to stabilize iNOS mRNA [9,19–21]. Recently, herbal con-
stituents (e.g., chlorogenic acid [13], nobiletin [14], gomisin N [18],
and shisoflavanone A [22]), as well as Kampo formulae (e.g., in-
chinkoto [12] and ninjinyoeito [23]), have been reported to de-
crease the levels of iNOS asRNA, leading to the inhibition of iNOS
expression.

In the present study, we purified glycyrrhizin and several
constituents that are characteristic of G. uralensis. Next, we ex-
amined whether the constituents (aglycone–glycoside pairs) sup-
pressed NO production, as well as iNOS gene expression, in IL-1β-
treated hepatocytes. Finally, we investigated which constituent
(s) is responsible for the NO suppression activity of Glycyrrhizae
radix.
2. Materials and methods

2.1. Materials

Glycyrrhizin, isoliquiritigenin, and liquiritigenin were pur-
chased from Wako Pure Chemical Industries Ltd. (Osaka, Japan) as
standards. Glycyrrhetinic acid was purchased from Tokyo Chemical
Industry Co., Ltd. (Tokyo, Japan). These compounds (greater than
95% purity) were dissolved in dimethyl sulfoxide.

2.2. Plant materials and extraction

The roots and stolons of G. uralensis Fischer, which were col-
lected from the Inner Mongolia Autonomous Region, China, and
identified and authenticated by Dr. Yutaka Yamamoto (Tochimoto
Tenkaido Co. Ltd., Osaka, Japan), were purchased from Tochimoto
Tenkaido Co. Ltd. A voucher specimen was deposited in the Rit-
sumeikan Herbarium of Pharmacognosy, Ritsumeikan University,
under the Code number RIN-GU-013. The dried roots and stolons
of G. uralensis (Glycyrrhizae radix; 502.6 g) were pulverized and
extracted by hot water under reflux. The solvent was evaporated
under reduced pressure to yield a hot-water extract (160.0 g).

2.3. Isolation of the constituents from a G. uralensis extract

The G. uralensis extract was fractionated on a Diaion HP20
column (Mitsubishi Chemical Corporation, Tokyo, Japan) by the
elution stepwise by methanol–water mixture (0, 20, 40, 60, 80,
and 100% methanol) to give the fractions (GR-0, 20, 40, 60, 80, and
100, respectively). The fraction GR-80 showing high NO suppres-
sion activity was further purified by Wakogel C-200 chromato-
graphy (Wako Pure Chemical Industries Ltd.) or Cosmosil 75
C18-Prep octadecylsilyl chromatography (Nacalai Tesque, Kyoto,
Japan). Finally, we purified glycyrrhizin (3850 mg), iso-
liquiritigenin (4.3 mg), isoliquiritin (234 mg), liquiritigenin
(16.4 mg), and liquiritin (8.8 mg). To determine the structures, the
1H- and 13C nuclear magnetic resonance (NMR) spectra, infrared
(IR) spectra, and ultraviolet (UV) spectra were analyzed (Supple-
mentary data).

2.4. Preparation of primary cultured rat hepatocytes

Male Wistar rats were purchased from Charles River Labora-
tories Japan Inc. (Yokohama, Japan), housed at 21–23 °C and ac-
climatized. Hepatocytes were isolated from the rat livers by col-
lagenase perfusion [24]. The isolated cells were resuspended in
Williams’ E (WE) medium (Sigma-Aldrich Corp., St. Louis, MO,
USA), seeded at 1.2�106 cells/dish, and incubated at 37 °C for 2 h,
after which the medium was replaced. The hepatocytes were in-
cubated at 37 °C overnight and analyzed the next day. All of the
animal care and experimental procedures were carried out in ac-
cordance with the guidelines and laws of the Japanese government
and were approved by the Animal Care Committee of Ritsumeikan
University, Biwako-Kusatsu Campus.

2.5. Determination of the NO levels and LDH activity

The hepatocytes were each treated with fraction or a con-
stituent in the presence of 1 nM rat IL-1β (PeproTech, Rocky Hill,
NJ, USA) for 8 h. If required, 1400W (Abcam plc., Cambridge,
Cambridgeshire, United Kingdom), a selective iNOS inhibitor [25],
was added to the medium to a final concentration of 50 nM. The
levels of nitrite (a stable metabolite of NO) in the medium were
measured using the Griess method [26]. Briefly, 150 μl of the
medium or sodium nitrite (standard) was mixed with 150 μl of the
Griess reagent [0.5% sulfanilamide, 0.05% N-(1-napthyl)
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ethylenediamine, and 2.5% phosphoric acid]. After 5 min at room
temperature, absorbance at 540 nmwas measured. To monitor the
cytotoxicity, the LDH activities in the medium were measured
using LDH Cytotoxicity Detection Kits (Takara Bio Inc., Otsu, Shiga,
Japan). Unless cytotoxicity was observed, the half-maximal in-
hibitory concentrations (IC50) were determined [11].

2.6. Measurement of direct NO quenching activity of constituents

Each constituent was added to the WE medium containing
20 μM NaNO2 and incubated at 37 °C for 1.5 h. This medium
(150 μl) was mixed with the Griess reagent (150 μl) and incubated
at room temperature for 5 min. Absorbance at 540 nm was mea-
sured in triplicate to monitor the decrease of nitrite by the con-
stituent. The levels of nitrite using the medium containing NaNO2

alone was set to 100%.

2.7. Western blot analyses

The hepatocytes were treated with 1 nM IL-1β and each con-
stituent for 8 h, and whole-cell lysates were prepared [18]. Briefly,
the hepatocytes were lysed, subjected to sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and im-
munoblotted onto a Sequi-Blot membrane (Bio-Rad, Hercules, CA,
USA). Immunostaining was performed using primary antibodies
that were raised against rat iNOS (Thermo Fisher Scientific, Wal-
tham, MA, USA) and rat β-tubulin (Cell Signaling Technology Inc.,
Danvers, MA, USA), followed by visualization with an Enhanced
Chemiluminescence Blotting Detection Reagent (GE Healthcare
Biosciences Corp., Piscataway, NJ, USA).

2.8. Reverse transcription-polymerase chain reactions (RT-PCR)

The hepatocytes were treated with 1 nM IL-1β and/or each
constituent for 4 h, and the total RNA was prepared [9]. The cDNA
was reverse-transcribed in a strand-specific manner with an oligo
(dT) primer for mRNAs and a sense primer for iNOS asRNA, and
PCR was performed with paired primers [9]. The primer sequences
CCAACCTGCAGGTCTTCGATG and GTCGATGCACAACTGGGTGAAC
(5′—43′) were used to detect the iNOS mRNA by cDNA amplifi-
cation. The primer sequences that were used for the iNOS
asRNA detection were TGCCCCTCCCCCACATTCTCT (RT), AC-
CAGGAGGCGCCATCCCGCTGC and CAAGGAATTATACACGGAA-
GGGCC (PCR). The primer sequences for PCR were TCCCAA-
CAAGGAGGAGAAGTTCC and GGCAGCCTTGTCCCTTGAAGAGA for
the TNF-α mRNA; GAGAAAAGAGTTGTGCAATGGCA and ATAGG-
CAAATTTCCTGGTTATATCC for the IL-6 mRNA; and TCTGG-
TTGGAATGGTGACAACATGC and CCAGGAAGAGCTTCACTCAAAGCTT
for the elongation factor 1α (EF) mRNA as internal controls. The
mRNA levels were estimated in triplicate by quantitative PCR with
the Thermal Cycler Dice Real Time System (Takara Bio Inc.), and
the obtained values were normalized to EF mRNA [9].

2.9. Statistical analyses

The results that are presented in the figures are representative
of at least three independent experiments that yielded similar
results. The values are presented as the mean7standard deviation
(SD). The differences were analyzed using Student’s t-test. The
statistical significance was set at Po0.05 and Po0.01.
3. Results and discussion

3.1. The fractions of a G. uralensis extract suppress the NO induction
in hepatocytes

We extracted the dried roots and stolons of G. uralensis (Gly-
cyrrhizae radix) using hot water, and this extract (GR extract) was
subjected to fractionation by hydrophobicity. Because the high
content of saponins (mostly glycyrrhizin) inhibited phase separa-
tion, the GR extract was not successfully fractionated by the
standard ABC method [13] (data not shown). Therefore, we per-
formed Diaion HP-20 chromatography to fractionate the GR ex-
tract into six fractions.

Then, we investigated the effects of the resultant fractions on
NO induction in IL-1β-treated rat hepatocytes. When each fraction
was simultaneously added to the medium with IL-1β, all of the
fractions significantly decreased the levels of NO production
(Fig. 1B). Three fractions GR-60 (21.2 g), GR-80 (22.0 g) and GR-100
(3.7 g), which were eluted with 60%, 80%, and 100% methanol,
respectively, effectively suppressed NO production. The LDH ac-
tivity in the medium was very low (data not shown), suggesting
that all of the fractions of the GR extract were not toxic to hepa-
tocytes at the concentrations that are indicated in the figure. To-
gether, these data indicate that the three fractions GR-60, GR-80,
and GR-100 may include active compounds that may suppress NO
induction.

3.2. Several constituents in a GR extract suppress NO induction in
hepatocytes

Next, we tried to isolate the constituents that effectively sup-
pressed NO induction from the fractions showing NO suppression
activity. Because the amount of the fraction GR-100 was much
smaller, the fractions GR-60 and GR-80 were subjected to thin
layer chromatography. This analysis showed that the major spots
of both fractions were similarly developed (data not shown).
Therefore, we selected the middle fraction GR-80 and then pur-
ified five constituents from this fraction, as described in Supple-
mentary data. Finally, we identified glycyrrhizin and two agly-
cone–glycoside pairs (isoliquiritigenin and isoliquiritin; and li-
quiritigenin and liquiritin) by analyzing the NMR and UV spectra
(Supplementary data). These constituents except for glycyrrhizin
are characteristic of G. uralensis [4,5].

To examine whether the constituents in a GR extract affect iNOS
gene expression, we added each constituent to the medium for
hepatocytes. Among these constituents, isoliquiritigenin sig-
nificantly suppressed NO induction in the presence of IL-1β in a
dose-dependent manner (Fig. 2A). Similarly, isoliquiritin and li-
quiritigenin significantly suppressed NO induction. When evalu-
ating the LDH activity in the medium, these constituents displayed
no cytotoxicity at the concentrations that are indicated in Fig. 2A.
When the IC50 values were calculated (Table 1), isoliquiritigenin
showed the highest potency in NO suppression activity, with an
IC50 value of 11.9 μM. In another assay system using a mouse
RAW264.7 macrophage line, an IC50 value of isoliquiritigenin of
7.8 μM was reported [27].

In contrast, the main constituent glycyrrhizin suppressed NO
induction only at a high concentration, showing an IC50 value of
1176 μM, which is approximately 100-fold higher than that of
isoliquiritigenin. Then, we examined the degradation of glycyr-
rhizin by incubating the WE medium containing 1000 μM gly-
cyrrhizin at 37 °C for 8 h. Glycyrrhizin was purified by Diaion HP-
20 chromatography and analyzed by high-performance liquid
chromatography (HPLC). The content of glycyrrhizin did not
change by the incubation (data not shown). Furthermore, when
the WE medium containing 1000 μM glycyrrhizin was similarly
incubated in the presence of hepatocytes, the content of glycyr-
rhizin was almost the same as that of the medium without in-
cubation (data not shown). These results suggest that the



Fig. 2. The G. uralensis constituents suppress iNOS expression in hepatocytes. (A) The effects of the constituents in a GR extract on the induction of NO production. The
hepatocytes were treated with IL-1β and/or each constituent for 8 h. The NO levels in the mediumwere measured in triplicate (mean7SD). *Po0.05 and **Po0.01 versus IL-
1β alone. ILG, isoliquiritigenin; IL, isoliquiritin; LG, liquiritigenin. (B) The effects of the constituents on the induction of iNOS protein expression. The hepatocytes were treated
with IL-1β and/or each constituent for 8 h. The cell extracts were resolved using SDS-PAGE and immunoblotted with an anti-iNOS or anti-β-tubulin antibody (internal
control). (C) The effects of 1400W, a selective iNOS inhibitor, on the levels of NO (upper panel) and iNOS mRNA (lower panel). The hepatocytes were treated with 50 nM
1400W and/or 100 μM isoliquiritin in the presence of 1 nM IL-1β for 8 h (NO) or 4 h (iNOS mRNA). The NO levels in the mediumwere measured in triplicate (mean7SD). The
total RNA from the cells was analyzed using quantitative RT-PCR to estimate the levels of iNOS mRNA. The mRNA levels were measured in triplicate (mean7SD), the
obtained values were normalized to EF mRNA (internal control), and the value in the presence of IL-1β alone was set at 100%. **Po0.01.

Table 1
The effects of the G. uralensis constituents on NO induction in rat hepatocytes.

Compound Sugar Content [%]a IC50 [μM]b LogPc

Triterpenes:
Glycyrrhetinic acid None ND NA 5.45
Glycyrrhizin Glucuronic acid 3.3771.57 11767482 2.74
Chalcones:
Isoliquiritigenin None 0.05–0.65 11.971.5 3.04
Isoliquiritin Glucose 0.3270.22 40.477.5 0.82
Flavanones:
Liquiritigenin None 0.1170.12 41.275.9 2.79
Liquiritin Glucose 1.6871.06 NA 0.43

ND, not determined; NA, not applicable due to high cytotoxicity (glycyrrhetinic
acid) or low NO suppression activity (liquiritin).

a The contents of isoliquiritigenin (range) [5] and the others (mean7SD;
n¼87) [4] in a G. uralensis extract.

b The half-maximal inhibitory concentration of nitric oxide (NO) production in
hepatocytes (mean7SD; n¼3–5).

c n-Octanol/water partition coefficient as predicted using the ALOGPS 2.1 pro-
gram [29].

R. Tanemoto et al. / Biochemistry and Biophysics Reports 2 (2015) 153–159156
degradation of glycyrrhizin did not occur during the incubation at
37 °C for 8 h regardless of the presence of hepatocytes, thereby not
affecting its IC50 value.

To investigate whether the constituents in a GR extract had
direct NO quenching activity, assays to measure the NO quenching
were performed, as described in Section 2. We added constituents
to final concentrations around their IC50 values (glycyrrhizin,
1000 μM; isoliquiritigenin, 10 μM; isoliquiritin, 40 μM; and li-
quiritigenin, 40 μM) to the medium containing 20 μM NaNO2. The
decreases of NO levels were less than 5% and were statistically not
significant (P40.05), comparing with the NO levels of the medium
containing NaNO2 alone. These data suggest that any of these
constituents did not directly quench NO.
3.3. The G. uralensis constituents inhibit iNOS gene expression in
hepatocytes

To further investigate the effect of the active G. uralensis con-
stituents on iNOS gene expression, we examined the expression of
the iNOS protein in hepatocytes. As shown in Fig. 2B, western blot
analyses indicated that isoliquiritigenin, isoliquiritin, and liquir-
itigenin decreased the iNOS protein expression that was induced
by IL-1β.

Then, we examined a possibility that these constituents in-
hibited enzyme activity of iNOS protein. Therefore, we added
isoliquiritin and/or 1400W [25], which is a selective iNOS inhibitor
and does not affect the expression of iNOS mRNA, to the medium
and measured the levels of both NO and iNOS mRNA. As shown in
Fig. 2C, the addition of 1400W significantly decreased the NO le-
vels, and isoliquiritin also decreased the NO levels, suggesting that
1400W and isoliquiritin showed an additive effect. The addition of
1400W, however, did not decrease in the levels of iNOS mRNA,
whereas isoliquiritin significantly reduced the levels of iNOS
mRNA (lower panel). Isoliquiritin also decreased iNOS protein
(Fig. 2B), although isoliquiritin did not inhibit enzyme activity of
iNOS protein (Fig. 2C). Therefore, isoliquiritin may suppress the
iNOS gene expression by reducing the iNOS mRNA, resulting in the
decrease of iNOS protein.

Quantitative RT-PCR analyses revealed that the constituents
including isoliquiritin significantly reduced iNOS mRNA levels in a
dose-dependent manner (Fig. 3A), suggesting that these con-
stituents suppressed the induction of iNOS mRNA. Taken together,
isoliquiritigenin, isoliquiritin, and liquiritigenin decreased the le-
vels of both iNOS mRNA and protein. These results indicate that
the three constituents inhibited the IL-1β-induced expression of
the iNOS gene at the transcriptional level.

It is possible that the constituents suppress iNOS expression at
the post-transcriptional level because iNOS asRNA interacts with



Fig. 3. Three constituents reduced the expression of the iNOS gene and inflammatory genes. The hepatocytes were treated with IL-1β and/or each constituent for 4 h. The
total RNA from the cells was analyzed using quantitative RT-PCR to estimate the levels of mRNAs or iNOS asRNA. The mRNA levels were measured in triplicate (mean7SD),
the obtained values were normalized to EF mRNA, and the value in the presence of IL-1β alone was set at 100%. The relative levels of iNOS mRNA (A), iNOS asRNA (B), TNF-α
mRNA (C), and IL-6 mRNA (D) are shown. A negative control PCR using total RNA without RT did not give amplification (data not shown). ILG, isoliquiritigenin; IL, iso-
liquiritin; LG, liquiritigenin. *Po0.05 and **Po0.01 versus IL-1β alone.
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and stabilizes iNOS mRNA [9,21]. Therefore, we estimated the le-
vels of iNOS asRNA by quantitative RT-PCR. Isoliquiritigenin, iso-
liquiritin, and liquiritigenin significantly reduced iNOS asRNA le-
vels (Fig. 3B). Because decreases in iNOS asRNA lead to decreased
iNOS mRNA stability, these results indicate that the three con-
stituents may post-transcriptionally regulate iNOS mRNA levels by
reducing iNOS asRNA stability.

Both transcriptional and post-transcriptional mechanisms to
regulate iNOS expression may be targets of herbal medicines. The
Kampo formula inchinkoto and herbal constituents, such as go-
misin N and nobiletin, affect the nuclear translocation and acti-
vation of NF-κB, leading to the suppression of iNOS gene expres-
sion [12,14,18].

3.4. The G. uralensis constituents suppress inflammatory genes

We examined whether the constituents that were isolated from
a G. uralensis extract affect the expression of inflammatory genes
in hepatocytes. As shown in Figs. 3C and D, the G. uralensis con-
stituents decreased the levels of the mRNAs encoding TNF-α and
IL-6, whereas the inflammatory cytokine IL-1β induced the ex-
pression of these mRNAs. After tissue damage or bacterial infec-
tion, IL-6 is an important mediator of an acute phase response in
the hepatocytes [28]. Because the constituents down-regulated IL-
6 mRNA, these results support that the G. uralensis constituents
may have anti-inflammatory effects.

NF-κB is believed to regulate the mRNA expression of these
inflammatory genes through the NF-κB-binding site(s) in their
promoters [16,29]. Indeed, liquiritigenin suppressed iNOS expres-
sion by inhibiting NF-κB activation in RAW264.7 macrophages
[30,31]. NF-κB also regulates the transcription of iNOS asRNA [9],
and the G. uralensis constituents decreased the levels of iNOS
asRNA (Fig. 3B). Therefore, it is likely that the constituents in a G.
uralensis extract reduce NF-κB activity, resulting in the inhibition
of expression of NF-κB-regulating genes, including not only iNOS
but also inflammatory genes in hepatocytes.

3.5. The NO suppression activity of the G. uralensis constituents

We further compared the effects of the aglycone–glycoside
pairs in the G. uralensis constituents. An aglycone of glycyrrhizin is
glycyrrhetinic acid, which is believed to be an active metabolite
[32]. When glycyrrhizin is orally administered, intestinal bacteria
hydrolyze it to glycyrrhetinic acid, which is then absorbed in the
intestine and transferred to the liver [32]. When glycyrrhetinic
acid was added to the medium, it showed toxicity to rat hepato-
cytes (i.e., LDH activity in the medium) at a concentration of more
than 40 μM (data not shown). In contrast, glycyrrhizin did not
display cytotoxicity at 1000 μM (data not shown).

The contents of isoliquiritigenin, isoliquiritin, or liquiritigenin
were much lower than glycyrrhizin [4,5] but displayed high NO
suppression activities, with IC50 values of 11.9–41.2 μM (Table 1).
In contrast, although glycyrrhizin is highly abundant (3.37%) in G.
uralensis, it possessed an IC50 value of 1176 μM in NO suppression.
Together with these data, the NO suppression activity of a GR
extract can be attributed to the activities of both glycyrrhizin and
the three constituents. Because NO is an inflammatory mediator,
these constituents may be responsible for the anti-inflammatory
effects of G. uralensis.

3.6. Lipophilicity of the G. uralensis constituents

The mechanism how the G. uralensis constituents affect in-
tracellular signal transduction remains unclear. If a constituent is
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relatively hydrophobic, the plasma membrane may be permeable
to the constituent. As a marker of lipophilicity (hydrophobicity),
we predicted the n-octanol/water partition coefficient (logP) using
the ALOGPS 2.1 program [33]. The LogP values of the G. uralensis
compounds had IC50 values that ranged from 0.82 to 3.04 (Table 1).
In contrast, glycyrrhetinic acid, which is a hydrolyzed metabolite
of glycyrrhizin and shows toxicity to hepatocytes, had a high logP
value, suggesting that glycyrrhetinic acid may be easily absorbed
by the cell. Glycyrrhetinic acid, which is hydrolyzed from glycyr-
rhizin, is almost completely metabolized through glucuronidation
and/or sulfation in the liver [34]. Therefore, the concentration of
glycyrrhetinic acid in the liver is assumed to be very low; thus,
hepatotoxicity may not appear in vivo. Once a constituent enters
into the cell, it may interact with various proteins, such as protein
kinases. Alternatively, flavonoids from G. uralensis may bind to
mRNA or asRNA because flavonoids (i.e., catechins and apigenin)
bind to RNA [35,36]. It is possible that these intracellular interac-
tions may affect gene expression.

3.7. The potential use of the G. uralensis constituents for an anti-
inflammatory therapy

We compared the NO suppression potency of the G. uralensis
constituents with that of other herbal constituents in hepatocytes.
The IC50 value of isoliquiritigenin was much lower than that of
nobiletin (51 μM) [14], suggesting that isoliquiritigenin has high
potency in NO suppression. Furthermore, isoliquiritigenin, iso-
liquiritin, and liquiritigenin decreased the mRNA levels of in-
flammatory cytokines, including TNF-α and IL-6 (Fig. 3C, D). In
contrast, an IC50 value of glycyrrhizin was higher than that of
chlorogenic acid (652 μM) [13]. Although abundant glycyrrhizin
showed much lower potency in NO suppression in hepatocytes
(Table 1), its hepatoprotective activities have been reported [6,7].
Taken together, the anti-inflammatory activity of G. uralensis in
hepatocytes may be attributed to the activities of not only gly-
cyrrhizin but also the three constituents. Each constituent may be
differentially responsible for a variety of pharmacological effects of
G. uralensis.

The G. uralensis constituents have potential values to treat in-
flammatory diseases, especially viral hepatitis, alcoholic liver dis-
eases, and non-alcoholic steatohepatitis (NASH). Similarly to her-
bal medicines for prostate cancer [37], future clinical trials are
required to examine whether the G. uralensis constituents are used
as a complementary and alternative medicine for an anti-in-
flammatory therapy for inflammatory hepatic disorders.
Acknowledgments

We would like to thank Mrs. Noriko Kanazawa for her secre-
tarial assistance and Miss Sumire Kawamura and Miss Kaede Ish-
ikawa for their technical assistance.
Appendix A. Supplementary information

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.bbrep.2015.06.
004.
References

[1] M.N. Asl, H. Hosseinzadeh, Review of pharmacological effects of Glycyrrhiza sp.
and its bioactive compounds, Phytother. Res. 22 (2008) 709–724.

[2] The Committee on the Japanese Pharmacopoeia, The Japanese Pharmacopoeia,
16th ed., The Ministry of Health, Labour and Welfare, Japan, 2011.
[3] K. Takagi, The pharmacological action of Glycyrrhizae radix, J. Tradit. Sino-Jpn.

Med. 2 (1981) 34–37.
[4] K. Kondo, M. Shiba, R. Nakamura, et al., Constituent properties of licorices

derived from Glycyrrhiza uralensis, G. glabra, or G. inflata identified by genetic
information, Biol. Pharm. Bull. 30 (2007) 1271–1277.

[5] S. Zhu, R. Sugiyama, J. Batkhuu, et al., Survey of Glycyrrhizae radix resources in
Mongolia: chemical assessment of the underground part of Glycyrrhiza ur-
alensis and comparison with Chinese Glycyrrhizea radix, J. Nat. Med. 63 (2009)
137–146.

[6] P. Muriel, Y. Rivera-Espinoza, Beneficial drugs for liver diseases, J. Appl. Toxicol.
28 (2008) 93–103.

[7] N. Tsuruoka, K. Abe, K. Wake, et al., Hepatic protection by glycyrrhizin and
inhibition of iNOS expression in concanavalin A-induced liver injury in mice,
Inflamm. Res. 58 (2009) 593–599.

[8] M. Colasanti, H. Suzuki, The dual personality of NO, Trends Pharmacol. Sci. 13
(2000) 249–252.

[9] K. Matsui, M. Nishizawa, T. Ozaki, et al., Natural antisense transcript stabilizes
inducible nitric oxide synthase messenger RNA in rat hepatocytes, Hepatology
47 (2008) 686–697.

[10] H. Kitade, K. Sakitani, K. Inoue, et al., Interleukin 1beta markedly stimulates
nitric oxide formation in the absence of other cytokines or lipopolysaccharide
in primary cultured rat hepatocytes but not in Kupffer cells, Hepatology 23
(1996) 797–802.

[11] H. Inaba, E. Yoshigai, T. Okuyama, et al., Antipyretic analgesic drugs have dif-
ferent mechanisms for regulation of the expression of inducible nitric oxide
synthase in hepatocytes and macrophages, Nitric Oxide 44 (2015) 61–70.

[12] T. Matsuura, M. Kaibori, Y. Araki, et al., Japanese herbal medicine, inchinkoto
inhibits inducible nitric oxide synthase induction in interleukin-1β-stimulated
hepatocytes, Hepatol. Res. 42 (2012) 76–90.

[13] N. Ohno, E. Yoshigai, T. Okuyama, et al., Chlorogenic acid from the Japanese
herbal medicine Kinginka (Flos Lonicerae japonicae) suppresses the expression
of inducible nitric oxide synthase in rat hepatocytes, HOAJ Biol. 1 (2012) 2,
http://dx.doi.org/10.7243/2050-0874-1-2.

[14] E. Yoshigai, T. Machida, T. Okuyama, et al., Citrus nobiletin suppresses in-
ducible nitric oxide synthase gene expression in interleukin-1β-treated he-
patocytes, Biochem. Biophys. Res. Commun. 439 (2013) 54–59.

[15] Q.Z. Zheng, Y.J. Lou, Pathologic characteristics of immunologic injury in pri-
mary cultured rat hepatocytes and protective effect of glycyrrhizin in vitro,
Acta Pharmacol. Sin. 24 (2003) 771–777.

[16] T. Lawrence, The nuclear factor NF-κB pathway in inflammation, Cold Spring
Harb. Perspect. Biol. 1 (2009) a001651.

[17] K. Sakitani, M. Nishizawa, K. Inoue, et al., Synergistic regulation of inducible
nitric oxide synthase gene by CCAAT/enhancer-binding protein β and nuclear
factor κB in hepatocytes, Gene Cells 3 (1998) 321–330.

[18] Y. Takimoto, H.Y. Qian, E. Yoshigai, et al., Gomisin N in herbal drug gomishi
(Schisandra chinensis) suppresses inducible nitric oxide synthase gene via C/
EBPβ and NF-κB in rat hepatocytes, Nitric Oxide 28 (2013) 47–56.

[19] M. Nishizawa, T. Okumura, Y. Ikeya, et al., Post-transcriptional inducible gene
regulation by natural antisense RNA, Front. Biosci. (Landmark Ed.) 20 (2015)
1–36.

[20] H. Yoshida, A.H. Kwon, K. Habara, et al., Edaravone inhibits the induction of
iNOS gene expression at transcriptional and posttranscriptional steps in
murine macrophages, Shock 30 (2008) 734–739.

[21] E. Yoshigai, T. Hara, Y. Araki, et al., Natural antisense transcript-targeted reg-
ulation of inducible nitric oxide synthase mRNA levels, Nitric Oxide 30 (2013)
9–16.

[22] A. Nakajima, Y. Yamamoto, N. Yoshinaka, et al., A new flavanone and other
flavonoids from green perilla leaf extract inhibit nitric oxide production in
interleukin 1β-treated hepatocytes, Biosci. Biotechnol. Biochem. 79 (2015)
138–146.

[23] Y. Tanaka, M. Kaibori, H. Miki, et al., Japanese Kampo medicine, ninjinyoeito,
inhibits the induction of iNOS gene expression in proinflammatory cytokine-
stimulated hepatocytes, Br. J. Pharm. Res. 4 (2014) 2226–2244, http://dx.doi.
org/10.9734/BJPR/2014/13301#sthash.eOSpm9zn.dpuf.

[24] T. Kanemaki, H. Kitade, Y. Hiramatsu, et al., Stimulation of glycogen de-
gradation by prostaglandin E2 in primary cultured rat hepatocytes, Pros-
taglandins 45 (1993) 459–474.

[25] L.L. Thomsen, J.M. Scott, P. Topley, et al., Selective inhibition of inducible nitric
oxide synthase inhibits tumor growth in vivo: studies with 1400W, a novel
inhibitor, Cancer Res. 57 (1997) 3300–3304.

[26] L.C. Green, D.A. Wagner, J. Glogowski, et al., Analysis of nitrate, nitrite, and
[15N]nitrate in biological fluids, Anal. Biochem. 126 (1982) 131–138.

[27] T. Takahashi, N. Takasuka, M. Iigo, et al., Isoliquiritigenin, a flavonoid from li-
corice, reduces prostaglandin E2 and nitric oxide, causes apoptosis, and sup-
presses aberrant crypt foci development, Cancer Sci. 95 (2004) 448–453.

[28] M. Kopf, H. Baumann, G. Freer, et al., Impaired immune and acute-phase re-
sponses in interleukin-6-deficient mice, Nature 368 (1994) 339–342.

[29] E. Yoshigai, T. Hara, H. Inaba, et al., Interleukin 1β induces tumor necrosis
factor α secretion from rat hepatocytes, Hepatol. Res. 44 (2014) 571–583.

[30] J.Y. Kim, S.J. Park, K.J. Yun, et al., Isoliquiritigenin isolated from the roots of
Glycyrrhiza uralensis inhibits LPS-induced iNOS and COX-2 expression via the
attenuation of NF-κB in RAW 264.7 macrophages, Eur. J. Pharmacol. 584
(2008) 175–184.

[31] Y.W. Kim, R.J. Zhao, S.J. Park, et al., Anti-inflammatory effects of liquiritigenin
as a consequence of the inhibition of NF-κB-dependent iNOS and

http://dx.doi.org/10.1016/j.bbrep.2015.06.004
http://dx.doi.org/10.1016/j.bbrep.2015.06.004
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref1
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref1
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref1
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref2
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref2
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref3
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref3
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref3
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref4
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref4
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref4
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref4
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref5
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref5
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref5
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref5
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref5
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref6
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref6
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref6
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref7
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref7
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref7
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref7
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref8
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref8
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref8
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref9
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref9
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref9
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref9
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref10
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref10
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref10
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref10
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref10
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref11
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref11
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref11
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref11
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref12
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref12
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref12
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref12
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref12
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref12
http://dx.doi.org/10.7243/2050-0874-1-2
http://dx.doi.org/10.7243/2050-0874-1-2
http://dx.doi.org/10.7243/2050-0874-1-2
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref14
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref14
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref14
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref14
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref14
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref14
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref15
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref15
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref15
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref15
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref16
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref16
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref16
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref16
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref17
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref17
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref17
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref17
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref17
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref17
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref17
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref17
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref18
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref18
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref18
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref18
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref18
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref18
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref18
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref18
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref19
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref19
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref19
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref19
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref20
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref20
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref20
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref20
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref21
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref21
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref21
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref21
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref22
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref22
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref22
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref22
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref22
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref22
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref22
http://dx.doi.org/10.9734/BJPR/2014/13301#sthash.eOSpm9zn.dpuf
http://dx.doi.org/10.9734/BJPR/2014/13301#sthash.eOSpm9zn.dpuf
http://dx.doi.org/10.9734/BJPR/2014/13301#sthash.eOSpm9zn.dpuf
http://dx.doi.org/10.9734/BJPR/2014/13301#sthash.eOSpm9zn.dpuf
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref24
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref24
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref24
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref24
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref24
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref24
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref25
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref25
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref25
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref25
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref26
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref26
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref26
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref26
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref26
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref27
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref27
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref27
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref27
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref27
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref27
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref28
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref28
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref28
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref29
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref29
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref29
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref29
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref29
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref29
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref29
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref30
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref30
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref30
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref30
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref30
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref30
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref30
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref31
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref31
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref31
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref31


R. Tanemoto et al. / Biochemistry and Biophysics Reports 2 (2015) 153–159 159
proinflammatory cytokines production, Br. J. Pharmacol. 154 (2008) 165–173.
[32] T. Akao, T. Hayashi, K. Kobashi, et al., Intestinal bacterial hydrolysis is indis-

pensable to absorption of 18beta-glycyrrhetic acid after oral administration of
glycyrrhizin in rats, J. Pharm. Pharmacol. 46 (1994) 135–137.

[33] I.V. Tetko, V.Y. Tanchuk, Application of associative neural networks for pre-
diction of lipophilicity in ALOGPS 2.1 program, J. Chem. Inf. Comput. Sci. 42
(2002) 1136–1145.

[34] J. Jing, W. Ren, X. Chen, et al., Glucuronide-sulfate diconjugate as a novel
metabolite of glycyrrhetic acid in rat bile, Drug Metab. Pharmacokinet. 23
(2008) 175–180.
[35] T. Kuzuhara, Y. Sei, K. Yamaguchi, et al., DNA and RNA as new binding targets

of green tea catechins, J. Biol. Chem. 281 (2006) 17446–17456.
[36] S. Nafisi, A. Shadaloi, A. Feizbakhsh, et al., RNA binding to antioxidant flavo-

noids, J. Photochem. Photobiol. B 94 (2009) 1–7.
[37] S.J. Klempner, G. Bubley, Complementary and alternative medicines in pros-

tate cancer: from bench to bedside? Oncologist 17 (2012) 830–837.

http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref31
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref31
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref32
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref32
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref32
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref32
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref33
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref33
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref33
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref33
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref34
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref34
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref34
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref34
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref35
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref35
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref35
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref36
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref36
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref36
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref37
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref37
http://refhub.elsevier.com/S2405-5808(15)00035-7/sbref37

	The constituents of licorice (Glycyrrhiza uralensis) differentially suppress nitric oxide production in...
	Introduction
	Materials and methods
	Materials
	Plant materials and extraction
	Isolation of the constituents from a G. uralensis extract
	Preparation of primary cultured rat hepatocytes
	Determination of the NO levels and LDH activity
	Measurement of direct NO quenching activity of constituents
	Western blot analyses
	Reverse transcription-polymerase chain reactions (RT-PCR)
	Statistical analyses

	Results and discussion
	The fractions of a G. uralensis extract suppress the NO induction in hepatocytes
	Several constituents in a GR extract suppress NO induction in hepatocytes
	The G. uralensis constituents inhibit iNOS gene expression in hepatocytes
	The G. uralensis constituents suppress inflammatory genes
	The NO suppression activity of the G. uralensis constituents
	Lipophilicity of the G. uralensis constituents
	The potential use of the G. uralensis constituents for an anti-inflammatory therapy

	Acknowledgments
	Supplementary information
	References




