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SUMMARY

Cancer cells that express oncogenic alleles of RAS
typically require sustained expression of the mutant
allele for survival, but the molecular basis of this
oncogene dependency remains incompletely
understood. To identify genes that can functionally
substitute for oncogenic RAS, we systematically
expressed 15,294 open reading frames in a human
KRAS-dependent colon cancer cell line engineered
to express an inducible KRAS-specific shRNA. We
found 147 genes that promoted survival upon
KRAS suppression. In particular, the transcriptional
coactivator YAP1 rescued cell viability in KRAS-
dependent cells upon suppression of KRAS and
was required for KRAS-induced cell transformation.
Acquired resistance to Kras suppression in a Kras-
driven murine lung cancer model also involved
increased YAP1 signaling. KRAS and YAP1 converge
on the transcription factor FOS and activate a tran-
scriptional program involved in regulating the epithe-
lial-mesenchymal transition (EMT). Together, these
findings implicate transcriptional regulation of EMT
by YAP1 as a significant component of oncogenic
RAS signaling.
INTRODUCTION

Mutation of proto-oncogenes, such as KRAS, BRAF, and EGFR,

induces a state in which cancers are dependent on signaling

from the oncogene for survival (Sharma and Settleman, 2007).

Although the mechanisms that lead to this oncogene addiction

remain poorly understood, pharmacologic inhibition of such on-

cogenes results in clinical responses. Furthermore, tumors that

are resistant to these therapeutic interventions often exhibit re-

activation of the signaling pathways regulated by these onco-
genes. For example, EGFR-addicted cancers that relapse have

been found to harbor MET copy-number amplification or KRAS

mutation, which mediate resistance by activating the same

downstream effector pathways independent of EGFR (Jänne

et al., 2009).

Activating mutations of the KRAS proto-oncogene occur in a

substantial fraction of pancreatic, lung, and colon cancers (Lau

and Haigis, 2009). Oncogenic KRAS activates pleiotropic

signaling pathways that contribute to tumor initiation and main-

tenance, including the mitogen-activated protein kinase

(MAPK), phosphatidylinositol 3-kinase (PI3K), and Ral guanine

nucleotide exchange factor (RalGEF) signaling pathways

(Pylayeva-Gupta et al., 2011). Suppression or inhibition of these

pathways prevents tumor initiation and slows the growth of

established tumors (Ehrenreiter et al., 2009; González-Garcı́a

et al., 2005; Gupta et al., 2007). One consequence of mutant

KRAS signaling is aberrant activation of the AP-1 family tran-

scription factors, which promote responses to mitogenic

signaling (Karin, 1995). Specifically, KRAS increases FOS and

JUN activation through MAPK-dependent and -independent

mechanisms (Deng and Karin, 1994).

YAP1 is a transcriptional coactivator that participates in

several context-dependent transcriptional programs that

regulate organ size and promote cell proliferation (Wang et al.,

2009). Recurrent YAP1 amplifications are observed in hepa-

tocellular cancers, in which it is an essential oncogene (Zender

et al., 2006). In addition, YAP1 is also implicated in the epi-

thelial-to-mesenchymal transition (EMT) and the metastatic

potential of mammary epithelial cells (Lamar et al., 2012;

Overholtzer et al., 2006). YAP1 serves as an effector of the Hippo

(Hpo) kinase cascade and regulates the transcriptional enhancer

activator domain (TEAD) transcription factors (Pan, 2010). Serine

phosphorylation of YAP1 by both Hpo-dependent and -inde-

pendent factors inhibits YAP1 entry into the nucleus, preventing

subsequent activation of not only TEAD but of other YAP1

transcriptional partners such as SMAD, RUNX, TBX5, and the

ERBB4 internal cytoplasmic fragment (Wang et al., 2009).

One Hpo-independent mechanism implicated in cancer

involves phosphorylation of YAP1 at tyrosine-357 by YES1 to
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promote YAP1 interaction with b-catenin and modulation of Wnt

signaling (Rosenbluh et al., 2012). These observations suggest

that YAP1 interacts with specific transcription factors in partic-

ular contexts to promote cell proliferation, organ growth, or

survival.

Identification of genes that promote resistance to targeted

therapies can provide insight into signaling mechanisms acti-

vated by particular oncogenes. Here, we applied a similar

concept to systematically probe pathways required for cancer

cell lines that harbor and are dependent on oncogenic KRAS.

Specifically, we performed a genetic screen to identify open

reading frames (ORFs) that are able to sustain the survival of

KRAS-dependent cancer cell lines in the setting of KRAS

suppression.

RESULTS

Systematic Identification of Genes that Rescue the Loss
of Oncogenic KRAS Expression
We performed a genome-scale genetic rescue screen to identify

genes that support the survival of KRAS-dependent cancer

cells upon suppression of KRAS. We generated a cell line for

screening by stably introducing a doxycycline-inducible shRNA

targeting the KRAS 30 untranslated region (UTR) into the

HCT116 KRASmutant colon cancer cell line (HCTtetK) and intro-

duced 15,294 ORFs from the Center for Cancer Systems Biology

(CCSB)/Broad Institute ORF library (Yang et al., 2011) into these

cells in an arrayed format in triplicate under optimized conditions

in which eachwell was transduced at high efficiency (98%, Table

S1 available online). We induced suppression of KRAS by doxy-

cycline treatment and assessed cell proliferation/survival (Fig-

ure 1A). As a control, we expressed a mutant KRASG13D ORF,

which lacks the KRAS 30UTR and thus cannot be suppressed

(Figure 1B). We considered an ORF a ‘‘hit’’ if it obtained a

KRAS rescue score greater than 3, i.e., the viability in that well

was at least three standard deviations above the mean of nega-

tive controls. All of the 150 KRASG13D-expressing wells scored

above this threshold, and only 1 of the 1,119 negative control

wells (0.05%) scored.

We identified 147 genes that met this criterion (Table S1). The

highest-scoring candidates included sterile a motif (SAM) pro-

teins that function as posttranscriptional regulators (Baez and

Boccaccio, 2005), the WW-domain-binding proteins YAP1 and

WWTR1, and members of the FGF family (Figure 1C). In a sepa-

rate screen focused on 597 kinases (CCSB/Broad Kinase ORF

Collection), we also identified FGFR1 as a kinase that was able

to rescue KRAS suppression (Figure S1A).

We then assessed the ability of each ORF to activate MAPK or

PI3K signaling. Specifically, we expressed the 147 ORFs in

HCTtetK cells in an arrayed format and quantified the activity

of the MAPK and PI3K pathways by measuring the ratio of phos-

pho-ERK to total-ERK levels and the ratio of phospho-S6 ribo-

somal protein to total S6 ribosomal protein levels, respectively

(Figure 1D and Table S2). We found that 55.1%of the candidates

activated at least one of the two pathways (16.1% MAPK only,

13.4% PI3K only, and 25.6% both pathways). A number of

candidate genes failed to activate either pathway, suggesting

that MEK- and PI3K-independent mechanisms may also play a
172 Cell 158, 171–184, July 3, 2014 ª2014 Elsevier Inc.
role in KRAS-dependent tumors. The observation that a large

proportion of these candidates indeed activated KRAS effector

pathways increased our confidence in the biological relevance

of the rescue screen.

YAP1 Substitutes for Oncogenic KRAS in KRAS-
Dependent Cancer Cell Lines
We focused on understanding YAP1, the highest-scoring gene in

the screen. Expression of YAP1-2g (hereafter referred to as

YAP1) (Sudol, 2012) in HCTtetK cells prevented the morpholog-

ical changes observed after suppression of KRAS (Figure 2A)

and rescued the loss of viability induced by suppressing KRAS

(Figure 2B). To ensure that the effects were not HCT116 specific,

we tested the ability of YAP1 to complement loss of KRAS func-

tion in four additional KRASmutant colon and pancreatic cancer

cell lines (SW480, LS513, SU86.86, AsPC-1). We found that wild-

type YAP1 rescued LS513, SU86.86, and AsPC-1 cell lines from

KRAS suppression and that a constitutively active version of

YAP1, which lacks five serine phosphorylation sites (YAP15SA)

(Zhao et al., 2007), rescued loss of viability in SW480 cells (Fig-

ure 2C). We concluded that YAP1 signaling functionally replaces

KRAS in KRAS-dependent cancer cells, although YAP1 itself

may be differentially regulated in specific cell lines. In conso-

nance with these findings, tumors that escape suppression of

Kras in Kras-driven murine pancreatic ductal adenocarcinomas

exhibit Yap1 amplifications (Kapoor et al., 2014 [this issue of

Cell]).

To assess the specificity of the YAP1 phenotype to KRAS sup-

pression, we tested whether YAP1 expression rescued suppres-

sion of additional oncogenes, c-MYC and PIK3CA, which are

also activated in HCT116 cells. Suppression of c-MYC using

two c-MYC-specific shRNAs reduced cell viability. Expression

of c-MYC, but not YAP1, rescued this phenotype (Figure 2D).

Furthermore, exposure to the PI3K inhibitor GDC-0941 arrested

proliferation, and this effect was not rescued by YAP1 expres-

sion (Figure S2A). Together, these observations support the

conclusion that rescue of KRAS suppression by YAP1 was not

due to a general effect on survival by YAP1.

To interrogate the functional relationship between KRAS

and YAP1 further, we assessed whether YAP1 is required for

KRAS-induced cell transformation. We expressed KRASG13D

or YAP1 cDNAs in immortalized HA1E cells (Hahn et al., 1999)

and confirmed that either KRASG13D or YAP1 induced

anchorage-independent colony formation when a control shRNA

was expressed. We found that expression of two YAP1-specific

shRNAs abrogated KRAS-driven anchorage-independent col-

ony formation (Figures 2E and S2B). Expression of shYAP1-2

targets the YAP1 30UTR and, as expected, failed to suppress

YAP1-driven anchorage-independent colony formation.

We next examined the effect of manipulation of KRAS on the

regulation of YAP1. Manipulating KRAS expression did not affect

phosphorylation of YAP1 serine-127, a site implicated in regula-

tion of YAP1 by Hpo signaling (Zhao et al., 2007), nor phosphor-

ylation of components of the Hpo cascade such as LATS-1/2

and MST2 (Figure S2C). We concluded that KRAS does not alter

YAP1 phosphorylation or activation.

In HCTtetK cells expressing the negative control LacZ, treat-

ment with doxycycline for 2 days to induce KRAS suppression



Figure 1. Systematic Identification of Genes that Rescue Loss of Viability Induced by KRAS Suppression

(A) Schematic diagram of an arrayed format screen to identify ORFs that rescue loss of cell viability induced by suppression of KRAS in KRAS-dependent cells.

(B) Suppression of KRAS in HCTtetK cells and rescue by KRAS ORF. Data represent mean ± SD normalized to cell viability in untreated conditions.

(C) Distribution of scores for all screened genes averaged across three replicates. KRAS rescue score indicates SD frommean of negative control wells. Red line,

3 SD. Blue, gene ‘‘hits.’’

(D) Characterization of 147 hits by in-cell western of ERK and S6 phosphorylation. Each point represents the average of duplicate wells. Lines indicate 2 SD above

mean of negative controls. Gray, negative controls.

See also Figure S1 and Tables S1 and S2.
led to decreased levels of phosphorylated ERK, AKT, and S6.We

found that YAP1 expression restored AKT and S6 phosphoryla-

tion to baseline levels and increased ERK phosphorylation (Fig-

ure 2F). These observations are in consonance with prior reports

(Zhang et al., 2009; Overholtzer et al., 2006) that showed that
YAP1-regulated expression of the EGFR ligand amphiregulin

led to activation of ERK and AKT. However, expression of

ERK, MEK, or AKT failed to rescue HCTtetK cells upon suppres-

sion of KRAS in our original screen (Table S1), and YAP1 expres-

sion had no measureable effect on the activation of KRAS, as
Cell 158, 171–184, July 3, 2014 ª2014 Elsevier Inc. 173
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Figure 2. YAP1 Rescues KRAS Mutant Cancer Cells In Vitro

(A) Morphology of HCTtetK cells expressing the indicated vectors at 203 magnification. The indicated ORFs were expressed, and cells were treated with

doxycycline (KRAS suppressed).

(B) Viability of HCTtetK cells upon KRAS suppression in cells expressing the indicated genes, normalized to cell viability in media condition.

(C) Consequences of expressing YAP1 in KRASmutant cell lines after KRAS suppression. Viability of shKRAS normalized to shLuciferase in the presence of each

indicated ORF.

(D) Response of HCT116 cells to MYC suppression in cells that express the indicated ORFs.

(E) Effect of YAP1 suppression on anchorage-independent growth of HA1E transformed with KRASG13D or YAP1 ORF.

(F) Effect of doxycycline-induced KRAS suppression on activation of ERK, AKT, and S6 in HCTtetK cells expressing LacZ, KRAS, or YAP1.

(G) Effect of a PI3K inhibitor (PI3Ki; GDC-0941) or a MEK inhibitor (MEKi; AZD-6244) on the ability of YAP1 to rescue KRAS suppression. Cells were treated with 1

uM of GDC-0941, 1 uM of AZD-6244, both, or DMSO. Data were normalized to viability of cells without KRAS suppression (media) with DMSO treatment.

(B–E and G) Mean ± SD of at least three replicates in a representative experiment shown. See also Figure S2.
assessed by GTP-bound KRAS levels after pull-down with the

Ras-binding domain of RAF1 (Figure S2D).

To determine whether reactivation of MAPK and PI3K

signaling was necessary for the ability of YAP1 to rescue KRAS

suppression, we treated HCTtetK cells expressing YAP1 with
174 Cell 158, 171–184, July 3, 2014 ª2014 Elsevier Inc.
the PI3K inhibitor GDC-0941 or theMEK inhibitor AZD-6244 (Fig-

ures 2G and S2E). We found that YAP1 rescued HCTtetK cells

from KRAS suppression to the level that we observed previously

when treated with the vehicle (DMSO, Figure 2B). Treatment with

either MEK or PI3K inhibitor decreased but failed to fully
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Figure 3. Structure-Function Analysis of YAP1

(A) YAP1 domain structure and YAP1 mutants.

(B) Effects of expressing YAP1 TEAD-defective mutants on the activity of a TEAD reporter in 293T cells.

(C) Viability after KRAS suppression in HCTtetK cells expressing YAP1 mutants defective in TEAD activation.

(D) Viability, in arbitrary luminescence units (ALU), after KRAS suppression in HCTtetK cells expressing a constitutively active TEAD2-VP16 fusion.

(E) Effects of expressing the YAP1 mutants defective in transcriptional activation or nuclear localization in HCTtetK cells after KRAS suppression. **p < 0.01.

(B–E) Mean ± SD of six replicates of a representative experiment shown. (C–E) Viability of doxycycline treated relative to untreated samples displayed. See also

Figure S3.
suppress the ability of YAP1 to rescue KRAS inhibition as

compared to cells expressing LacZ (Figure 2G). Furthermore,

combined treatment with both inhibitors did not further decrease

viability. Thus although YAP1 partially restores the activity of

PI3K and MEK pathways after KRAS suppression, activation of

these pathways fails to fully account for the ability of YAP1 to

promote survival in KRAS-dependent cells after KRAS

suppression.
Functions of YAP1 Required for the Survival of KRAS-
Dependent Cells
YAP1 is regulated by multiple signaling pathways and regulates

the function of several transcription factors. YAP1 is composed

of a TEAD-binding domain, an SH3-binding motif, two WW

domains, and a transcription activation domain (Figure 3A),

and YAP1 nuclear localization is mediated by a C-terminal PDZ

domain-binding motif (Oka and Sudol, 2009). To identify regions
Cell 158, 171–184, July 3, 2014 ª2014 Elsevier Inc. 175



of YAP1 necessary to promote survival after KRAS suppression,

we expressed previously described YAP1 domain-specific

mutants in HCTtetK cells to assess their effect on YAP1 function

(Figure 3A).

First, we explored the role of TEAD transcription factors for the

KRAS-related functions of YAP1. Prior work identified YAP1

TEAD-binding domain mutants that disrupt binding to TEAD

transcription factors (YAP1S94A and YAP1D60–89) (Zhao et al.,

2008b; Cao et al., 2008). Expression of these mutants indeed

abolished the ability of YAP1 to activate a TEAD-specific reporter

(Figure 3B) (Ota and Sasaki, 2008). However, these YAP1

mutants rescued the proliferation effects of KRAS suppression

similar to wild-type YAP1 (YAPWT; Figure 3C), suggesting that

TEAD-specific effects are dispensable for YAP1 rescue. These

findings differ from those of Kapoor et al. (2014), who identified

TEAD2 as one mediator of YAP1 function by showing that a

constitutively active fusion of the VP16 domain to the DNA-bind-

ing region of TEAD2 (TEAD2-VP16) (Cao et al., 2008) was able to

rescue KRAS suppression. We tested the ability of this construct

to rescue in the HCTtetK model and found that TEAD2-VP16

activated a TEAD-specific reporter (Figure S3A) but failed to

rescue the effect of KRAS suppression (Figures 3D and S3B).

TEAD2-VP16 expression slowed the proliferation of HCTtetK

cells (Figure 3D) and resulted in a change in cell morphology

different than what we observed upon expression of YAP1 or

expression of KRAS. Together, these results suggest that the

TEAD family is not the primary mediator of the ability of YAP1

to complement loss of KRAS in this model system.

Because we recently reported a role for YES1 phosphorylation

of YAP1 for b-catenin signaling (Rosenbluh et al., 2012), we

investigated whether YES1 played a role in KRAS signaling.

We expressed two YAP1 mutants: YAP1DSH3bm, which disrupts

the interaction of YES1 with YAP1 (Vassilev et al., 2001; Sudol,

1994), and YAPY357F, which prevents YES1 phosphorylation of

YAP1 (Rosenbluh et al., 2012). Expression of either YAP1DSH3bm

or YAP1Y357F rescued the loss of cell viability observed after

KRAS suppression to the level of YAP1WT (Figures S3C and

S3D). Thus, YES1 modulation of b-catenin signaling also does

not contribute to YAP1 activity in the context of KRAS

suppression.

We then tested whether YAP1-induced transcriptional acti-

vation was required to rescue KRAS suppression. Expression

of YAP1 mutants that harbor a deletion of the transcriptional

activation domain (YAPDTA; Zhang et al., 2012) disrupted the

ability of YAP1 to rescue cells from KRAS suppression in

HCTtetK cells, as did expression of YAP1 mutants that harbored

a deletion of the 5 amino acid PDZ domain-binding motif

(YAPDPDZbm), reported to disrupt YAP1 nuclear localization (Fig-

ures 3E and S3E). These two YAP1 mutants also prevented

YAP1-induced anchorage-independent growth (Figure S3F).

These observations show that YAP1mediates survival after sup-

pression of KRAS through interactions with transcription factors

in the nucleus.

YAP1 Regulates AP-1 Family Transcription Factors
and EMT
Because transcriptional activation was important for the ability of

YAP1 to rescue KRAS suppression, we analyzed transcriptional
176 Cell 158, 171–184, July 3, 2014 ª2014 Elsevier Inc.
profiles in HCTtetK cells in which wemanipulated KRAS or YAP1

expression. We first identified genes that were downregulated

after 30 hr of doxycycline (KRAS suppressed) treatment

compared to untreated cells. Of those, we identified genes

whose expression was rescued by the expression of both

YAP1 and KRAS (Figure 4A and Table S3). Separately, we

analyzed the transcriptional profiles of cells expressing the

YAP1 TEAD-binding defective mutant YAP1S94A, compared to

KRASG13D and YAP1WT as positive controls or to LACZ and

YAP1DTA as negative controls. We noted that the expression

signature induced by YAP1S94A overlapped but was distinct

from that of YAP1WT, suggesting differences in specific tran-

scriptional programs regulated by these alleles. Yet we found

that YAP1S94A rescued expression of genes that decreased

upon KRAS suppression (Figure S4A), as expected.

Using the 1,045 genes that were rescued by both YAP1WT and

KRAS (Figure 4A and Table S3), we searched for coregulated

transcription factor motifs and coregulated gene sets. We used

TransFind motif analysis (Kie1basa et al., 2010) to identify tran-

scription factor motifs enriched in promoter regions of genes

rescued by both YAP1 and KRAS compared to motifs rescued

by KRAS alone. Enriched motifs (p < 0.05) included transcrip-

tional factors involved in the immediate early gene response,

c-MYC, HIF, and E2F (Figures 4B and S4B). Kapoor et al.

(2014) showed that E2F1 is required for Yap1 to permit Kras-

independent tumor growth in a murine pancreatic ductal

adenocarcinoma model. Depending on the context, multiple

transcription factors may play roles in YAP1 function.

We focused on the largest category, transcription factors

involved in the immediate early gene response, which are

regulated by both growth factor stimulation and Ras signaling

(O’Donnell et al., 2012). Specifically, this category includes

gene families such as activating transcription factor (ATF), early

growth response protein (EGR), and specificity protein (SP)

(Figure S4B). To determine which of these genes plays a role in

YAP1 function, we systematically suppressed members of these

gene families using multiple independent shRNAs and assessed

the effect on YAP1-driven anchorage independent growth

(Figure S4C). Suppression of several SP family and ATF family

transcription factors repressed YAP1-mediated cell transforma-

tion. Genes in the SP family are required for development and are

ubiquitously involved in maintaining cell survival (Suske, 1999).

We were particularly interested in the role of the ATF genes, as

they are members of the AP-1 transcription factor family,

previously shown to be regulated by KRAS-MAPK signaling

(Mechta et al., 1997). Further supporting the role of AP-1, we

found that expression of YAP1 or KRAS activated an AP-1 lucif-

erase reporter driven by a consensus AP-1-binding element

(Figure 4C).

From our genome-scale screening data, we noted that

FOSwas the only member of the AP-1 transcription factor family

that scored (3.75 SD above controls; Table S1). We confirmed

that expression of FOS rescued HCTtetK cells upon suppression

of KRAS (Figure 4D). To test whether FOS expression was

necessary for YAP1 function, we assessed whether suppression

of FOS affected YAP1-induced transformation. Depletion of

FOS with two FOS-specific shRNAs reduced YAP1-driven

anchorage-independent colony formation in HA1E cells
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Figure 4. YAP1 and KRAS Converge to Regulate the AP-1 Transcription Factor FOS

(A) Genes rescued by YAP1, KRAS, or both in the context of KRAS suppression.

(B) Categories of transcription factor motifs enriched among genes rescued by both KRAS and YAP1.

(C) AP-1 reporter activity in 293T cells expressing YAP1. Arbitrary luminescence units normalized to LacZ condition.

(D) Expression of FOS rescues suppression of KRAS in HCTtetK cells. Viability of doxycycline treated relative to untreated samples is displayed.

(E) Effects of suppressing FOS on YAP1-mediated cell transformation of HA1E cells.

(C–E) Mean ± SD of at least three replicates in a representative experiment shown. See also Figure S4 and Table S3.
(Figure 4E). RAS-induced transformation in vivo requires FOS

(Ledwith et al., 1990; Saez et al., 1995), and as expected, FOS

suppression reduced colony formation by HCT116 cells or

HA1E cells expressing KRASG13D (Figures S4D and S4E). These

observations support the role of AP-1 family transcription factors

as effectors of YAP1 and KRAS.

We then looked for transcriptional programs regulated by both

KRAS and YAP1 in our microarray data (Figure 4A; Table S3).

Using the Molecular Signatures Database (MSigDB) (Subrama-

nian et al., 2005), the top gene sets, enriched to p < 10�3,

included several related to differentiation and development

(Figure 5A). In many cancers, normal cell differentiation is per-

turbed by the interruption of differentiation steps or by the aber-

rant activation of EMT programs. Furthermore, EMT has been

implicated in resistance to therapies targeting receptor tyrosine

kinases (Witta et al., 2006), and FOS has been shown to regulate

EMT directly (Reichmann et al., 1992). When we analyzed tran-
scriptional profiles of the YAP1 mutants (Figure S4A), we

found that YAP transcriptional signature (YAP_DUPONT)

and EMT signatures (SARRIO_EPITHELIAL_MESENCHYMAL_

TRANSITION_UP) were enriched among genes rescued by

YAP1WT (Fisher exact, p = 0.005 and < 10�16, respectively;

threshold log(�0.5) compared to LacZ), and neither signature

was enriched among the genes rescued by functionally deficient

YAP1DTA mutant (Fisher’s exact test, p = 0.48 and 0.53, respec-

tively). Thus, we hypothesized that EMT induced by YAP1

contributed to the survival of cells after suppression of KRAS.

We found that both KRAS and YAP1 expression strongly

induced expression of mesenchymal genes such as Vimentin

(VIM), Fibronectin (FN1), Slug (SNAI2), and Zinc-finger E-box-

binding homeobox 1 (ZEB1) and reduced the expression of

epithelial genes such as E-cadherin (CDH1) and Occludin

(OCLN) (Figure 5B). Although only a subset of genes implicated

in EMT were regulated by KRAS or YAP1 (Figure S5A), we found
Cell 158, 171–184, July 3, 2014 ª2014 Elsevier Inc. 177
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Figure 5. YAP1 Regulates the Epithelial-Mesenchymal Transition

(A) Enriched gene sets rescued by both YAP1 and KRAS.

(B) qRT-PCR validation of epithelial-mesenchymal transition (EMT) regulation by KRAS and YAP1 in HCT116 cells. Data represent mean ± SD of four replicates

relative to LacZ control.

(C) Viability of doxycycline-treated relative to untreated HCTtetK cells expressing Slug and Snail.

(D) Effects of suppressing MYC after expressing FOS, Slug, and Snail in HCT116 cells. Viability of shMYC normalized to shLuciferase control in the presence of

each indicated ORF.

(E) Effect of Slug on the ability of YAP1 to rescue KRAS suppression. Viability of doxycycline-treated HCTtetK cells expressing YAP1 after expression of each

indicated shRNA, normalized to media-treated shLuciferase control.

(B–E) Mean ± SD of at least three replicates in a representative experiment is shown. See also Figure S5.
that KRAS and YAP1 regulated a similar set of EMT markers

in both HCTtetK cells (Figures 5B and S5A) and SU86.86

(Figure S5B).

We then tested whether key transcriptional regulators of EMT

such as Slug and Snail were necessary and sufficient to rescue

KRAS dependence. Expression of either Slug or Snail in HCTtetK

cells rescued the loss of viability induced by suppressing KRAS

(Figure 5C). To assess the specificity of this effect to KRAS, we

suppressed MYC and expressed FOS, Slug, or Snail (Fig-

ure S5C). Neither expression of EMT transcriptional regulators

nor FOS rescued loss of viability upon MYC suppression (Fig-

ure 5D), suggesting that induction of EMT did not broadly rescue

oncogenic suppression. Moreover, we tested whether Slug was
178 Cell 158, 171–184, July 3, 2014 ª2014 Elsevier Inc.
required for YAP1 rescue of KRAS suppression. Expression

of two Slug-specific shRNAs reduced Slug expression and

decreased the ability of YAP1 to rescue suppression of KRAS

(Figures 5E and S5D).

FOS and YAP1 Coordinately Regulate Downstream
Targets
Because FOS expression was required for YAP1-induced cell

transformation, we examined whether FOS and YAP directly

interact. We expressed a V5-epitope-tagged FOS in HCT116

cells and isolated YAP1 or control (anti-GFP) immune com-

plexes. In YAP1 complexes, but not control immune complexes,

we detected FOS (Figure 6A), and in V5 immune complexes
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Figure 6. YAP1 and FOS Interact at Promoter Regions to Regulate EMT

(A) Coimmunoprecipitation using control antibody or target-specific antibody for YAP1 and FOS in lysates from HCT116 cells expressing YAP1 and V5-tagged

FOS. Binding of the reciprocal protein was assessed by immunoblotting. YAP1 is indicated by arrowhead. *, IgG heavy and light chains; MW, molecular weight

in kDa.

(B) mRNA expression of Vimentin (VIM) and Slug after FOS suppression. Mean ± SD of four replicates relative to shLuciferase control in HCT116 cells is shown.

(C) Chromatin immunoprecipitation in HCT116 to assess YAP1 DNA binding at promoter regions of SLUG (SNAI2) and Vimentin (VIM).

(D) Chromatin immunoprecipitation in HCT116 to assess YAP1 binding at SLUG promoter after FOS suppression.

(C and D) Bars represent enrichment of promoter compared to 30 region of each gene. Mean ± SD of 3 replicates is shown. *p < 0.05. See also Figure S6 and

Table S4.
(FOS), we found endogenous YAP1 (Figure 6A). In contrast,

coimmunoprecipitation experiments with a V5-epitope tagged

version of JUN, another AP-1 transcription factor, failed to

show an interaction between YAP1 and JUN (Figure S6A).

We hypothesized that FOS and YAP1 regulate common down-

stream target genes that are important for KRAS dependence.

Using transcription factor ChIP-seq data from the Encyclopedia

of DNA Elements (ENCODE) (Bernstein et al., 2012), we found

that YAP1-regulated genes such as VIM and Slug (SNAI2) harbor

FOS-binding sites in their promoter regions. We confirmed that

FOS suppression using FOS-specific shRNA decreased VIM

and Slug expression levels (Figure 6B). To determine whether

FOS and YAP1 bind at the same loci, we performed chromatin

immunoprecipitation using antibodies specific to YAP1, FOS,

or control IgG in HCT116 cells. As reported by ENCODE, FOS

was enriched at the promoter regions of VIM and Slug

(compared to a region 30 of each gene) (Figure S6B). We found

that YAP1 binding was also enriched at the same loci, whereas
binding of IgG was not (Figure 6C). We confirmed the specificity

of the YAP1 antibody by showing decreased YAP1 binding at

those loci when YAP1-specific shRNAs were expressed (Fig-

ure S6C). Notably, suppression of FOS also decreased YAP

binding at the VIM promoter (Figure 6D), suggesting that YAP

may function through FOS as a transcriptional coactivator.

We then interrogated ChIP-on-chip and ChIP-seq data to

identify FOS- and YAP1-binding sites across the genome. Spe-

cifically, we looked for genes co-occupied by YAP1 and FOS by

using ingenuity pathway analysis on a list of YAP1-occupied

genes in MCF10A cells (Zhao et al., 2008b) and corresponding

FOS-occupied genes (1 kb upstream, 0.3 kb downstream of

transcription start site in MCF10A-ER-Src cells; Bernstein

et al., 2012). As a control, we used a list of androgen receptor

(AR)-occupied genes (Zhao et al., 2008b). We found that the

EMT canonical pathway was enriched in the YAP1-FOS overlap

set (p < 0.05) but was not enriched in the AR-FOS overlap set

(Table S4). This observation provides additional support that
Cell 158, 171–184, July 3, 2014 ª2014 Elsevier Inc. 179



YAP1 and FOS regulate EMT to rescue viability upon KRAS

suppression.

Yap1 Mediates Resistance to Kras Suppression in a
KrasG12D-Driven Lung Cancer Mouse Model
We then examined the consequences of Kras inhibition in a well-

studied mouse model of lung adenocarcinoma (Tuveson et al.,

2004; DuPage et al., 2009). We first used primary lung adenocar-

cinoma cells derived from the KrasLox-STOP-Lox-G12D;p53flox/flox

(KP) mouse lung cancer model into which we introduced a doxy-

cycline-inducible shRNA-targeting Kras expressed from the

30UTR of GFP (KP-KrasA cells). In this system, doxycycline treat-

ment activates the GFP reporter as well as shKras, resulting

in suppression of endogenous wild-type Kras and mutant

KrasG12D. After intravenous injection of tumor cells, tumor

burden in the lung was monitored weekly by a constitutively

expressed luciferase construct in the tumor cells (Figure 7A).

At 7 days posttransplantation, the mice were fed a doxycy-

cline-containing diet, which resulted in rapid lung tumor regres-

sion within 7 days (Figure 7B), confirming that these lung tumors

depend on ongoing oncogenic Kras signaling. However, tumors

recurred over the course of the next 2 weeks even though Kras

remained suppressed in tumor tissue, as confirmed by imaging

of GFP reporter and by qRT-PCR of Kras mRNA from micro-

dissected tumors (Figures 7C and S7A). Thus, in this model,

some Kras-driven tumor cells can continue to proliferate in a

Kras-independent manner after prolonged suppression of onco-

genic Kras.

To assess the molecular basis of this Kras-independent

process, KP-KrasA cells were cultured in the presence of doxy-

cycline, resulting in cells that continued to proliferate despite

suppression of Kras. RNA sequence profiling (RNA-seq) of

these cells after 21 days on doxycycline compared to cells

without exposure to doxycycline showed significant upregula-

tion of a published Yap1 gene signature (Figure 7D and Table

S5) (Dupont et al., 2011). Because we showed that EMT played

a critical role in mediating resistance to KRAS suppression in

human cells (Figure 5), we also assessed whether EMT was

involved in the Kras resistance observed in the murine cancer

cell system. Using a published EMT gene signature (Taube

et al., 2010), we noted a significant enrichment of the signature

in Kras-independent cells compared to parental cells (Figure 7E).

In addition, EMT-associated markers, including Fn1, Cdh2,

Snai1, Snai2, Zeb1, and Ocln, were altered in RNA samples

from Kras-independent cells (Figure S7B). We confirmed by

qRT-PCR that expression of several of these markers was upre-

gulated in tumor cells that had escaped Kras suppression in vivo

as compared to tumors in which Kras expression was main-

tained (Figure S7C). Notably, we found that Yap1 expression

was not significantly different in these two groups. Thus, we

examined Yap1 localization by immunohistochemistry from

tumor tissue. We found that Yap1 showed increased nuclear

localization in tumors that escaped Kras suppression (Figure 7F),

which may explain the observed upregulation of genes involved

in EMT. Together, these observations suggest that Kras-inde-

pendent mouse lung cancer cells exhibit signatures similar to

those that we observed when we expressed YAP1 or KRAS in

human cancer cell lines.
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To explore whether Yap1 signaling was involved in Kras onco-

genic addiction in vivo, we performed both gain-of-function and

loss-of-function experiments in this mouse model. We observed

that forced expression of YAP1 partially prevented the tumor

regression observed upon initial suppression of Kras (Figures

S7D and S7E). To test whether relapse from Kras suppression

requires Yap1 signaling, we generated KP cells in which two

shRNAs are expressed simultaneously. Specifically, in addition

to the Kras-specific shRNA, we expressed a doxycycline-induc-

ible construct that drives the expression of red fluorescent

protein (RFP) carrying shRNAs targeting either Yap1 or Renilla

luciferase within the 30UTR (Zuber et al., 2011). Whereas tumors

with Kras suppression alone relapsed over time, concurrent

Yap1 suppression delayed tumor relapse while the expression

of the Renilla luciferase shRNA did not (Figure 7G). We found

that the residual tumors that formed in the presence of the

Yap1-specific shRNA after 28 days no longer suppressed

Yap1, as assessed by qRT-PCR (Figure S7F), suggesting that

Kras-independent proliferation in vivo occurs in cells with higher

Yap1 activity. Together, the observations from this murine model

confirm that the upregulation of Yap1 signaling correlates with

the expression of an EMT-like transcriptional program and plays

a compensatory role in vivo upon loss of Kras signaling.

DISCUSSION

Using a systematic functional approach, we identified YAP1 as a

gene whose expression rescued cell death induced by suppres-

sion of KRAS in KRAS-dependent cancer cells. In a murine

model of Kras-driven lung cancer, we found that tumors that

escaped Kras suppression in vivo also exhibited increased

YAP1 activity. Through transcriptional profiling, we described a

YAP1-driven transcriptional program that recapitulates the

oncogenic signals in KRAS-driven cancers through involvement

of AP-1 family transcription factors—specifically FOS—and the

regulation of EMT.

Complementation Screening in Cancer Cells to
Elucidate KRAS Signaling
We found that a substantial proportion of genes identified

through our rescue screen activated known KRAS downstream

MAPK and PI3K pathways, in line with previous observations

that MAPK and PI3K signaling provide a general mechanism to

substitute for Ras signaling (Lim and Counter, 2005). Although

we focused on YAP1 and FOS herein, these observations sug-

gest that other genes that scored in this screen may represent

novel components of KRAS-regulated signaling pathways.

Models of Resistance to RAS Oncogenic Addiction
Withdrawal of oncogenic Ras results in rapid tumor regression in

mouse models that used tetracycline-inducible overexpression

of oncogenicRas (Fisher et al., 2001; Chin et al., 1999; Jechlinger

et al., 2009). Relapse was often associated with mutations in the

tetracycline transactivator (Podsypanina et al., 2008), resulting in

reactivation of the oncogene. Here, we used inducible in vivo

RNAi to model Kras inhibition in mouse lung adenocarcinoma

cells driven by KrasG12D expressed from its endogenous pro-

moter and observed tumor relapse through Kras-independent
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Figure 7. Yap1 Activity Is Required for Endogenously Acquired KRAS Resistance In Vivo

(A) Schematic of mouse transplant model of KRAS-driven lung cancer. KrasG12D;p53fl/fl lung adenocarcinoma cells were infected with retroviral vectors ex-

pressing rtTA3, luciferase, and a tet-on shKras. Cells were transplanted into recipient mice by tail-vein injection. At 7 days later, mice were fed a doxycycline diet

to induce shKras in tumor cells (D0).

(B) Time course of tumor regression and relapse after Kras suppression. Mean ± SD is shown. n = 3 off dox and n = 10 on dox.

(C) Suppression of Kras in tumor tissue. KrasmRNAwasmeasured by qRT-PCR inmicrodissected lung tumors after the indicated days of doxycycline treatment.

(D) Enrichment of a published YAP1 signature (Dupont et al., 2011) after 21 days doxycycline treatment versus untreated cells.

(E) Enrichment of a published EMT signature (Taube et al., 2010) after 21 days of doxycycline treatment versus untreated cells.

(F) Yap1 localization in tumors that escape Kras suppression. Immunohistochemistry was performed with Yap1 antibody on frozen tissue sections from tumors

that developed after Kras suppression (dox on) for 21 days and tumors that formed with continued Kras expression (dox off).

(G) Tumor response to suppression of Kras in combination with Yap1 or control suppression. Mean ± SD is shown. **p < 0.01.

See also Figure S7 and Table S5.
mechanisms. This model of relapse thus provided strong evi-

dence that increased activity of YAP1 is a physiologically rele-

vant mechanism to bypass loss of KRAS signaling.
We found that YAP1 replaces oncogenic KRAS signaling, at

least in part, by regulating an EMT-like transcriptional program.

Singh et al. (2009) previously showed a correlation between
Cell 158, 171–184, July 3, 2014 ª2014 Elsevier Inc. 181



KRAS dependency and epithelial morphology among KRAS

mutant cell lines and argued that induction of EMT makes cells

insensitive to KRAS suppression. However, RAS itself activates

EMT (Wong et al., 2013), and genes involved in EMT, such as

Slug, are essential in KRAS mutant cells (Wang et al., 2010).

Furthermore, our observation that YAP1 and FOS cooperate to

regulate portions of the EMT program is in consonance with a

prior report that FOS itself drives an EMT phenotype (Eger

et al., 2000). We report here that sustaining the established

EMT phenotype is necessary to rescue KRAS suppression.

Based on the available evidence, it is clear that the correlation

between KRAS dependency, morphology, and EMT is complex

and that the interplay of YAP1, KRAS, and EMT regulators will

be context dependent.

In consonance with our observations, Kapoor et al. (2014)

used a model of murine pancreatic adenocarcinoma in which

Kras is expressed from an inducible promoter. After Kras sup-

pression, some tumor cells spontaneously relapsed through a

mechanism involving amplifications of a genomic locus contain-

ing Yap1 and a gene signature associated with EMT. They

showed that TEAD2 and E2F1 cooperate with YAP1 in these

Kras-independent tumors. We also observed that E2F motifs

were enriched in genes regulated by both KRAS and YAP1 (Fig-

ure 4B) but did not find a role for TEAD2. Because YAP1 engages

different transcription factors in a context-dependent manner,

TEAD2 involvement may be related to contextual differences of

species or cell lineage, to the method of gene suppression, or

to functional differences between suppression of both mutant

and wild-type KRAS (as occurs with shRNA) compared to

suppression of mutant KRAS alone. We also observed that

YAP1 reactivated MAPK and PI3K signaling in our experimental

model, whereas Kapoor et al. observed baseline activation of

these pathways by Yap1 in their system. This may be attributed

to different baseline levels of MAPK/PI3K signaling in the two

systems or to the influence of wild-type KRAS (To et al., 2013).

Despite these differences, the observation that YAP1 can rescue

KRAS suppression in three independent experimental models

underscores the ability of YAP1 to promote survival in KRAS-

dependent cancers.

KRAS and YAP1 Converge at the Transcriptional Level
RAS signaling has been linked to YAP1 inD. melanogaster imag-

inal wing discs, in which YAP1 was required for EGFR and RAS

activity (Reddy and Irvine, 2013). We showed that YAP1 is

required for KRAS-driven transformation but did not observe

biochemical modulation of YAP1 activity by KRAS signaling.

Although downstream effectors of KRAS such as RASSF1 and

AKT have been shown to regulate YAP1 phosphorylation in spe-

cific contexts (Zhao et al., 2008a), their influence on YAP1 may

be context specific.

Recurrent amplifications of YAP1 have been observed in liver,

breast, and esophageal cancer (Overholtzer et al., 2006; Mura-

matsu et al., 2011; Zender et al., 2006). As an oncogene, YAP1

has been shown to drive development of hepatocellular cancer

and to induce colonic adenomas in mouse models (Zender

et al., 2006; Camargo et al., 2007), though the gene programs

regulated by YAP1 to induce transformation may differ from

that engaged by YAP1 to mediate survival in the setting of
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KRAS suppression. In the context of KRAS suppression, we

found that YAP1 regulation of FOS was required for rescue and

that YAP1 and FOS interact at promoter sites of regulated genes

to activate an EMT-like program in order to mediate survival.

EMT phenotypes are upregulated in cancer cells resistant

to chemotherapy (Fuchs et al., 2002; Kajiyama et al., 2007;

Cheng et al., 2007), and modulation of EMT influences cellular

dependency on receptor tyrosine kinases (Witta et al., 2006).

We found that YAP1-induced regulation of EMT was specific

for oncogenic KRAS, but not other oncogenes. The specificity

of this mechanism to KRAS suggests that resistance associated

with EMT might be attributed to bypass of specific oncogenic

pathways. Understanding the role of YAP1 and FOS in regulating

EMT will not only provide further insights into the transcriptional

programs regulated by oncogenic KRAS, but as therapeutic

strategies to target KRAS are developed, will also elucidate

potential mechanisms by which KRAS-driven cancers escape

these interventions.

EXPERIMENTAL PROCEDURES

For additional details, see the Extended Experimental Procedures.

KRAS Rescue Screen

HCTtetK cells were seeded at 300 cells per well in 50 ul in 384-well plates.

The next day, cells were infected using 1 ul of virus (1.4 3 108 infectious par-

ticles/ml using the RNAi Consortium virus tittering protocol; http://www.

broadinstitute.org/rnai/public/resources/protocols) in 25 ul media supple-

mented with 8 ug/ml polybrene. The media was changed the following day.

At 2 days after infection, 500 ng/ml doxycycline was added. For 10% of plates,

additional replicates received treatment with blasticidin or no treatment to

confirm overall infection efficiency. At 7 days after infection, viability of each

well was determined by CellTiterGlo (Promega). B score adjustment was per-

formed for each plate (Brideau et al., 2003), and final score for each ORF was

normalized to�40 negative control values on each plate (uninfected wells and

wells infected with HcRed, eGFP, BFP, LacZ, or Luciferase).

Rescue Experiments In Vitro

ORFs were introduced by lentiviruses followed by selection with 10ug/ml Blas-

ticidin for R4 days. For cell lines harboring a tet-inducible shRNA, cells ex-

pressing each ORFwere seeded in 96-well plates and were treated with media

supplemented with doxycycline or media alone for 5 days. Viability was quan-

tified byCellTiterGlo (Promega). For cell lines that did not harbor a tet-inducible

shRNA, the desired shRNA was introduced by lentiviral delivery and selected

with puromycin for 48 hr before replating at 10,000 cells/well in 12-well plates.

Results were quantified by Vi-Cell Cell Viability Analyzer (Beckman Coulter).

Generation of KP-KrasA Cells and Derivative Lines

KrasG12D;p53fl/fl lung adenocarcinoma cells were infected with retroviral

vectors TRE-GFP-miR30 shKras-PGK-Puro (Zuber et al., 2011), rtTA3-PGK-

Hygro, and MSCV-luciferase-IRES-GFP. GFP+ cells were sorted into single-

cell clones to screen for cells showing efficient doxycycline-inducible Kras

knockdown, resulting in KP-KrasA, KP-KrasB, and KP-KrasC lines from inde-

pendent clones. KP-KrasA were stably infected with TRE-dsRed-miR30

shYap1-PGK-Venus-IRES-NeoR (Zuber et al., 2011) to simultaneously ex-

press shKras and shYap1 from both TRE promoters upon doxycycline

treatment.

Mouse Lung Transplant Model

53 104 cells were transplanted into NCr-nu/nu recipient mice (Taconic) by tail-

vein injection, and mice were treated with Doxycycline diet (Harlan Labora-

tories). Bioluminescence imaging was performed as described (Xue et al.,

2011). Luciferase signal in the lung was quantified using Xenogen software

and was normalized to tumors on day 0, before doxycycline treatment.

http://www.broadinstitute.org/rnai/public/resources/protocols
http://www.broadinstitute.org/rnai/public/resources/protocols
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