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In budding yeast, approximately a quarter of adjacent genes are divergently transcribed (divergent gene
pairs). Whether genes in a divergent pair share the same regulatory system is still unknown. By examining
transcription factor (TF) knockout experiments, we found that most TF knockout only altered the expression
of one gene in a divergent pair. This prompted us to conduct a comprehensive analysis in silico to estimate
how many divergent pairs are regulated by common sets of TFs (cis-regulatory modules, CRMs) using TF
binding sites and expression data. Analyses of ten expression datasets show that only a limited number of
divergent gene pairs share CRMs in any single dataset. However, around half of divergent pairs do share a
regulatory system in at least one dataset. Our analysis suggests that genes in a divergent pair tend to be co-
regulated in at least one condition; however, in most conditions, they may not be co-regulated.
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1. Introduction

A divergent (head-to-head or bidirectional) gene pair comprises
two adjacent genes, whose transcription start sites (TSSs) are located
on opposite strands of DNA with adjacent 5′-ends. It is often assumed
that the intergenic regions flanked by such pairs are capable of
initiating transcription in both directions. The GAL1–GAL10 gene pair
in budding yeast is a classic example because its intergenic region
drives the expression of both genes upon galactose induction [1]. In
humans, the number of divergent gene pairs with TSS separated by
less than 1000 base pairs is substantial, constituting more than 10% of
the human genome [2]. Computational analysis of various biological
systems reveals that some divergent gene pairs exhibit highly
correlated expression patterns [2–5]; and, in some cases, they appear
to share regulatory elements [6–11], suggesting that they could be co-
regulated. A study by Collins et al. [12] provided further experimental
support for the model. They showed that GA-binding protein (GABP)
binds to more than 80% of the intergenic regions in at least one human
cell type, and that the binding is correlated with bidirectional
transcription activity. Using a reporter assay, they further demon-
strated that, in four out of six cases, introduction of a consensus GABP
site into promoters that have little or no expression in the reverse
direction results in a significant increase in transcription activity in
the reverse direction. Thus, there is a high probability that genes in a
divergent pair share the regulatory system.

If genes in a divergent pair do share the regulatory system with
functional consequences, one would expect their intergenic region to
be under higher evolutionary constraint. In addition, the divergent
gene pairs would be more likely to co-express than other types of
adjacent gene pairs (i.e., convergent and tandem pairs) [13]. However,
the proportions of adjacent genes that share similar expression
patterns do not differ significantly, regardless of their adjacent types
[6,14,15]. For example, our previous analysis [16] of five yeast species
demonstrated that the probability of conservation of each of the three
adjacent types is low and the difference in the co-expression level is
not statistically significant. Similarly, Yanai and Hunter [17] found
that the co-expression of gene neighbors in related nematodes is
highly divergent and probably evolves under neutral processes. These
findings seem to contradict the notion that the intergenic regions of
divergent gene pairs need to be highly conserved during evolution. To
identify the regulatory mechanism involved in divergent gene pairs,
we examined 263 transcription factor (TF) knockout experiments.
Our findings indicated that, in most instances, TF knockout only
altered the expression of one gene in a divergent pair (for details, see
Results and discussion). Thus, we were motivated to conduct a more
comprehensive analysis of budding yeast to estimate how many
divergent gene pairs share the regulatory system.

We integrated the annotations of TF binding sites (TFBSs) and
microarray expression data to infer the cis-regulatorymodules (CRMs,
i.e., common sets of TFs) of genes in divergent pairs in Saccharomyces
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cerevisiae. Our analysis indicates that only a limited number of
divergent gene pairs may share CRMs in a given dataset. However, we
also found that approximately half of the divergent pairs share a
regulatory system in at least one dataset when all the data collected
under different conditions are considered together.

2. Materials and methods

2.1. Identification of transcription factor binding sites (TFBSs)

First, we collected the TFBS annotations of 117 TFs from MacIsaac
et al. [18] (http://fraenkel.mit.edu/improved_map/orfs_by_factor.tar.
gz), where a site is bound at pb0.001 in the location analysis of
Harbison et al. [19] and conserved in three out of the four considered
yeast species. For TFs without TFBS information, we collected TFBS
annotations from the Mining Yeast Binding Sites (MYBS) database
[20]. MYBS allows users to identify TFBSs by using DNA-binding
affinity data and phylogenetic footprinting data from eight related
yeast species. In this study, we chose TFBSs that are conserved in at
least two of the other seven yeast species. By combining these two
resources, we were able to consider the TFBS annotations of 144 TFs.

2.2. Identification of divergent gene pairs

We adopted the definition of divergent gene pairs in our previous
study [16]. That is, two adjacent genes are considered a divergent pair
if they are transcribed in different directions from opposite strands of
DNA with adjacent 5′-ends, and the length of the intergenic region
between two translation start sites is within 700 bp. According to
Dobi and Winston [21], the majority of yeast promoters range from
approximately 150 to 400 bases. Therefore, in our analysis, we did not
consider divergent pairs whose intergenic regions were longer than
700 bases. We downloaded the sequence and annotations from SGD
(http://www.yeastgenome.org) [22]. There are 5702 annotated ORFs
in S. cerevisiae. After removing dubious, silent, and overlapping ORFs,
we identified 961 divergent gene pairs.

2.3. Assigning possible cis-regulatory modules (CRMs) to genes

For two genes, Gα and Gβ, in a divergent pair, we investigated
whether the TFBSs occurred in the intergenic region to enumerate all
possible TFBS compositions. Assuming that there were n TFBSs in the
intergenic region, we generated a total of 2n types of TFBS
compositions, each of which was treated as a group. We then divided
the non-divergent genes into different groups according to the TFBS
compositions (only for these n TFBSs) in their promoters. As a result,
each group contained a set of non-divergent genes. Note that a group
with insufficient genes (e.g., less than five) was discarded. This is a
limitation imposed by the Kolmogorov–Smirnov (KS) statistical test
used in our method, which we discuss in the following paragraph.

For each group, we used the expression coherence (EC) score [23]
to quantify whether genes in the same group had similar expression
profiles. The score is defined as the fraction of gene pairs in the group
with a correlation higher than a threshold. For a given expression
dataset, the threshold is set as the 95th percentile correlation
coefficient value of all the pairwise correlation coefficients among
100 randomly selected genes. To estimate the significance of the EC
scores, we used the method proposed by Lapidot and Pilpel [24].
Specifically, for each microarray dataset, and for each set size (varying
from 5 to the maximal number of genes in a group), we randomly
generated 1000 gene sets (with the same size andmicroarray dataset)
and computed the EC score of each set. The p value of a given score
was estimated as the number of random sets with scores higher than
the given score divided by 1000. For groups with a p value≤0.01, their
corresponding TFBS compositions were deemed potential CRMs in the
dataset. Correction for multiple testing was not applied at this stage.
Instead, we applied it in a later stage when examining the degree of
co-expression between Gα (or Gβ) and those groups with similar
expression profiles.

Next, we determined which potential CRM would be the most
likely module to regulate Gα (or Gβ) in the given dataset. For this, we
selected groupswhose gene expression profiles were similar to that of
Gα (or Gβ). Specifically, we let Mi be the members of group i, and
examined whether the distribution of the Pearson correlation
coefficients between Gα and Mi was significantly different from that
between Gα andMbg. (Mbg denotes genes in the background set; that is,
none of the n TFBSs are present in their promoters). We applied the
one-sided Kolmogorov–Smirnov (KS) test to examine the above
statistical criteria. For the gene Gα, let Eα(Mi) be the set of Pearson
correlation coefficients between Gα and Mi, and let Eα(Mbg) be the set
of coefficients between Gα and Mbg. We tested H0 :FEα(Mi)=FEα(Mbg)

against H1 :FEα(Mi)b stFEα(Mbg) using the one-sided KS test, where F
denotes the cumulative distribution function of the correlation
coefficients in a set. If H0 is rejected, FEα(Mi)b stFEα(Mbg), which means
the correlation coefficients in Eα(Mi) are “stochastically greater” than
those in Eα(Mbg).

Finally, we determined the false discovery rates (FDR) [25] by
computing the q value to correct for possible false positives from
multiple tests. The group with the smallest q value (≤0.01) was
selected and its corresponding CRM was assigned to regulate Gα.

2.4. Microarray dataset

We downloaded the expression data from the Stanford Microarray
Database (SMD, http://genome-www5.stanford.edu/) [26]. To avoid
bias while calculating the co-expression level (the Pearson correlation
coefficient) for two genes, we only used microarray data derived from
more than nine experiments. As a result, we selected the following ten
S. cerevisiaemicroarray datasets for the analysis: crz1p [27], alpha [28],
damage [29], glucose [30], oxi [31], HP [32], Hs [33], Os [33], MD [33]
and nitrogen [33]. The datasets contained the gene expression profiles
for experiments ranging from the natural processes of the cell (e.g.,
the cell cycle) and gene response to environmental perturbation (e.g.,
heat shock). The statistics of the ten datasets are detailed in Table S1.
We performed MA lowess [34] and quantile [35] normalization to
reduce systematic biases within each microarray, as well as the
intensity-dependent effects and biases between microarrays.

3. Results and discussion

3.1. Pilot study of divergent gene pairs that share a regulatory system
using TF knockout experiments

To estimate how many intergenic regions of divergent gene pairs
share CRMs, the most intuitive way is to check whether genes in a
divergent pair are regulated by the same TF(s). Therefore, to
investigate this issue, we used the TF knockout data from Hu et al.'s
study [36]. Our underlying hypothesis is that, if a TF knockout affects
the expression of both genes in a divergent pair, then the genes are
probably regulated by the same TF(s). However, if only one of the
genes undergoes a significant expression change, the genes are
probably not regulated by the same TF(s). Hu et al. profiled the
transcriptional responses in relation to the deletion of individual
genes that correspond to 263 TFs. Then, they integrated the resulting
data, assigned p values and identified target genes that exhibited
significant differential expressions. We found that 609 divergent gene
pairs exhibited significant changes in gene expression (p value≤
0.001) after knocking out at least one of the 263 TFs (see Additional
material 1). For 477 divergent gene pairs, alteration of the gene
expression was observed in just one of the two genes, but only in a
fraction of TF knockouts. The remainder of the TF knockouts yielded
no change for either gene. Our analysis clearly demonstrates that at
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least 78% (477/609) of divergent pairs do not uniformly respond to TF
knockouts. This result suggests that divergent gene pairs in budding
yeast may not be driven primarily by a common set of TFs in their
promoters under the investigated condition. This possibility moti-
vated us to identify the regulators of each gene in divergent pairs in
silico. Subsequently, we estimated the proportion of divergent gene
pairs that were co-regulated under different conditions.

Fig. 1 shows the model used to assign cis-regulatory modules
(CRMs) for divergent pairs. For two genes, Gα and Gβ, in a divergent
pair, we took the union of their TFBSs and assumed that combinations
of these n TFBSs constituted potential CRMs for regulating Gα and Gβ.
We enumerated all 2n combinations (assuming there were n TFBSs)
and matched each combination with non-divergent genes (genes not
in divergent pairs) that had the same TFBS composition. This resulted
in 2n groups of non-divergent genes. The non-divergent genes in each
group were then evaluated to determine the significance of their co-
expression. The procedure yielded a collection of significantly co-
expressed groups. Finally, we compared the gene expression profile of
Gα (or Gβ) in the investigated dataset of a particular condition with
that of each group in the collection, and we deduced the most likely
CRM that regulated Gα (or Gβ).

3.2. Many divergent gene pairs do not share CRMs under ten
investigated conditions

We applied the proposed method to the S. cerevisiae genome to
identify the CRMs for the genes in all divergent pairs. Table 1
summarizes the CRMs identified by using ten microarray datasets
(detailed results are presented in Table 2 and Additional material 2).
An identified CRM has a set of significantly co-expressed non-
divergent target genes and is assigned to regulate at least one gene
in a divergent pair. The number of identified CRMs ranged from 8 (in
the damage dataset) to 34 (in the MD dataset). Out of 1922 genes in
divergent pairs, we were able to assign CRMs to 28–297 (1.46%–
15.45%) genes in different expression datasets. We excluded diver-
gent pairs in which neither gene was assigned a CRM; such pairs were
considered to bewithout annotation. For each divergent pair in a given
dataset, we used the following labels: same to indicate that both genes
had the same assigned CRM; overlapped, if the genes' CRMs were
subsets of each other; different, if the genes had different assigned
CRMs; and one-assigned if only one gene had an assigned CRM. Both
different and one-assigned were considered not-shared, while over-
lapped and same were considered shared. Interestingly, 56%–100% of
the divergent pairs that were assigned CRMs belonged to the not-
shared category (Fig. 2) in the ten investigated datasets. For example,
in the glucose dataset, 56% and 7% of divergent pairs were labeled as
one-assigned and different respectively. Thus, in this case, 63% of the
divergent pairs were not-shared. The proportions of pairs that did not
share CRMs increased to 92% and 100% respectively in the HP and
nitrogen datasets. This was probably because there were only a few
genes (less than 50) with assigned CRMs in the two datasets.
However, even without considering these two datasets, the propor-
tion of divergent gene pairs that shared CRMs was still low, ranging
from 19% to 44% in the remaining eight datasets.

When assigning a CRM to a gene, we selected the most statistically
significant CRM. However, as other significant CRMs could also be
potential candidates, we might have underestimated the proportion
of divergent pairs that share a regulatory system. We examined this
possibility using the following stringent criterion: for one gene, all
CRMs that satisfied the threshold (q value≤0.01) were deemed
Fig. 1. Flowchart for assigning CRMs to genes in divergent gene pairs. First, for each gene, we
pairs and considered the rest as non-divergent. For genes in a divergent pair, we enumerate
checked the degree of co-expression using the expression coherence (EC) score. Then, we sel
comparing with the background set (in which genes do not have any of the related TFBSs i
multiple testing and obtained the corrected set of regulatory modules. Finally, we determine
smallest q value.
potential CRMs. If the respective CRMs of two genes in a divergent pair
had at least a single CRM in common, then we labeled the genes as the
same. Note that the classification of pairs in the same and one-assigned
categories is not affected using this new criterion. After applying the
criterion, we found that all pairs in the overlapped category were
reclassified as the same category (but they were already considered as
shared). In addition, approximately, 47% (31/66) of pairs belonging to
the different category were reclassified to the same category. Overall,
the percentage of shared CRMs was still lower than 46% in the ten
investigated datasets (Fig. S1), indicating that the proportion of
divergent pairs was not underestimated.

To assess whether the results were affected by stochastic noise
inherent in genome-scale data analysis, we performed two control
experiments. First, since it is known that neighboring genes tend to be
co-expressed [15], to avoid a foregone conclusion, we try to preserve
the neighbor effects in gene expression and promoter sequence. To
this end, we permute the gene expression from the promoters by
offsetting all of the gene expression data by one gene, along the
chromosome, and retain everything else intact. This preserves the
neighbor effects in gene expression and promoter sequence (note that
the impact on gene expression of the distance between two adjacent
genes were not fully addressed), but it permutes the gene expression
of the promoters. The results of this control experiment showed that
no gene in the divergent pairs was assigned by regulatory modules in
the ten datasets; thus, our preceding results are not merely inherent
noise. Second, we randomly scrambled the TFBS annotations of the
divergent gene pairs, but left the annotations of non-divergent gene
pairs unchanged. The re-assignments were repeated 100 times. In
each trial, we found that, on average, less than ten genes (0.52%=
10/1922) in divergent pairs were assigned by regulatory modules,
1.57 (0.082%) divergent gene pairs belonged to the same category,
and 7.66 (0.4%) pairs were one-assigned; however, there were no
overlapped or different pairs. The results of these two control
experiments suggest that the CRMs identified by our approach are
unlikely to be random expectation.

To determine whether a divergent pair always belonged to the
shared or not-shared categories in all ten datasets, we examined the
variations in CRM usage by all divergent pairs (Fig. 3; also see
Additional material 2). We grouped the divergent pairs according to
their CRM usage into the following three types: (A) divergent pairs
that belong to the shared category in some datasets and to thewithout
annotation category (neither gene in a divergent pair has an assigned
CRM) in other datasets, such as the YIL104C_YIL103W pair; (B)
divergent pairs that belong to the shared category in some datasets
and to the not-shared category in other datasets, such as the
YLR029C_YLR030W pair; and (C) divergent pairs that belong to the
not-shared category in some datasets, but do not belong to the shared
category in any dataset. Approximately 49% of the pairs belong to
Type C, which indicates that around half of the divergent gene pairs
tend to be co-regulated in at least one dataset, but they are not co-
regulated in most datasets. In addition, for most divergent pairs in
Type C, in all datasets, the CRMs assigned to one gene in a pairwere not
assigned to the other one gene. Moreover, the CRMs assigned to each
gene also varied in different datasets, e.g., the YPR190C_YPR191Wpair.
This implies that, in a divergent pair, a gene's CRM usage normally
varies under different conditions and tends to be different from that of
the other gene.

In the ten examined datasets, the proportion of any two genes that
were co-expressed (the Pearson correlation coefficient N0.6) was
determined to be 3–16% by a whole-genome pairwise comparison
collected the possible TFBSs within its promoter. Then, we identified genes in divergent
d all possible types of CRMs, assigned non-divergent genes to different CRM types, and
ected the groups whose gene expression profiles were similar to the identified genes by
n their promoters). We also used the false discovery rates (FDR) for the correction for
d which CRMwas the most likely module by assigning the corresponding CRMwith the
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Table 1
Information derived from ten microarray datasets about identified CRMs in divergent gene pairs.

crz1p alpha Damage Glucose oxi HP Hs Os MD Nitrogen

# of CRMsa 25 16 8 30 17 9 32 27 34 11
# of genes with assigned CRMs 287 231 132 297 226 42 266 226 221 28
# of sameb pairs 85 54 20 74 59 3 49 36 33 0
# of overlappedc pairs 1 5 0 3 3 0 2 1 2 0
# of differentd pairs 7 4 8 14 6 0 11 9 7 0
# of one-assignede pairs 101 105 76 115 90 36 142 134 137 28
Proportion of co-expressedf genes based on pairwise comparisons (%) 4.5 4.4 3.0 5.2 6.6 9.0 11.0 13.1 9.4 16.1
Co-expressed divergent pairs (%) 10.0 12.9 10.5 8.1 9.1 12.6 17.8 23.6 15.2 17.6
Co-expressed divergent pairs with sharedg CRMs (%) 17.4 35.6 25 28.6 24.2 33.3 44 56.3 42.9 0
Co-expressed divergent pairs with not-sharedh CRMs (%) 2.0 3.3 8.7 1.0 1.2 6.7 5.6 14.7 7.4 50
Co-expressed divergent pairs without annotatedi CRMs (%) 10.3 12.2 10.2 6.6 8.7 12.8 17 22.9 15.2 15.6

a # of different CRMs assigned to divergent genes.
b same: both genes in a divergent pair have the same assigned CRM.
c overlapped: two genes have overlapping assigned CRMs.
d different: two genes have different assigned CRMs.
e one-assigned: only one gene in a pair has an assigned CRM.
f Co-expressed: Pearson correlation coefficient is greater than 0.6.
g shared: including same and overlapped.
h not-shared: including different and one-assigned.
i without annotated: neither gene in a divergent pair has an assigned CRM.
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approach. In contrast, for all the divergent pairs, the proportion was
8–24% (for convergent and tandem pairs, the proportions were 8–20%
and 8–23% respectively). In the datasets (except the nitrogen dataset
because no gene pair is shared in the dataset), the proportions of co-
expressed divergent pairs in the shared, not-shared, and without
annotation categories were 17–56%, 1–15% and 7–23%, respectively
(Table 1). Although co-expressed divergent pairs are more likely to
fall into the shared category under our method, some (1–15%) co-
expressed divergent pairs belong to the not-shared category.
According to our previous study, the proportions of adjacent genes
that share similar expression patterns do not differ significantly,
regardless of whether they are divergent, convergent, or tandem
[16]. In that study, we also found that the divergent relationship was
not appreciably favored by selection, and the co-expression of
divergent gene pairs could not be attributed simply to a shared
regulatory system. Given all the above factors, it is reasonable to
infer that only a limited proportion (less than 50%) of divergent gene
pairs share a regulatory system under any one investigated
condition. However, it should be noted that the ten conditions
investigated in our study do not cover the entire transcription
program in yeast. Hence, there could be several gene pairs that share
a regulatory system under a given condition, but they are not
included in our study.

3.3. Identifying condition-dependent CRMs

To ascertain the biological relevance of the identified CRMs with
respect to the datasets used in the microarray experiments, we
conducted an extensive literature survey. As shown in Table 2,
different CRMs were identified in different datasets. For example, 16
CRMs were identified in the alpha dataset, in which 11 of the covered
16 TFs are known, or predicted, to be involved in controlling the yeast
cell cycle [22,37]. In three cases, where CRMs contain multiple TFBSs
(FKH2–MCM1–NDD1 [38], MBP1–SWI4 [39] and MBP1–SWI6 [40]),
the synergistic interactions among the TFs during the cell cycle have
been documented. Moreover, it is known, or predicted, that some TFs
in CRMs form protein complexes or compete with each other for
binding, e.g. Hap family [41], Met31–Met32–Met4 [42], Swi4–Swi6
[39], Fkh1–Mcm1 [43], Fkh2–Mcm1 [43] and Ino2–Ino4 [44].

Closer inspection of the CRMs activated under different conditions
(Table 2) reveals the following pattern: although several CRMs are
constitutively active among the ten analyzed datasets, more are
transiently activated in terms of one dataset or subset of datasets. For
example, two CRMs (2.44%) were active in all datasets, but about 49%
of CRMs were only active in one dataset. Therefore, we reasoned that
genes whose CRMs are assigned under a particular experimental
condition should have a higher probability of participating in
functionally related biological processes. We explored this hypothesis
by examining the functional enrichment of genes in all divergent pairs
with assigned CRMs by using the MIPS Functional Catalogue Database
(FunCatDB, http://mips.helmholtz-muenchen.de/proj/funcatDB/)
[45], which computes the functional enrichment in terms of
hypergeometric p values. Here, we defined a set of genes to be
enriched in a particular function if the hypergeometric p value was
less than 0.01.

To obtain a more quantitative picture of the relationship between
the enrichment of functional categories and genes with assigned
CRMs, we counted and compared the total number of enriched
functions for genes in divergent pairs with and without assigned
CRMs. For example, in the alpha dataset, genes in divergent pairs with
assigned CRMs were significantly enriched in 10 functional categories
(p valueb0.01); whereas genes without annotated CRMs were
enriched in only one functional category (Fig. 4A). We found that in
the ten investigated datasets, genes with assigned CRMs were
enriched in a much higher number of functional categories (84
functional categories; p valueb0.01) compared to genes without
CRMs (only eight functional categories). Moreover, we checked the
biological relevance of the enriched functional categories. We found
that genes with CRMs assigned under a particular condition were
more enriched in the functional categories than genes with CRMs
assigned under other conditions, as shown in Fig. 4A. For example,
genes in divergent pairs with assigned CRMs in the alpha dataset were
significantly enriched by genes annotated with “CELL CYCLE AND DNA
PROCESSING” in the database (P=8.7×10−6 by hypergeometric
distribution); such enrichment was not found under other conditions.
For genes in divergent pairs without annotated CRMs, no statistically
significant enrichment could be found (Fig. 4B).

In addition, to determine whether genes regulated by a CRM are
enriched in a specific functional category, we examined the functional
enrichment of the target genes by using FunCatDB for each assigned
CRM. In the analysis, we only included target genes whose number
was larger than or equal to five.We found that, for each assigned CRM,
the target genes under a particular condition were significantly
enriched in the functional categories (see Additional material 3). To
confirm the biological relevance of our findings, we searched the
literature for some of the enriched CRMs. We found that RPN4 was
enriched in themain category of “PROTEIN FATE” and in sub categories
“protein modification” and “protein/peptide degradation” along with
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Table 2
Identified CRMs of divergent gene pairs based on the analysis of ten microarray datasets.

CRMa Dataset

crz1p alpha Damage Glucose oxi HP Hs Os MD Nitrogen

ABF1 8 13 1
ABF1 RPN4 1
ABF1 RRPE 1
AFT1 CIN5 1
AFT2 1
BAS1 2 3
BAS1 GCN4 1 1
CAD1 2
CAD1 YAP1 YAP7 1 1
CBF1 4
CRZ1 17b

DIG1 MCM1 STE12 2
ESR1 PAC 2
FHL1 3 2 4 4 4 3 3 1 2
FHL1 RAP1 27 7 10 13 20 11 15 13 4 9
FHL1 RAP1 SFP1 3 3 6 6 8 7 6 6 1
FKH1 1 6
FKH1 FKH2 10 1
FKH1 FKH2 MCM1 1
FKH1 MCM1 1
FKH2 1
FKH2 MCM1 1 1
FKH2 MCM1 NDD1 1
FKH2 NDD1 1
GCN4 4 2
GCN4 YAP1 14 3 2 7
GIS1 2
HAP1 1 4
HAP2 1 2
HAP2 HAP3 HAP4 HAP5 1 3 2
HAP2 HAP4 1
HAP2 HAP4 HAP5 2
HAP3 1 1
HAP3 HAP4 HAP5 1
HAP3 HAP5 4 1 1
HAP4 2
HAP4 HAP5 1 1
HAP5 1 3
HCM1 6 2
HSF1 1 13 6 2 2
INO2 INO4 1
MAL63 2
MBP1 64 3 16 28 1
MBP1 MCM1 SWI6 1
MBP1 SWI4 5 2 1 2 2
MBP1 SWI6 1 1 1 1
MCM1 1
MCM1 STE12 2
MCM1 XBP1 1
MET31 1 1 1
MET31 MET32 MET4 1
MET31 MET4 1
MET4 1 4 1
MET4 RPN4 1
MIG1 24 9
MSN2 6 2 4 3
MSN2 SKN7 1
MSN4 1
NDD1 1
NDT80 1
PAC 72 56 51 59 46 9 58 58 39
PAC RRPE 1
PHD1 1
RAP1 24 20 11 5 16 13 5 3
RAP1 SFP1 6 4 6 4 4 2 2
REB1 YDR026C 1
ROX1 1
RPN4 27 36 44 3 30 7 32
RPN4 MET4 1
RRPE 75 41 60 75 59 6 68 66 13 5
SFP1 3 2 3 3 2 3 2
SKN7 2 2
STB1 10 2 1

(continued on next page)
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Table 2 (continued)

CRMa Dataset

crz1p alpha Damage Glucose oxi HP Hs Os MD Nitrogen

STB1 SWI4 1 6 1 6
STB1 SWI4 SWI6 1 2
SWI4 29 4 12 19
SWI4 SWI6 1
TEA1 2 1
UME6 7
YAP1 2 1 8
YAP1 YAP7 1 1 1
YAP7 2

a All CRMs identified in ten datasets.
b Each entry represents the numbers of genes assigned to a CRM in the dataset. For example, 17 genes were assigned to CRZ1 in the crz1p dataset.
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“structural protein binding”. From studies, profiling the regulatory
network of damaged cells in S. cerevisiae, DNA excision repair genes
and protein degradation genes are known to be modulated by the
proteasome-associated protein RPN4 via its binding to the MAG1
upstream repressor [46]. Furthermore, Matsumoto et al. [47] found
that RPN4 is involved in the regulation of genes exposed to heat shock
conditions (the Hs dataset) by comparing their expression levels with
S. cerevisiae wild-type genes. As another example, we found that
MBP1 was enriched in the process of “CELL CYCLE AND DNA
PROCESSING” in the cell cycle related condition (the alpha dataset).
Using the crystal structure of the DNA-binding domain of MBP1, Xu et
al. [48] demonstrated the importance of this TF in cell cycle control
and DNA synthesis. These results consolidate our findings on
conditional specificity of CRMs regulating divergent gene pairs and
being enriched in biological processes. However, due to the limited
data pertaining to CRMs in all experimental conditions in yeast, these
results can only be regarded as a guideline, as there could be several
other cases not detected by our analysis.

3.4. Identified CRMs tend to occur close to the TSS of their
regulated genes

To provide quantitative support for our findings, we also analyzed
the physical distances (base pairs) between genes and their assigned
CRMs. According to Chen et al. [49], in a divergent gene pair, the TFs
whose TFBSs are proximal to a gene tend to regulate it. Therefore, for
the one-assigned divergent gene pairs, we performed a one-sided KS
test to determine whether the distances of the assigned genes to the
corresponding CRMs were statistically shorter than those without
Fig. 2. Distribution of the fraction of shared/not-shared CRMs of divergent gene pairs in
various datasets. Fractions corresponding to various categories, represented in different
forms as shown in the inset, are displayed.
assigned genes. The distance from a CRM to a gene was calculated as
the number of base pairs from the proximal TFBS (belonging to the
CRM) to the TSS of the gene. The results showed that the CRMs were
indeed closer to their target genes than to the non-target genes in
eight datasets (p valueb0.05). The alpha, damage and crz1p datasets
showed highly significant results (p valueb10−5) (p values were
1.33×10−6, 2.37×10−9 and 1.61×10−7, respectively). Based on the
evidence from the literature, functional enrichment and distance
analysis, we believe that our assigned CRMs play a role in the
biological functions elucidated in our work.

3.5. The impact of missing TFBS annotations

The proposed method probably cannot exhaustively identify all
CRMs associated with a certain condition due to incomplete TFBS
annotations and noisy expression data. Although the TFBS annota-
tions include the binding motif consensus sequences of 144 TFs, some
TFBSs are definitely missing. Therefore, we simulated the potential
impact of missing TFBSs by removing the occurrences of some TFBSs,
and then re-running the whole analysis to estimate the proportion of
shared CRMs in divergent gene pairs. We selected five CRMs (FHL1–
RAP1, MBP1, PAC, RPN4 and RRPE) that occurred frequently in our
results. One at a time, we simulated the changes in the proportion of
shared CRMs in divergent gene pairs with and without the TFBS. The
impacts of missing CRMs are shown in Table S2. For gene pairs that
were assigned to the shared, not-shared and without annotation
categories without considering these CRMs, approximately 43%, 89%
and 67% of these pairs respectively were not-shared in the ten datasets
after taking these CRMs into account. These results indicate that when
one or more TFBS annotations are available, a substantial portion of
gene pairs are likely to be categorized as not-shared. This proportion is
also consistent with our estimation.

Admittedly, the absence of TFs might have a significant impact on
the results and the above simulation might not fully reflect the real
situation. Therefore, we also collected four different TF binding
datasets to analyze the trend of the proportion of shared/not-shared
regulatory modules of the divergent gene pairs. The four datasets
were YEASTRACT [50], MYBS [20], MacIsaac et al. [18] and Badis et al.
protein binding microarray (PBM) experiments [51]. We used the
datasets to assess the potential impact of incomplete TFBS annota-
tions, since they contained a sufficient number of TFs and were
obtained from the literature or experiments. The TFBS annotations of
118 TFs from MacIsaac et al. were gathered as described in Materials
and methods. We also collected 104 TFs and the TFBS annotations
from MYBS alone. For YEASTRACT, the regulatory associations
between TFs and their target genes in S. cerevisiae were collected
from the literature. After downloading from YEASTRACT, we collected
108 TFs and their target genes. Badis et al. performed in vitro PBM
experiments to generate the motifs for 112 yeast TFs. Then, they used
PWMs and the GOMER program [52] to estimate the probability of a
TF binding to somewhere within a promoter. We followed their
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Fig. 3. CRM usage by divergent gene pairs. The figure shows CRM usage of 961 divergent pairs in the ten analyzed datasets. The x-axis represents the number of (shared, not-shared)
datasets. For example, (1,4) represents the group in which the genes in each pair share the same assigned CRM in only one dataset and have different CRMs in the other four datasets.
The y-axis represents the number of divergent gene pairs. In addition, the three types of CRM usage are: (A) divergent pairs that belong to the shared category in some datasets and
to the without annotation category in other datasets; (B) divergent pairs that belong to the shared category in some datasets and to the not-shared category in other datasets; and
(C) divergent pairs that belong to the not-shared category in some datasets, but do not belong to the shared category in any dataset.
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criteria and chose the top 200 hits from GOMER as the target genes for
each TF. The above four TF binding datasets contained different
numbers of TFs. Table S3 provides an overview of the TFs in the four
binding datasets. In total, 194 TFs were collected in these four
datasets; 36 TFs existed in all four datasets, while 70 TFs only
appeared in one dataset. Applying ourmethod to the four datasets, we
found that most of the divergent pairs did not share CRMs (Fig. 5).
Specifically, the proportions of regulatory modules assigned to the
same, different, overlapped and one-assigned categories were similar.
Therefore, we believe that the true ratio of divergent gene pairs that
share CRMs should be similar to our estimation.
Fig. 4. Functional enrichment of genes in divergent pairs under different express
3.6. The existence of TFBSs in the intergenic regions of divergent
gene pairs

Since different promoters have different numbers of TFBSs and the
probability of sharing a CRM might be dependent on the number of
binding sites, we examined the relationship between the number of
TFBSs and the length of the promoters. As shown in Fig. S1, overall,
longer promoters seem to contain more TFBSs. We also checked
whether the probability of sharing a CRM is dependent on the number
of binding sites. Specifically, we counted the average lengths of
promoters and the average numbers of TFBSs of shared and not-shared
ion conditions. (A) With assigned CRMs, and (B) without annotated CRMs.
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Fig. 5. Distribution of the fraction of shared/not-shared CRMs of divergent gene pairs in various datasets using four different TF binding datasets. Fractions corresponding to various
categories, represented in different forms as shown in the inset, are displayed.
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groups in the ten analyzed datasets (Table S4). Although the
divergently transcribed pairs in “shared” groups tend to have shorter
promoters and fewer TFBSs than those in “not-shared” groups, the
difference (based on the two-sided KS test) is not significant. Only the
promoter length in the glucose dataset and the number of TFBSs in the
Hs dataset have p values smaller than 0.01.

In terms of the distribution of the number of TFBSs per intergenic
region (normalized to the promoter length), we found that the
average number of TFBSs in the intergenic regions of divergent gene
pairs and uni-directional transcribed promoters was 6.26 (TFBSs/Kbp)
and 5.2 (TFBSs/Kbp) respectively. Note that the upper bound on the
lengths of uni-directional transcribed promoters was limited to
1000 bp. The average number of TFBSs in a divergent gene pair was
larger than that of uni-directional promoters, which was consistent
with the observation of Erb and Nimwegen [53]. We also examined
whether some TFBSs prefer to locate in the intergenic regions of
divergent gene pairs. For each TF, we used a one-sided two sample
proportion test to check whether the proportion of divergent
pairs with binding sites in the promoters was significantly greater
than in non-divergent genes. Among 144 TFs, the following 6 TFs
were found to be significantly over-represented in divergent pairs
(p valueb10−5): Abf1, PAC, Rap1, Rpn4, RRPE, and Xbp1. Most of
those TFs were also found in our identified CRMs (Table 2). The
descriptions provided by the Saccharomyces Genome Database (SGD)
[22] also show that some of the above TFs are functionally related.
For example, Abf1p and Rap1p are responsible for regulating the
chromatin structure [54]. Interestingly, Lin et al. [9] also found that
five motifs are over-represented in the intergenic regions of divergent
gene pairs in humans. However, the consensus and functions of these
five motifs are dissimilar to the six motifs we identified in yeast. Why
some TFBSs prefer to reside in the intergenic regions of divergent gene
pairs remains an open question.

4. Conclusion

In this paper, we have investigated whether divergent gene pairs
share cis-regulatory modules. This is a challenging problem because,
when two divergent genes share the same intergenic region, it is
difficult to assign the appropriate CRM to each gene without
ambiguity. Taking advantage of the analyses of the TF knockout
experiments, we have shown that, in most instances, TF knockout
only alters the expression of one gene in a divergent pair. In an
attempt to resolve this problem,we have proposed a novelmethod for
estimating the ratio of divergent gene pairs that share CRMs. The
reliability of this assessment was enhanced by an extensive literature
survey and functional enrichment analysis. We found that only a
limited number of divergent gene pairs appear to share CRMs in one
condition, although approximately half of the divergent pairs shared a
regulatory system in at least one dataset. Whether this characteristic
is common to other systems has yet to be determined. Thus, it would
be of great interest to extend this analysis to other systems by using a
similar approach.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.ygeno.2010.08.008.
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