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1. Introduction

Hepatocellular carcinoma (HCC) is one of the
world’s most common and deadly cancers. Less than
one-third of patients can currently benefit from poten-
tially curative therapies in the West [1]. However, a
new era has dawned in oncology with novel and prom-
ising drugs emerging in parallel with a better under-
standing of the pathogenesis of cancer [2].

The advent of sorafenib – a multikinase inhibitor – as
an effective therapy in advanced HCC has enhanced the
interest in testing new molecular therapies in experimen-
tal and clinical studies [3]. Integrative genomic studies in
human HCC samples have begun to identify subgroups
of patients with characteristic molecular features such as
mutations, gene expression profiles and chromosomal
aberrations [4,5]. These studies have underlined the fact
that a number of molecular pathways are disrupted in
almost all tumors, involving critical functions for the
progression or dissemination of the disease. Such is
the case of three main cellular functions: (1) Activation
of pro-angiogenic signals mediated by VEGF, PDGER,
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angiopoeitin-2, and others [4,6]; (2) Mitosis checkpoint
disruption and activation of pro-apoptotic mediated
by mutations of critical tumor suppressors (e.g. p53,
inactivation of Rb) or activation of oncogenes (e.g.
Cyclin D1) [7]; (3) Acquisition of limitless replicative
potential through the activation of TERT at pre-
neoplastic and early HCC stages [8]. Nonetheless, the main
driving force ensuring tumor viability in HCC depends
on the activation of specific signal transduction path-
ways leading to tumor proliferation. Nonetheless, the
main driving force ensuring tumor viability in HCC
depends on the activation of specific signaling pathways
leading to tumor proliferation. From the molecular clas-
sifications published so far, one-third of HCCs are dri-
ven by proliferative signals generated from Tyrosine
Kinase Receptor (e.g. EGFR, IGF-IR), RAS/MAPK,
PI3K-Akt-mTOR or c-MET signaling transduction
pathways [5,9,10]. In another third of HCC patients, cell
proliferation is lead by activation of Wnt pathway,
mostly as a result of b-catenin mutations [11,12]. Geno-
mic abnormalities driving proliferation in the remaining
cases are still unclear. Therefore, there is rationale to
combine drugs abrogating potent signals at different lev-
els of one of the main pathways (e.g. blocking EGFR
with erlotinib and Raf-Ras with sorafenib) or abrogat-
ing signals of two different pathways (e.g. VEGF with
bevacizumab and mTOR with rapamycin, as in the
study by Huynh et al.) [13]. Since there is not a single
dominant molecular pathogenesis underlying all HCCs,
it is increasingly clear that different models will be
ultimately required to mimic different subclasses of the
neoplasm.
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Investigators at the front-line of drug development of
targeted therapies in HCC are now facing two challeng-
ing questions. First, what is the best experimental model
to assess new molecular targeted therapies in HCC, and
second, if there are data to support a direct correlation
between experimental findings and clinical outcomes in
phase II–III studies in oncology and HCC.

2. Testing new drugs in pre-clinical HCC models

The demonstration that concentrated cancer cells
grown in vitro could form tumors when implanted sub-
cutaneously into an immunocompromised mouse was
first established in 1969 [14]. This xenograft model has
since demonstrated several advantages that explain its
persistence as the mainstay of pre-clinical studies of anti-
neoplastic drugs in vivo: the tumors are rapidly and eas-
ily induced, and their subcutaneous location enables
direct measurement of tumor growth. More recently,
however, several critical differences between xenograft-
and patient-derived specimens have become apparent.
Cancer is now appreciated as a complex disease depen-
dent upon the interaction between transformed cells har-
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boring oncogenic mutations and their surrounding
tumor environment made up of normal cells, stromal
cells, and immune cells [15].

One of the challenges we face in pre-clinical testing of
targeted therapies in HCC is the lack of models that
accurately recapitulate the disease in humans. Several
key mouse models have been instrumental in defining
the pathogenesis of HCC by introducing genetic altera-
tions into one or more etiologic pathways that can be
targeted exclusively to the liver [16]. Nonetheless, sub-
stantial challenges persist in modeling liver diseases
whose natural history requires a chronic inflammatory
milieu. Although these genetically modified mice have
been employed to investigate the molecular pathways
dysregulated in HCC, they are not commonly employed
for pre-clinical drug testing, using either cytotoxic che-
motherapeutic or molecularly targeted agents [16].

Pre-clinical testing, in HCC as in the majority of can-
cers, is typically performed in immune deficient mice
using human tumor xenografts grown subcutaneously
[16,17]. In the study published this month in the Journal
by Huynh et al., the authors assess the efficacy of Bev-
acizumab and Rapamycin in two different nude mouse
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animal HCC culture models (Fig. 1). The first is a typi-
cal xenograft model in which the authors test 4 different
HCC cell lines and 2 immortalized cirrhotic cell lines.
This allows them to compare the sensitivity of the cancer
cells and the non-cancer cells to the combined treatment,
relative to the control and monotherapy treated groups.
More importantly, they demonstrate that certain cell
lines with oncogenic mutations are more susceptible to
the drugs blocking the activated pathways than other
cell lines, and describe an additive effect of the combina-
tion in tumor growth inhibition. The second model
assesses the ability of cells to implant and metastasize
to liver after intraperitoneal injection whilst undergoing
the treatment regimens in question. Here the authors
demonstrate a significant survival benefit of the bev-
acizumab/rapamycin combination, as opposed to the
control and monotreatment groups. This experiment
represents a useful departure from ectopic xenograft
models in which metastases are rare. Overall, this study
improves upon the routine xenograft model and demon-
strates quite convincingly that the combination of the
two therapies could merit further investigation in clini-
cal trials.

Novel models are emerging to test new drugs. One
solution to the disparity between cancer cell lines and
human tumors is surgical orthotopic implantation, in
which intact fragments of human cancer taken directly
from a patient are transplanted into the corresponding
organ of immunodeficient rodents, as reviewed else-
where [18]. Another alternative is to test new drugs in
xenograft models generated from cultured cancer stem
cells, the key target cells to assess efficacious drugs. Fur-
ther possibilities include the use of mouse cell lines in
immunocompetent mice with underlying liver fibrosis
[19], a model that provides a unique tool for testing effi-
cacy of drug combinations within the context of liver
fibrosis, not likely possible in immune deficient mice.
Finally, a more ambitious approach would be to test
novel drugs in genetically engineered mice recapitulating
specific pathway abnormalities (such as double trans-
genic TGF/c-MYC [20], transgenic of PDGFR [21], or
Table 1

Targeted agents in pre-clinical models in HCC and clinical trial outcomes

Target Cancer Agent or combination Pre-cl
with (

VEGFR/Raf HCC Sorafenib [26–28
RCC
Breast

VEGFR/PDGFR HCC Sunitinib [30,31
mTOR Gallbladder,

ovarian, breast
Rapamycin and its analogs
everolimus, temsirolimus

[34–36

EGFR HCC Erlotinib [38]
EGFR HCC Gefitinib [41]
EGFR HCC Cetuximab [43]
VEGF HCC Bevacizumab No da
VEGF and EGFR HCC Bevacizumab and Erlotinib No da
transgenic for b-catenin [22]) in animals with an under-
lying fibrotic milieu. None of the latest models are cur-
rently ready for the conventional experimental studies
[16].

3. Correlation between experimental findings and clinical
trials

The validity of xenografts as a predictive indicator of
probable clinical activity is limited, with the most suc-
cess seen in cytotoxic agents [17]. A retrospective analy-
sis performed by the NCI for 39 compounds in which
both xenograft testing and phase II clinical data were
available showed that in vivo activity in a particular
tumor histology did not closely correlate with activity
in the same human cancer, and that less than 50% of
agents with activity in more than one-third of xenografts
showed clinical activity [23]. A similar study from the
NCI of Canada comparing drug activity in phase II clin-
ical trials, human xenograft and mouse allografts
showed that the human xenograft model was predictive
for non-small cell lung cancer and ovarian cancers when
panels of xenografts were used, but that these same
models were not predictive for breast and colon cancers
[24]. More recent reviews emphasize the predictive nat-
ure of the xenograft models when pharmacokinetically
clinically equivalent drug doses are tested [25].

Targeted drugs tested in pre-clinical studies and the
subsequent data in clinical trials in HCC are summa-
rized in Table 1 [26–46]. The only positive survival
data reported with molecular therapies with sorafenib
in HCC were preceded by strong positive pre-clinical
experiments including evaluation in xenografts [27].
The remaining drugs with positive pre-clinical data
have only been tested in the setting of small phase
II studies, and thus the correlation between pre-clini-
cal data and final clinical benefit (only coming from
phase III studies) is difficult to predict. Although all
drugs listed in Table 1 demonstrated pre-clinicial posi-
tive results, only some of them are likely to move for-
ward according to phase II data (combinations with
inical studies
+) outcomes

Clinical trial outcomes in HCC

] Phase III: survival benefit [29]

] Phase II [32,33] – survival: 11.6mo, TTR: 4.1mo
] No data in HCC. RCC phase III: survival benefit [37]

Phase II [39,40]: Survival: 13mo; TTR: 3.2mo
Phase II [42]: negative
Phase II [32,44]: negative

ta Phase II [30,45,46]: TTR: 6.5mo
ta Phase II [40]: survival: 19mo
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sorafenib, bevacizumab, erlotinib and rapamycin ana-
logs), whereas others have shown limited results (gefi-
tinib, cetuximab and bortezomib). Several variables
may impact on the divergent outcomes compared to
human disease. These include degree of heterogeneity
of tumors in humans versus in cell lines; the molecular
aberrations of the cell line chosen, ectopic versus
orthotopic location of tumor, dosage and scheduling
of the two compounds, and variability in selected end-
points [47]. The greatest discrepancies between success
of cancer therapies in xenograft models and in human
clinical trials are likely due to critical differences in
both the tumor cells and their microenvironment; this
is a particularly relevant to HCC, which arises in an
environment of inflammation and fibrosis.

In conclusion, as in other malignancies, we are in dire
need of accurate pre-clinical models of HCC that allow
us to choose which molecularly targeted therapies and
combinations thereof to advance to clinical trials. How-
ever, HCC is unique in two important ways: in the het-
erogeneity of the tumors amongst individuals and in the
microenvironment of cirrhosis in the vast majority of
affected patients. The paper by Huynh et al. addresses
the first need by employing a number of cell lines with
known mutations and dysregulated signaling pathways.
It also addresses the need for testing in a metastatic
model, although a model in which the metastatic disease
burden was pre-established would more accurately
mimic advanced HCC in humans [25].

In order to truly justify translation of a combination
therapy study into clinical trials, strong pre-clinical sup-
port is essential. The best model to test these new com-
pounds has not yet been defined in HCC, although
some novel approaches are being proposed. In parallel,
serum or tissue biomarkers of molecular signatures from
tumors in humans should be obtained in early trials to
understand their tumor biology [2], as was recently recom-
mended by the panel of experts in trial design in HCC [48].
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