
 Procedia Engineering   117  ( 2015 )  296 – 303 

1877-7058 © 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of SPbUCEMF-2015
doi: 10.1016/j.proeng.2015.08.164 

ScienceDirect
Available online at www.sciencedirect.com

International Scientific Conference Urban Civil Engineering and Municipal Facilities, 
SPbUCEMF-2015

Reciprocal Relations in Oscillations of Dissipative Systems
Alexander Potapov, Evgeny Ufimtsev*

South-Ural State University, Chelyabinsk, Lenin Prospect, 76, 454080, Russia

Abstract

The equations of the dynamic response of discrete dissipative systems at arbitrary load are considered within the theory of time 
analysis. The structure of the kinematic parameters of a reaction is analyzed and it is shown that the constituent matrices of 
movements, velocities and accelerations of the nodes of the system are symmetrical which is considered as a specific case of 
reciprocal relations in an elastic dissipative system. On the basis of the properties of matrices, the more general reciprocal 
relations are proved, where in addition to the familiar principle of reciprocity of virtual work there are reciprocal relations in the 
form of a product of mass forces and velocities and in the form of a product of mass forces and accelerations. The theoretical 
calculations are illustrated by the example.
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1. Introduction

Reciprocal relations in elastic dissipative systems for the first time in his research were obtained by Rayleigh who 
introduced the scattering function for this purpose [1]. He accepted periodic forces of a harmonic type as an external 
action on the nodes of a discrete dissipative system (DDS) and he considered steady-state oscillations that followed 
the harmonic law as well. Thus, all the forces involved had the same period of vibration and were in the same phase.

It should also be noted that in the construction of his evidence Rayleigh relied on the analysis of the potential and
kinetic energies of a DDS, which are homogeneous quadratic functions of generalized coordinates and velocities, 
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correspondingly.
One more approach was used by Professor P.L. Pasternak [2, 3] where he introduced a scheme of derivations of 

reciprocal relations based on a clear algebraic rendering of the principle of reciprocity. According to this approach, 
the property of reciprocity is peculiar to any system of n linear equations with n unknowns, possessing a 
symmetrical structure of coefficients.

This algebraic approach, which does not involve the potential and kinetic energy of a DDS, is the basis for 
proving the theorem of reciprocity [4] due to the development of a new mathematical tool to perform the theory of 
time analysis for a DDS [5]. Derivation of the theory is connected with the analysis and solution of a matrix quadric 
equation (MQE), which is a characteristic of one to a homogeneous differential equation of movement of a DDS.

Research into the calculation of structures to static and dynamic effects on the basis of reciprocal relations were 
carried out by Russian scientists [6-12] and foreign scientists [13-21].

This article highlights the development of ideas given in [5] as to reciprocity, as well as extending the 
understanding of the theorem of reciprocity in dissipative systems under arbitrary dynamic forces.

2. Features of response equations of a discrete dissipative

The equation of movement of a DDS and its corresponding characteristic MQE are the following:

M ( )Y t + C ( )Y t + KY(t) = P(t), (1)

MS2 + CS + K = 0, (2)

where M = diag (m1, ... , mn), C = CT, K = K n(R) are correspondingly matrices of mass, damping and stiffness of the 
system; Y(t) = [yj(t)], P(t) = [pj(t)] (j = 1, ... , n) are vectors of movements and external load; S Mn(C) is the matrix of internal 
dynamic characteristics; n is the number of degrees of freedom of a DDS.

The transition from (Eq. 1) to (Eq. 2) is made with the help of a fundamental matrix (t) = eSt of the 
homogeneous differential equation corresponding to (Eq. 1): (t) is a fundamental matrix of the homogeneous 
equation in (Eq. 1) then and only then when the matrix S meets the MQE (Eq. 2).

In [5] it is shown, that at finite solubility of the MQE its solutions are set into a root pair:

S1,2 = M 1( C + W U)/2, (3)

where W = WT and U = UT. Fundamental relations are true for matrix roots (Eq. 3):

STU = US, (t)TU = U (t), (4)

which are determine the fact of the symmetry of the matrices-multipliers US, U (t).
At an insignificant dissipation of an elastic system, which meets the requirements of structural oscillations, for 

matrices W and U in (Eq. 3) we have the following conditions:

W = ReW, U = iImU = 2iM ImS (i = 1 ). (5)

whence it follows that S1 = S, S2 = S are complex-conjugate matrices.
Based on the properties (Eq. 3) – (Eq. 5), there opens the possibility of developing the complete set of equations of the 

dynamic response of DDS at forced oscillations [5]:

Y(t) = 2 Re{U–1

0

t

t
(t )T P( ) d }, (6)
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( )Y t = 2 Re{SU–1

0

t

t
(t )T P( ) d }. (7)

( )Y t = 2 Re{S2U–1

0

t

t
(t )T P( ) d } + M–1P(t). (8)

In closed form these equations make it possible to determine the movements (Eq. 6), velocities (Eq. 7) and 
accelerations (Eq. 8) of nodes of the DDS. (Eq. 6) is the nontrivial matrix form of the Duhamel integral, the integrand 
of which in contrast to the equivalents of this integral [22] has the matrix (t) of a homogeneous equation 
corresponding to (Eq. 1).

3. Reciprocal relations in a discrete dissipative system

Suppose arbitrary external forces pj(t), which are characterized by vector P(t), act in nodes of the elastic DDS:
P(t) = f(t)P0, (9)

where f(t) is a dimensionless scalar function of time t, which is determining the law of the load application; P0 =
[p0j] (j = 1, ... , n) is the amplitude vector. Then (Eq. 6) – (Eq. 8) take the form:

Y(t) = D(t)P(t),    ( )Y t = V(t)P(t),    ( )Y t = A(t)P(t), (10)

where

D(t) = 2 Re{U–1

0

t

t
(t )T f( ) d }f(t)–1, V(t) = 2 Re{ SU–1

0

t

t
(t )T f( ) d }f(t)–1, (11)

A(t) = B(t) + M–1, B(t) = 2 Re{S2U–1

0

t

t
(t )T f( ) d } f(t)–1. (12)

The matrix functions D(t) = [ jk(t)], V(t) = [vjk(t)], A(t) = [ajk(t)] (j, k 1, ... , n) have the property of symmetry. 
To prove this fact let us consider the auxiliary matrix function (t )U–1(Sk)T, where k is any integer number. Using 
Eq. (4) it can be shown that this function is of a class of symmetrical matrices: SkU–1 (t )T = (t )U–1(Sk)T.

For k = 0, 1 and 2 the expressions of these matrices are the same as for the integrands in (Eq. 11), (Eq. 
12) to an accuracy of scalar factor. While analyzing it is necessary to consider the fact that the matrices 
U–1, SU–1, S2U–1 are constants, so they can be made under the integral sign. Consequently

D(t) = D(t)T, V(t) = V(t)T, A(t) = A(t)T. (13)

Analysis of the expressions (Eq. 11), (Eq. 12) shows that the symmetrical structure of the matrices is determined 
by the inner properties of the dissipative system and does not depend on the character of external action. It is not too 
difficult to see that matrix elements (Eq. 13) are kinematic parameters of the system such as the movements, 
velocities and accelerations of the nodes of the DDS correspondingly. It follows from (Eq. 10) at unit exposures on 
the nodes of the DDS.

Under symmetry (Eq. 13) the expression in (Eq. 10) make it possible to obtain more general reciprocal 
relations along with Betti’s principle. For that purpose let us consider a new group of forces acting on the nodes 
of the DDS and introduced by the vector P(t)' = [pj(t)'] (j = 1, ... , n). According to the law of load application 
(Eq. 9) characterized by the scalar function f(t), we have the following: P(t)' = f(t)P0', P0' = [p0j '] (j = 1, ... , 
n). Then (Eq. 10) takes the form:
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Y(t)' = D(t)P(t)',    ( )Y t ' = V(t)P(t)',    ( )Y t ' = B(t)P(t)'. (14)

New values of vectors of movement, velocity and acceleration correspond to this group of forces: Y(t)' = [yj(t)'], 
( )Y t ' = [ ( )jy t '], ( )Y t ' = [ ( )jy t '] (j = 1, ... , n).
For each pair of expressions in (Eq. 10) and (Eq. 14), having the same symmetrical matrices (Eq. 13), scalar 

equations of the following types are performed:

Y(t) P(t)' = Y(t)' P(t),    ( )Y t P(t)' = ( )Y t ' P(t),    ( )Y t P(t)' = ( )Y t ' P(t). (15)

These equations are expressing the law of reciprocity in an elastic DDS.
Let us show the correctness of the given dependencies (Eq. 15) for the first relation. In (Eq. 10) we perform the 

operation of transposition: Y(t) = P(t) D(t), and in (Eq. 14) we perform reverse conversion expressing vector P(t)' 
through Y(t)': P(t)' = D(t)–1Y(t)'. After termwise multiplication of the left and right parts of these expressions as a 
series to a column we have the desired result.

The obtained relation expresses the equality of virtual work (Betti’s principle), performed in a dissipative system 
by the group of forces (vectors P(t), P(t)') at the corresponding total of movement (vectors Y(t)', Y(t)).

The physical meaning of the second and the third expressions in (Eq. 15) is less straightforward. The second 
correlation expresses the reciprocity of possible values, introduced in the form of the multiplication of groups of 
forces (P(t), P(t)'), acting in the nodes of the elastic DDS by the sum total of mass velocities ( ( )Y t ', ( )Y t ). The 
third correlation expresses the reciprocity of possible values in the form of the multiplication of the same groups of 
forces by the sum total of mass acceleration ( ( )Y t ', ( )Y t ).

Correlations (Eq. 13) should be considered as particular theorems of reciprocity. At unit exposure on the nodes 
of the DDS by generalized forces: pj(t) = 1 f(t), pk(t)' = 1 f(t) from the first correlation we obtain the known 
Maxwell’s reciprocal theorem [3]:

jk(t) = kj(t) (j, k = 1, ... , n). (16)

From the second and the third correlations we obtain the principles of the reciprocity of velocities and 
accelerations correspondingly:

vjk(t) = vkj(t),    ajk(t) = akj(t)    (j, k = 1, ... , n). (17)

The reciprocal correlation for velocity in (Eq. 17) is obtained in [4] by a different way. As for the reciprocal 
correlation for acceleration in (Eq. 17), the authors recognise the fact that it is a new one and is obtained for the first 
time.

Description of the reciprocity principle for acceleration:
The acceleration ajk(t) of the j-th mass towards the j-th unit force, induced in elastic DDS by the action of k-th 

unit force pk(t) = 1 f(t), equals to the acceleration akj(t) of k-th mass towards k-th unit force, induced by the action 
of j-th unit force pj(t) = 1 f(t).

Thus, reciprocal relations (Eq. 15) in an elastic DDS are obtained as a result of proving the symmetry of the 
matrices in (Eq. 11), (Eq. 12), expressing partial reciprocal laws (Eq. 16), (Eq. 17) in a dissipative system. In 
additions the conditions for matrix symmetry in (Eq. 13) are the expression of more profound properties (Eq. 3) –
(Eq. 5), exposed by analysis of a characteristic MQE (Eq. 2), containing matrices M, C, K of a symmetrical 
structure.

4. Example calculation
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Let us illustrate the reciprocal principle (Eq. 16), (Eq. 17) in an elastic DDS by the example of an analysis of the 
forced oscillations of a two-storeyed space reinforced concrete frame (Fig. 1 a) under the influence of vibration 
forces at scalar function value in (Eq. 9) f(t) = sin ( t + ).

The column grid step is 6 6 m (Fig. 1 b), the cross section of the columns is 300 300 mm, the thickness of the 
floor slabs is 220 mm. The columns of framing storeys are rigidly braced with floor slabs. The design dynamic 
model of the frame has 33 degrees of freedom:

the first six degrees of freedom are connected with the horizontal oscillations of the floor slabs. Within a storey 
the slab is considered to be a completely rigid disk with three degrees of freedom (two translational movements 
of the centre of gravity of slabs (points C1 and C2) towards axes x, y and a rotary movement of a disk in respect 
to a vertical axis, passing through the shear centre of elastic constraints);

in a vertical direction of oscillations the slab is considered as an elastic strained body. The discrete model of the 
frame is developed by means of laying slabs into unit cells (square and rectangular). Point masses are 
concentrated on the levels of storeys in tie points of weightless columns to floor slabs.
Accounting of the internal friction is adopted in accordance with the model of non-proportional damping [5].
Fig. 2, 3 give design models of the frame with two variants of the unit load (a) and oscillograms of the kinematic 

parameters for the frame reactions: movements (b), velocities (c) and accelerations (d).

Fig. 1. The design model of the building
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The first variant (Fig. 2 a) has a unit load of momentum type p6(t) = 1 sin ( t + ) in the slab of the second 
storey (point C2) with parameters of a vibration exposure: = 70 s–1, = 0. Fig. 2 (b, c, d) shows oscillograms of 
the movements (b), velocities (c) and accelerations (d) of the centre of gravity of the first floor slab (point C1) along 
axis ( || y): y2(t), 2( )y t , 2( )y t .

In the second variant (Fig. 3 a) the unit force p2(t) = 1 sin ( t + ) with the same parameters of a vibration 
exposure acts on a slab of the first floor along axis . Fig. 3 (b, c, d) shows oscillograms of rotation angles, 
velocities and accelerations for the slab of the second floor: y6(t), 6( )y t , 6( )y t .

The identical type of oscillograms in figures 2 and 3 prove the correctness of theorems (16), (17).

Fig. 3. Design model of the frame by the second variant of loading 
(a) and oscillograms of the dynamic response parameters in the 
slab of the second storey: b – angles of rotation; c – angular 
velocities; d – angular accelerations
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In the case that the parameters of a scalar function f(t) in one of the set of forces P(t) are different from the 
parameters of function f(t) in other sets of forces P(t)', then relations (Eq. 15) – (Eq. 17) are not performed. To prove 
this idea let us consider the design model of the frame, loaded in accordance with the diagram of the first variant by 
singular momentum p6(t) = 1 sin ( t + ) (Fig. 2 a). Oscillograms of movements (a), velocities (b) and accelerations 
(c) of the center of gravity of the first storey slab along axis (Fig. 4) are built at values of initial phases = 0, /2, 

. These data indicate that at coinciding values of initial phase = 0 (Fig. 3) reciprocal relations of kinematic 
parameters (Eq. 16), (Eq. 17) are performed. For different values , when initial phases in the first and second 
variants differ from one another, there is no reciprocity of kinematic parameters.

5. Conclusions

The general method of proving reciprocal relations in any DDS, the movement of which is described by (Eq. 1), 
is given. Matrices of the movements, velocities and accelerations determining the kinematic parameters of the 
dynamic response of a DDS at arbitrary load are built. The fact of the symmetry of these matrices being an 
expression of the specific laws of reciprocity in an elastic dissipative system is stated. Simultaneously we obtain 
general reciprocal relations in DDS (Eq. 15).

The presence of the last two reciprocal relations in (Eq. 15) shows that the laws of reciprocity in dynamic systems are 
outside the scope of Betti’s principle. The extension of the scope of application of these laws opens up the possibility of 
analyzing oscillating systems with complex damping and dynamic effects.

Fig. : a – movements; b –
velocities; c – accelerations
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