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Abstract 

Two straightforward “extensionalisations” of Kleene’s realizability are considered; denoted re 
and e. It is shown that these realizabilities are not equivalent. While the r,-notion is (as a relation 
between numbers and sentences) a subset of Kleene’s realizability, the e-notion is not. The 
problem of an axiomati~tion of e-realizability is attacked and one arrives at an axiomati~tion 
over a conservative extension of arithmetic, in a language with variables for finite sets. A derived 
rule for arithmetic is obtained by the use of a q-variant of e-realizability; this rule subsumes 
the well-known Extended Church’s Rule. The second part of the paper focuses on toposes for 
these realizabilities. By a relaxation of the notion of partial combinatory algebra, a new class of 
realizability toposes emerges. Relationships between the various realizability toposes are given, 
and results analogous to Robinson and Rosolini’s characterization of the effective topos, are 
obtained for a topos generalizing ~re~izabili~. 

Ah@ Subject Classification: 03F50, 03F55, 18325 
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0. Introduction 

In many accounts of Kleene’s realizability, the analogy with the Brouwer-Heyting- 
Kolmogorov proof inte~re~tion is stressed. However, if one reads this inte~retation 
(in the case of implication) as: “a proof of an implication A -+ B is an operation which 
assigns proofs of B to proofs of A “, there is a problem with extensional&y in the case 
of nested implications. 

A Kleene realizer for (A ---) B) + C codes an operation which assigns, to codes of 
operations for A --+ B, a realizer for C; but two different codes for the “same” (in some 
sense) operation may well be sent to different realizers. 

“Extensional realizability” is a modification of Kleene’s original definition, where 
a notion of “x and y are equivalent as realizers of A” is built in; it is then required that 
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realizers of A --+ B code operations which send equivalent realizers of A to equivalent 

realizers of B. 

There are at least two ways to do this: 

1. One may define, for every formula A, a partial equivalence relation +JA on the 

set of Kleene realizers of A by recursion on A; I say that x r,-realizes A (abbreviated 

xr,A) ifxwAx. 

2. One may simultaneously define, by recursion on A, the set of realizers of A and 

an equivalence relation =A on that set. I call this notion e-realizability; x e-realizes A 

(xe A) iff x =A x. 

These two ways resemble the two constructions of an extensional type structure out 

of the structure HRO of heredita~ly recursive operations: giving HROE and HEO, 

respectively (see [ 1 S] for details). 

Inductive definitions for the two approaches are presented in Section 1. The second 

approach was first given by Beeson ([2] and [3], both with a mistake in the clause for 
implication, though) with an interpretation of Martin-Lof’s type theory in mind. There 
is also an application in [15], and in [7], 6.3. 

It will be shown that re- and e-realizability are not equivalent as interpretations of 

intuitionistic arithmetic HA. The proof rests on a lemma which has another interesting 

corollary: the open schema 

A-+3x(xeA) 

is not e-realizable. This failure of “idempotency” of e-realizabili~ makes it impossible 
to prove a characterization result of the kind 

HAI_3x(xeA) w HA+Ft-A (1) 

(for an axiom or axiom scheme F), in a straightforward way like Troelstra’s charac- 
terization of Kleene’s realizability [17]. For there, he used 

HA+FtA++3x(xrA) (2) 

for arbitrary ~r~~ia.~ A, to derive (1) (here F was the schema ECTo, and x r A means 

x realizes A in Kleene’s sense). 
However, I shall obtain a characterization of e-realizability over a conservative ex- 

tension HA” of HA + Markov’s Principle MP. More precisely, HA” has variables cc 

of a new sort, and I define the notion “Al realizes A” for formulas A in the extended 

language. This definition will be idempotent for arithmetical formulas (formulas in the 

language of HA), and we obtain 

HA” + ECT” t- A f-f 3a(a realizes A) 

for some scheme ECT” and arithmetical formulas A. as well as 

HA” F 3afoc realizes A) # HA + MP I- 3x(xe A) 
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In Section 2 I turn to proof-theoretical aspects of e-realizability. By a suitable 

“q-variant” of e-realizability, a derived rule of HA is obtained which subsumes the 

well-known extended Church’s rule. 

Section 3 deals with toposes generalizing notions of extensional realizability in the 

same way as Hyland’s “effective topos” ~$8 [9] generalizes Kleene’s realizability. The 

first description of a topos generalizing e-realizability was given by Pitts [ 131. I call 

this topos Ext and explain some of its internal logic. There is also a topos Ext’ which 

generalizes r,-realizability. We have a commutative diagram of geometric morphisms 

between these toposes of the form 

Ext’ 

j 

In this diagram, j is an open inclusion, i.e. there is a subobject U of I in Ext’ such 

that 88 is equivalent to the slice topos Ed/U and j* is, modulo this equivalence, the 

pullback functor Ext’ -+ Ext’/U. 
The topos Ext seems rather hard to analyse. However, there is another topos (the 

const~ction of which mirrors the extension HA’ of HA in Section 1) into which Ext 

embeds; and this embedding preserves the logic of all finite types over the natural 

numbers. This new topos d is somewhat easier to handle because the construction is 

similar to that of 8fl and several results about L?fl have their counterparts for &‘; in 

particular, the results in [16,4]. I show that the topos & is the exact completion of the 

category of -iT-separated objects of the effective topos (for definitions see Section 3). 

Behind the construction of d there is a generalization of the notion of “partial combi- 

natory algebra” (pea), called d -pea, which I think may be independently interesting. 

1. Defi~tions and basic properties 

1.1. Nonequivalence of two notions of extensional realizability 

In the following definition, the notions x NA y, x T, A, x =A y and x e A are defined, 

for numbers x,y and arithmetical formulas A. These notions will also be taken as 

arithmetical formulas themselves. 

I write x l y for the outcome, if any, of the computation of the xth Turing ma- 

chine with input y; 1 means “defined” so x a yJ is equivalent to 3zT(x, y,z) where 
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T is Kleene’s predicate. (.,.), (.),,, (.) 1 are primitive recursive functions such that 

KX)O,(XM =X,((X,y))o=X and ((X,y)h =Y. 

The notation x r A means that x realizes A in Kleene’s sense, or the formula ex- 
pressing this in arithmetic. 

Definition 1.1. ( 1) Define for every formula A the formula x -A y, where x, y are 
variables which do not occur in A: 

X~t~sy~x=yAt=S 

X “‘AAB y = (X)0 “‘A (Y)O A (X)1 -B (Y)l 

X -AVB y = ((X)0 = (Y)O = 0 A (X)1 ‘-‘A (y)l) 

v ((X)0 # 0 A b’)O # 0 A (X)1 -B b’h > 

x-A+By-xrA-+BByrf+B 

,,~ww’(wNAw’+x@wNBy.w’) 

X- -A y=:Vwl(wrA) 

X-~~(n)Y~v~(X~nlr\Y~n~/\X~n”A(n))’~n) 

X N3~(n) Y = (X)0 = (Y)o A (x)1 -A((x)o) (Y)l 

I writexr,A forxNAx. 
(2) Define simultaneously by recursion on A, the formulas x e A and x =A y (again, 

x, y do not occur in A): 

xet=s-t=s 

x=t=sy3x=yAt=s 

xeAABr(x)oeAA(x)leB 

x =AAB Y = (X)0 =A (Y)O A (X)1 =B (y)l 

xeAVBr((x)o=OA(x)leA)V((x)o#OA(x)leB) 

x =AVB y = ((X)0 = b’)O = 0 A (X)1 =A (Y)l> 

v((X)o #o A(Y)0 #o A (x)1 =B (Yh) 

xeA+BEVyy’(y=A y’+xoySAxoy’l 

Ax~y=~x.y’) 

x=A+By-xeA+BAyeA+B 

AVw(weA+xow=B yaw) 

xe 7A s VwT(we A) 

x=-A y=Vw-(weA) 

x e VA(n) s Vn(x l nJ A x l n e A(n)) 
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x=\d~(n)ydht(Xon~Ayen~Axwl=,qn)yon) 

x e 3nA(n) 3 (x), e A((x)o) 

x =3nA(n) Y - (x)0 = (Y)o A 611 =A((x)o) (Yh 

Some obvious consequences of Definition 1.1 are that WA and =A are symmetric and 

tranSitiVe relations, that x NA x implies x r A and that x =A x is eqUiVaknt to xe A. 

A difference between the notions xr, A and x e A that presents itself immediately, 

is in the clause for implication (from which the one for negation follows). Using 

classical logic, it is easy to see that A V TA is e-realizable for sentences A; not so for 

r,-realizability. Classically again, it is true that A V -vi V -d is r,-realizable for any 

sentence A: if A and YA are not r,-realizable, then A must be Kleene-realizable, -_A 

is the empty relation and ~4 is r,-realizable. 

We shall see that all three possibilities do in fact occur. 

First, let us record: 

Proposition 1.2 (Soundness). If HA k A then HA k 3x(xr, A) and HA !- 3y(y e A). 

Proof. A routine induction on HA k A. Examples of this kind of proof abound in 

[18]. 0 

For the next lemma, recall that an almost negative formula is a formula built up 

from formulas of form 3y( t = s) using only the connectives A, -+ , V. 

Lemma 1.3. Let, for almost negative formulas A, $4 be the p-term (i.e. a “term” 
built up using 0, so it is not always deBned) from [18], 3.2.11. Then: 

HA t 3y(yr, A)+A 

HA t 3y(ye A)+A 

Proof. Trivial. 0 

Lemma 1.4. The following sentence of HA is neither re- nor e-realizable: 

Ve[Vx3y(~-GlzT(e,x,z) 4 T(e,x, y)) 

4 3uVx3u(T(u,x,u) A (--3yT(e,x, y)+ T(e,x, U(u))))] 

(Here T is Kleene’s predicate, and U the result extracting function.) 

Proof. The proof is similar for both realizabilities; I give it for e-realizability. The 

reasoning is informal; but can be carried out in HA+MP. Let A denote the sentence 

in the statement of the lemma, and suppose for contradiction that we A. Then w codes 
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a total recursive function. I remark: 

(i) If e codes the empty function, then nf.(( w 0 e) l f)e is an effective operation of 

type 2 (i.e. sends codes for the same total recursive function to the same number), for 

every code of a total recursive function will realize Vx3y(l4zT(e,x,z) --+ T(e,x, y)), 

and these realizers are equivalent if they code the same function, 

(ii) If k realizes Vx’x3y(-3zT(e,x,z) 4 T(e,x, y)), then ((w l e) l k)i realizes the 

formula 

~xWT((w l e). ~)oP, u> A (-3yT(e,x, y) + Vex, U(u)))) 

which is equivalent to an almost negative formula, and therefore holds, 

we always have 

So in this case 

VX[((W 0 e) 0 k)o 0 xl A (7~3yT(e,x, y) + ZYe,x, ((w l e) l k)o *X)11 

Using the recursion theorem we can find a code e for a partial recursive function of 

three variables such that 

e 0 (k,n,x) 2L 

’ undefined if not T(n,n,x) 

if T(n, n,x): 

undefined if ((w l St(e, k, n)) 

l h.O)o OX 

is undefined 

0 if ((w l St(e,k,n)) 

.Ax.O), OX 

is defined and not 

W:(e,k,n),x, 

((w l SF(e, k, n)) l .4x. O)O 

ox) 

. U[((w l Sf-(e, k, n)) l Ax. O)O l x)] + 1 else. 

Again some remarks: 

(iii) If T(n,n,x), then ((w l Sf(e,k,n)) l Ax.O)o l x is always defined. For if not, 

S:(e, k, n) would code the empty function, and see (i) and (ii) above. 

(iv) If T(n,n,x), then never T(Sf(e,k,n),x,((w l Sf(e,k,n)) l Ax.O)~ ox). For were 

this the case we would have 

S:(e, k, n) l x = U[((w l Sf(e, k, n)) l Ax. O)O l x)], 

e l (k,n,x)= U[((w l $(e,k,n)) l Ax.O)o ox)] + 1, 

which is contradictory. 
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Again using the recursion theorem, with e as just defined, we take a code k for a partial 

recursive function of two variables, such that 

{ 

0 if not T(n,n,x), 

k ‘(“‘) Z (pz.T(Sf’(e,S:(k,n),n),x,z),Ax.O) else. 

Then 5’: (k, n) always realizes 

~x’x3y(l~3zT(S:(e,S:(k,n),n),x,z)j T(S:(e,S:(k,n),n),x, y)). 

Furthermore, if 12 l n is undefined then 5’: (k,n) codes the constant zero function and 

Sf(e, S: (k, n), n) the empty function, so 

((~.S:(e,S:(k,n),n)).S:(k,n))o = ((~oS:(e,S:(k,n),n))./ix.O)o. 

If n l n is defined, say T(n,n,x), then (see remark (ii)) 

((~.S:(e,S:(k,n),n))oS:(k,n))o l X 

is defined, and 

T(S:(e,S:(k,n),n),x,((w.S:(e,S:(k,n),n)).S:(k,n))o.x) 

holds. By remarks (iii) and (iv) we have that 

((w~$(e,$(k,n),n))~Ax.O)o.x 

is defined and not 

T($(e, S; (k, n), n),x, ((w l S:(e, $(k, n), n)) l Ax. O)O l x). 

Therefore, in this case 

((woS:(e,S:(k,n),n))oS:(k,n))o # ((w l $(e,S:(k,n),n)) l Ax.0)~ 

(Note, that both sides are always defined!) 

This gives US a decision procedure for the question: “is n l n defined?“, and the 

contradiction is obtained. 0 

Corollary 1.5. re- and e-realizability are not equivalent. 

Proof. For the sentence A of Lemma 1.4 we clearly have that VI is e-realizable. 

However, the sentence A is an instance of Church’s thesis CT0 so Kleene-realizable; 

it follows that 7-A is r,-realizable. These facts are provable in HA+MP, where MP 

denotes Markov’s principle. 

Corollary 1.6. The open schema 

B+3x(xeB) 

is not e-realizable. 
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Proof. Take for B the formula VEly( ~+zT(e,x,z)+T(e,x,y)). Then 3v(ve B) is 

equivalent to 

3uVx3u(T(u,x, u) A (7-73zT(e,x,z) -+ T(e,x, U(u))) 

and apply Lemma 1.4. 0 

1.2. Characterization of e-realizability 

As hinted in the Introduction, Corollary 1.6 blocks the way to a straightforward 

characterization result for e-realizability. I now present an extension of HA over which 

e-realizability can be characterized. 

Definition 1.7. The theory HAa is an extension of HA in a 2-sorted language. Variables 

of the extra sort are denoted a, p, y, . . . There is an extra non-logical symbol E and the 

new atomic formulas are of form t E 01 and U= p. 

HA” has the following extra axioms (besides those of HA, and induction for the 

full extended language): 

(1) 713n(n E a), 

(2) V’n(11n E CI --+ n E a), 

(3) V&a = p H VPz(n E a w n E 8)) 

(4) v~p(v~m(nEdLAItlE~--tn.111~)~3yv~(kEy * ~GlnEa3mEj?(k=nom))), 

(5) ~+lnvy(y E CI ++ y = n) --f 3nVy(y E c! ++ y = n), 

(6) VmGicr(n E 01 A m E u), 

(7) Vn3aVm(m E 0: H m =n), 
(8) Markov’s principle: --3y(t=s)+3y(t=s). 

We can (and do) think about the CI’S as some sort of sets of numbers; I shall often 

refer to the variables c( as set variables. 

In view of the extensionality axiom (3) and axioms (4) and (7) we may pass to 

a definitional extension of HAO and introduce terms {n} and partial terms tl l /I with 

definitions 

xE{n) 3 ++x=n 

ma/IL ++V,nExVmEfi(nomJ), 

LX./?l+Vn(nEao/?++ 14k E a31 E /I(n = k l 1)). 

Note that from (6) and (7) we can derive 

Vnm3uVk(kEcr+-+k=nVk=m). 

For, given n and m first pick (by 6) a /3 with n E B A m E /?. If e is such that 

n if x = n, 
e*x= 

m else, 
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then for LX = {e} l /I we have 

kEa*--(k=nVk=m)++k=nVk=m. 

This extends to sequences. I shall therefore also use the notation {n,m}. 

From now on, I call formulas in which no set variables occur (either free or bound) 
arithmetical. 

Proposition 1.8. (1) HA” is conservative over HA+MP. 
(2) For arithmetical formulas A(x): 

HA” k 3aVn E aA + HA+MP t- %4(n). 

Proof. Both results follow directly from a translation of HA” into HA, which inter- 
prets the a’s as codes for finite inhabited sets. All axioms of HAa are valid under 
this translation, as well as the axiom 3x(x E a); this gives the second statement at 
once. 0 

Definition 1.9 (Realizability for HAa). Define a realizability notion a r A for formulas 
A in the language of HA” not containing the variable a: 

art=s=a={t}At=s 

arnEfl=a={n}AnE/? 

arj?=y-a&PAP=y 

arAABrpoarAAp,arB 

arA+B~Vfi(/?rA+aoP_lr\aoflrB) 

a r InA E 3n(poa = {n} A pla r A(n)) 

a r 3BA(B) = Wpoa C B A pla r A(B)) 

a r VnA(n) E Vn(a l {n}J, A a l {n} r A(n)) 

a r V’pA(p) E V/?(a l j?J, A a l b r A(/?)). 

Here a G fi abbreviates V’n(n E a -+ n E p) and pia = {Ax.(x)~} l a for i = 0,l; so 

xE pia tf -3y E a(x = (y)i). 

Lemma 1.10. For arithmetical A: 

(1) HA” k V’xy(--(x =A y) + x =A y), 
(2) HA” E Va(+a r A) + a r A). 

Proof. (1) follows by Markov’s principle, since all formulas x =A y are (equivalent 
to) almost negative formulas, so by Markov’s principle to negated formulas. 
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(2) is a straightforward induction where one uses the axioms of I-W. One case: 

a r 3nA(n) is equivalent to 

3n(poa = {n}) A Vn(paa = {n} + pla r A(n)) 

and this is ll-stable by axiom 5). 0 

Proposition 1.11. For arithmetical A, 

HA”tarA++VnmEa(n=Am). 

Proof. Induction on A; I do two cases, leaving the others to the reader. 
_ Let A E B A C; suppose a r A and n,m E a. Then (n)i,(m)i E piCr(i = 0,l) and 

since pocr r B, pla r C we have (n)o =B (m)o, (n)~ =C (m)l by induction hypothesis, 

so n =A m. 

Conversely, suppose Vnm E fx(n =A m) so Vnm E a((n)o =B (m)ol\(n)i =c (m)i). 

Then Vnm E p@Tl(n =B m) so bzm E pou(n =B m) by Lemma 1.10, which gives 

pou r B by induction hypothesis. Similarly, pla r C and a r A. 

- Let A E B + C. Suppose a r B + C and n, m E a. Given y, y’ with y =B y’, by 

induction hypothesis we have that {y, y’} r B so n l yJ A n a y’l A {n l y, n l y’} r C 
so by induction hypothesis it follows that n e B -+ C. Similarly, me B + C and 

n =B+C m follow. 

Conversely, if Vnm E a(n =B+C m) and firB then uofilAVk, 1 E aob(TTk =C I), 

so by Lemma 1.10 Vk, I E a l /?(k =C 1) so by induction hypothesis CI l p r C; so 
crrB-+C. 0 

Proposition 1.12. For any A in the language of HA”, 

Proof. At once. 0 

Proposition 1.13 (Soundness for ~1 r A). For any A in the language of HA”, 

Proof. In essence, there is nothing new here. To see this, note the following fact: 

given a set expression T built up from variables ~1,. . . , cl,, the partial application l 

and PO, ~1; consider the numerical partial term t = Ax1 . . . x,.T[xl/al, . . . ,x,/a,] where 

the xi are new number variables, the l is now interpreted as Kleene application for 

numbers, and pi is replaced by (*)i. Then one proves by induction on T: 

HA” t Vcrl.- .cr,(Tl --+ {t} l a1 l . ..orx.L A CT). 

Now one forms the terms realizing formulas about just as in the soundness proof for 

Kleene realizability, and uses Lemma 1.12. 
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Definition 1.14. ECT’ is the following axiom scheme: 

Proposition 1.15. ECTa is r-realizable, i.e. 

HA” t 3cr(cc r F) 

for any instance F of ECTa. 

Proof. Of course, the “formulas” y l al and y l CI G p are read as 

Vnm(nEyAmEa--+n*mJ) 

and 

Vk(-dn E y3m E cr(k = n 0 m) + k E B), 

respectively; the reader should convince himself that there are numbers n and m such 

that 

HA” t- V~Y(Y l al ++ {n) r (Y l al)), 

HAa~V’a~y(y~crCP~{m}r(y~a~B)). 

Fix these n and m for the rest of the proof. Write 

fe = k.((e l x)0)0, 

Se = W+, (m,((e@x). Oh)). 

Then I claim that {ne.(J,,ge)} realizes ECTa. 

A verification of this is left to the reader, who may wish to contemplate the follow- 

ing: E rVr.t(d(cr) + ilBB(a, /I)) is 

Vct[E 0 al A (+l6(6rA(ct)) + Vl{(C 0 a) 0 ii A 3/3[p0((6 0 a) l l) C B 

Apl((E.a)oi)rB(cr,P)l})l. 

On the other hand, writing out 

dr 3yVa(d(a) -+ y l IXJ A 3/l(y 0 c( C_ /? A B(a,/?))) 

one gets 

3y[po6’s y A V’cc(pld l al A (A?(brA(or)) 

+K{(p~C’*~)~il A po((pl~‘*~)~t’)rY*d 

A3B(popl((~1E’.a).i)rY.cl:CB 

Aplpl((pl~‘.cc).l)rB(cc,8))}))1. 0 

Remark. The stronger scheme (and perhaps the one some readers expected to turn up): 

V’a(34(a) --f 3pB(cr,p)) + !lyVla(?t(a) -+ y l crl A B(a,y l a)) 
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cannot be realizable: think of the inte~re~tion of the a’s as !&rite sets. There can be 
no finite set a such that for all /I, 

(finite sets with such an application do not form a partial combinatory algebra; but see 
Section 3) 

Proposition 1.16. For arithmetical formulas A, 

(i) HA”+ECT@l-Act%(arA), 
(ii) HA + MP t- b(xeA) ++ HA” + ECT” t A. 

Proof. For (i), note that ECT”, together with ~oposition 1.12 and Lemma 1.10, implies 
for arithmetical A and B, 

Va(a r A -+ $?(@rB)) + 3y(yr(A -+ B)) 

which gives the only nontrivial induction step. 
For (ii), + follows at once, using (i) and Proposition 1.11; for + suppose HAa + 

ECTa k A so HA’ I- F -+ A for a finite conjunction F of instances of ECT’. Since F 
is realizable by Proposition 1.15, from Proposition 1.13 we have 

HA? t- Zla(a r A). 

By Pro~sition 1.11 then 

HAa t- 3aVn E a(n e A) 

so by Proposition 1.8(ii) one gets 

HA + MP b 3(xeA). 0 

This completes the characterization of extensional realizability in a conservative exten- 
sion of HA + MP. 

Remarks. (1) The following weakening of the scheme ECTo is, in HA”, implied by 
ECY: 

Vx(~A(x) --+ 3yBfx, y)) + --3zVx(-.A(x) --+ z l xl A B&z .x)). 

I propose the name WECTo (weak extended Church’s thesis) for this scheme. 
(2) Let us consider (over HA” minus axiom 6 of Definition 1.7) the following three 

axioms in isolation: 
(i) Axiom 6: Vnm3a(n E a A m E a) 

(ii) ECT’ 
(iii) 3x(x E a). 

It is not hard to see that these three, taken together, are inconsistent. Our realizability 
has just (i) and (ii); if one takes (ii) and (iii) one derives Va3n(a = {n)), and one 
has, essentially, Kleene’s ~~izabili~ back. 
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2. Extensional q-realizability and Extensional Church’s Rule 

q-realizability in general is a combination of “realizability and truth”. The aim is 
usually to obtain proof theoretical properties of the formal system one is working in, 
such as the disjunction property, explicit definability for numbers, or Church’s Rule for 
HA [ 18, 201. The trick has been played with Kleene realizability, Kleene realizability 
for second-order arithmetic [8], Lifschitz realizability [23], among others. 

Here I give a short treatment for the case of extensional realizability, which results 
in a derived rule for HA (Extensional Church’s Rule), a stronger property than the 
well-known Extended Church’s Rule (see [20]). 

Definition 2.1 (Extensional q-realizability). Define simultaneously, by recursion on A, 
formulas QA(x) and x XA x’ for x,x’ not occurring in A, as follows: 

et&x) = t = s 

x xtxs x ‘~x=x’A\ts 

QAA&) = QA((x)o) A Q~ttxh) 

x XA/yB x’ = (x)0 x/j (x’)o A (x)1 x:B(x’), 

QA+B(x) = Vyy’(y~~y’+x.y~Ax.y’l 

Ax.yxBx.y’) A A-+B 

x KI+BX’ = QA+B(x) A QA~x’) 

A~Y(QA(Y) + x l Y =~x’ l Y) 

Qvy~(y)(x) = \Jn(x l 4 A QA& l n)) 
xxyy,qyjx’ = bz(x.nl Ax’onlA ~onx~~~~x’on) 

Qw(y)(x) = Q~cwd(xh ) 

x ay~#’ = (x)0 = (do A (x11 a((xjo) (x’h. 

Again, XA is symmetric and transitive, and QA(x) is equivalent to x X~ x. It also follows 
by an easy induction that 

HA k QA(x) + A (3) 

for all formulas A. 

Proposition 2.2 (Soundness for extensional q-realizability). 

HA I- A =+ HA I- &Q/,(x). 

Proof. As usual. 0 

Proposition 2.3. Let $A be as in Lemma 1.3. Then for almost negative A: 

HA k A +-+ $41 A QA(&). 
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Proof. Easy. 0 

Proposition 2.4 (Extensional Church’s Rule for HA). HA obeys the following rule: if 

HA I- Ve(KdyB(e,x, y) + 3zC(e,z)) 

for some almost negative formula B, then there is a number n such that 

HAtVe(noel A 

Vlff’(Vx(fox~Af’ox~Afox=f’oxAB(e,x,fox))~ 

(n*e)of~A(noe)of’~A(noe)of=(noe)of’ 

AC(e, (n l e) l f))) 

Proof. Let A be the formula Ve(VxGlvB(e,x, y) + 3zC(e,z); suppose HA t A. By 
Proposition 2.2 and the numerical existence property for HA, let m be such that 
HA F QA(m). Then 

HA l- Ve(m l el) A Vfj-‘(S ~v~~,B(~,~,~) f’ -+ Cm l e) l f GCW Cm l e) l f ‘). 

If Vx( f l x = f’ l x A B(e, f l x)) then by Proposition 2.3, since B is almost negative, 

Wf l 4 Me, x, f l x)) ~w~B(~,~,~) h.(f’ l 4 Me, 4 f’ l x>). 

Write this as a x~(~~~B(~,~,,,J a’. Then for y = ((m 0 e) 0 a)0 = ((m 0 e) 0 a’)o, 

Qc(e,y)((b l e) l a)h. 

BY (3)v 

C(e, Y ). 

Therefore the number n = Aef ,y satisfies the proposition. q 

Note that the well-known Extended Church’s Rule (see [20]) is a consequence of 
Extensional Church’s Rule by letting x and y be dummy variables. 

3. Some toposes for extensional realizabilities 

In this section I have to assume that the reader is familiar with the elementary 
concepts of categorical logic (in particular, the notion of validity of a statement in a 
topos) and some basic topos theory. There is by now a wealth of textbooks in the 
area, but the reader is sure to find everything that I use in either [12] or [14]. 

The construction of the toposes below goes via tripos theory, a categorical frame- 
work treated in [ 111. This, and Hyland’s paper on the Effective topos [9] will also be 
used. 
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The first two subsections define toposes Ext and Ext’, generalizing e and r,-realiza- 

bility, respectively. Some internal logic is explained. Section 3.1 makes no claim at 

originality; the material was certainly known to various people [lo], but had never 

been laid down. 

Sections 3.3 and 3.4 describe another topos construction, for a topos d generalizing 

e-realizability. It will be seen that Ext is a sheaf subtopos of d. The construction uses 

a generalization of the notion of partial combinatory algebra, called <-pea, which I 

believe may be of independent interest. This is defined in Section 3.3. Section 3.4, 

finally, shows how the categorical results about 88, obtained in [16] and [4], can be 

adapted to d. 

3.1. Pitts’ topos Ext 

The topos Ext, defined by A. Pitts in his thesis [ 131 although he did not give it a 

name, runs on partial equivalence relations on the natural numbers (pers); first, let us 

establish some notation for these. 

I find it convenient to denote a per by (A, -) so A(the domain of (A, -)) is a subset 

of N and - is an equivalence relation on A. Now let: 

(Al, -1) x (Az,N~)=({(u,u’)~~ E Al,a’ E AZ},-) with 

(a,~‘) N (b,b’) iff a -t b and a’ -2 b’ 

(Al,-1) + (A29 w2) E ({cltluu’ E Al(u _I a’ + co a m2 c l a’)}, -) 

with c N c’ iff Vu E Al(c l a -2 c’ l a) 

nxEX(AX, Y) = (f&{clVn E MC l n E A,)),-) with 

c-c’iffforallx~Xandalln~fY,c*n~~c’on 

‘j&x(Ax, wX) = (IJ,,, A,, -) with c - c’ the transitive closure 

of the relation 3 E X(c -X c’) 

(A, 6) E A with the minimal equivalence relation 

(A, T) E A with the maximal equivalence relation. 

Let PER denote the set of pers. There is a tripos PER(-) on the category of Sets which 

assigns to each set X the set PERX of X-indexed families of pers. This is ordered by 

(writing cp and + for such families): 

cp t- Ic/ iff there is a number n such that for all x E X, n is the domain 

of V(X) + V+(x) 

This ordering is a Heyting prealgebra: the meet A and Heyting implication + are given 

respectively by applying the operations x and + between pers pointwise. 
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For any function f : X -+ Y the map PERf : PERY --t PERX is a morphism of Heyt- 
ing prealgebras (i.e. preserving the propositional structure) that has both adjoints 3f 
and Vf : 

Ff(cp))fY) = t=f(n)=y CPG) 

(Vf(cp))(Y> = rIf(x,=y CPG). 

I call the topos represented by the tripos PER(-), Ext. 
The map n : PER -+ 9( kf ) which sends a per to its domain, induces an indexed 

map of preorders: PER(-) + S(kJ)(-)(9@!)(-) denotes the tripos underlying the 
effective topos 8”). This has both an indexed left and right adjoint, which are induced 
respectively by ftfz : 9(N) + PER given by 

fl(4 = (-4Q fz(4 = (4 -0 

Moreover, the indexed left adjoint preserves finite meets; so we have a commutative 
diagram of geometric morphisms of triposes 

* PER’-’ 

inducing geometric mo~hisms of toposes 

I denote the natural numbers object in each topos by N; 
topos we are. 

context makes clear in which 

Since inverse image functors of geometric morphisms preserve natural numbers ob- 
jects, N in Ext is given (up to isomo~hism) by (F4, =) with 

[n=m] is ({n} II {m},~) 

(- being the unique equivalence relation). From this: 

~o~tion 3.1. first-order ar~t~~etic in Ext is gitien by e-rea~izabiiit~. 

Proof. Routine. 0 
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In general, computing the direct image functor i, from the given geometric mor- 
phism of triposes is a bit involved (there is a complicated formula for this in [ 111). 
However, we can simplify in the case of ca~o~icu~~y separated objects of 4” (re- 
call that an object (X, = ) of &” is canonically separated if ix = y ] = k? for different 

X,Y E-v. 

Proposition 3.2. Let (X, = ) be canonically separated in &J”. Then i*(X, = ) is iso- 

morphic to (X, fz( = )). 

Proof. First observe that for sets X, Y, functions f :X + Y and cp E P(N)“, $(3f(cp)) 
is isomorphic to 2f(_@(q)) if for all x,x’ EAT, y E Y and n, m E RJ: 

if n E q(x), m E cp(x’) and f(x) = f(x’) = y then there are 

x=xi,...&+i =x’, n=Ptl,...,nk=m with f(xi)= 0.1 =f(&+i) 

and niEcp(xi)n&xi+l) for i=l,...,k. 

Clearly, this condition holds if (X, = ) is canonically separated, (Y, = ) arbitrary, f 
is a projection Y x X + Y and or, EBONY is a functional relation representing 
a morphism (Y, = ) -+ (X, = ) in 6”. So if cp E P( N)yxX represents a morphism 
into a canonically separated object (X, = ), f2yxX(cp) represents a morphism in Ext: 

(Kf2(=))--+Kfi~=)). 
Now there is a natural isomorphism 

K : ~“ff((Z, 4 = I>, (X = 1) + Ext(K = ),(X.h( = ))I 

for objects (2, = ) of Ext and canonically separated (X, = ) in 8 (natural means 
natural in (2, = )), as follows: given F : (Z, a( = )) + (X, = ) in &“, represented by the 
functional relation cp, let K(F) be represented by the functional relation ffxX(cp) A 
[z =z 1. It has an inverse L defined (again, on representing functional relations) as 
L($) = 7+x(#): 

For, LK([tp]) is iso to ~tf2(4~) A rr(z =z) which is iso to cp since zf2 is the identity 
and cp is strict for the equality a( = ), and cp t- KL(cp) is easy; and since both are 
functional relations, they are isomorphic. 

This proves that i*(X, = ) must be isomorphic to (X, f2( = )). 0 

~o~sition 3.3. The jinite type structure over N in Ext (i.e. the structure built from 

N and ex~o~enti~~s) is given by 

The object of type IJ has as underlying set the hereditarily efective 
operations of type o, and as equality 

II@ = a’n= 
({n 1 n codes TV}, T) if CI = a’, 
(@,@)* 

else. 

The type structure of the hereditarily effective operations is defined in [18]. 
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Proof. This follows from the preceding pro~s~tion, combining the follo~ng ingredi- 
ents: 

1. the description in [9] of the finite type objects in 6”, and the fact that they are 
canonically separated; 

2. the description of N in Ext given above, implying N = i,(N); 
3. the fact that i,, being the direct image part of a geometric inclusion, preserves 

exponents. Cl 

I now discuss briefly some principles that can be expressed in the language of the 
finite type structure over N (to be precise, the language of the system HAw; again, 
see [18] for a de~nition). Some definitions: 
l Church’s Thesis CT is the axiom 

‘df : NN3e : N’dx : N3y : N(T(e, x, y) A U(y) = f(x)) 

expressing in a strong sense that every function from natural numbers to natural 
numbers is recursive; 

l The axiom of choice AC,, for types o,r, is the axiom scheme 

vx : a3y : zq(x, y) -+ 3f : z”Vx : ocp(x, f(x)) 

l The scheme of weak cont~nuity~r numbers WC-N is: 

ttf :N~~:N~(f,x)jVf :~~~,~:NVg:N~(J;y=~y~rp(g,x)) 

where Ty = gy abbreviates tiz < y( f (z) = g(z)) 
l Brouwer’s principle BP states that all functions from NN to N are continuous: 

‘dc:NNNQf :NN~:NVg:NN(~x=~x--t~(g)=~(f)) 

We also consider two weakenings of these axioms: 
l WCT (Weak Church’s Thesis) is 

trf : NN1-Gle : NVx : N3y : N(T(e, x, y) A U(y) = f (x)) 

a WBP (weak Brouwer’s principle) is 

t([: NN’Vtif: NN 74~ : Ntlg : NN(@ =-ji~ -+ c(g) = c( f )) 

Proposition 3.4. The principles AC,,,, WCT and WBP are valid in Ext, but CT, 
WC-N and BP fail in it. 

Proof. Given a realizer for Vx : a3y : rcp(x, y)we find a code for an operation which 
sends all codes of x to codes of one and the same y (because equivalences must be 
preserved). Thus, one readily sees that AC,, must hold. 

The validity of WCT is left to the reader. WBP is a consequence of the Kreisel- 
La~ombe-Shoenfield theorem in recursion theory. 
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CT fails since by ACi,c it would imply the existence of a c E iVvN such that i(f) is 

a code for f as recursive function. But this cannot be true for an effective operation [. 

AC,, implies that the principles WC-N and BP are equivalent, so it suffices to treat 

one of them. For any effective operation of type 2, the Kreisel-Lacombe-Shoenfield 

theorem gives us a modulus of continuity for every function, but this cannot be done 

extensionally in codes (see [19]). 0 

3.2. A topos for t,-realizability 

I call this topos Ext’ and the construction is very similar to that of Ext. The basic 

objects are now pairs (A,-) where N is a partial equivalence relation on A (let us 

call these objects ppers). The basic operations x, n and C are the same as for pers, 

and + is defined by 

(A 1,-1)+G42, ~2)-({~IVa~Al(coa~A2)},~) where CNC’ iff 

Vaa’EAl(a -1 a’ + coa N2 c’oa’) 

and the order on PPERX (denoting the set of ppers by PPER) is given by 

cpt$ iff there is n E k4 such that for all x EX, n N n in q(x) -+ $(x) 

Analogous to the preceding subsection, there is a tripos PPER(-). Now consider the 

following maps: 

u : PER + PPER is the inclusion, 

gi :PPER+PER sends (A,-) to ({aEA)a - a},-), 

g2:Y(N)-+PPER sends A to (A,T), 

n’:PPER+Y(kJ) sends (A,-) to A. 

The pair (gi, U) induces a geometric morphism of triposes: 

PPER(-) + PER(-) 

and (92, rc’) gives rise to one: 

Y(lV))‘_’ + PPER(-) 

and since gig2 = f2, we have a commutative diagram of geometric morphisms of 

toposes: 

Exf 

i /I r 

@T- i Ext 

The proof of the following proposition is left to the reader. 
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Proposition 3.5. First-order arithmetic in Ext’ corresponds to r,-realizability. 

Proposition 3.6. j : @f + Ext’ is an open inclusion, i.e. there is a subobject U of 1 

in Ext’ such that L?ff is equivalent to the slice topos Ext’/U, and j* is, module this 

equivalence, the pullback functor Ext’ + Ext’lU. 

Proof. Let U be the object ({ *}, = ) with 

[ * = * ]=(N,0). 

Then the slice topos Ext’/U is equivalent to the full subcategory of Ext’ on those 

objects whose equalities all have the empty equivalence relation. But it is clear that 

this is equivalent to &“fs, and that pulling back along U + 1 is the same as forgetting 

the equivalence relation, which is j’. 0 

Corollary 3.7. Any statement of higher-order arithmetic which holds in Ext’ also 

holds in slff. 

Proof. For, pullback fimctors are logical ftmctors. 0 

Corollary 3.8. In Ext’, we have --CT and TTBP, but instances of WC-N and AC 

are false. 

3.3. <-partial combinatory algebras 

In the next subsection there will be another topos for e-realizability, into which 

Ext embeds. The construction of this topos can be seen as a generalization of the 

construction of 6”. Because I think this generalization may be of independent interest, 

I present it separately. 

The point is a generalization of the notion of partial combinatory algebra. 

Definition 3.9. A d -pea (d -partial combinatory algebra) is a partially ordered set 

A together with a partial binary function (written by juxtaposition; abJ, means that the 

pair (a, b) is in the domain of the function, ab denotes the value), 

satisfying 

1. If abl, a’ < a and b’ < b then a’b’J, and a’b’ < ab. 

2. There are elements k and s in A such that 

l foralla,bEA:kal andkabl andkabda, 

l for all a, b,c E A: sal, sabl and, if (ac)(bc)J, then sabcl and 

sabc < (ac)(bc). 
We employ the convention of association to the left: so abc abbreviates (ab)c. The 

partial binary function is often called application. 
Part of the definition of a < -pea (the axioms for the combinators k and S) already 

appeared in [l], without any relation to extensional realizability, though. 
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Examples. 

1. Given any set A with a partial binary function on it, we may add an element 

I, introduce a partial order by just adding I < a for all a E A and extending the 

application by 

la = UJ- = I 

Then I serves both as k and as s. < -Peas like this (with a least element -L satisfying 

la = al = I) will be called trivial. 

2. Any pea is a < -pcu with the discrete order; conversely a < -pea for which 

the order is discrete, is a pea iff sabcl implies ac(bc)l. 
3. Given a pcu A, we may define a < -pea structure on the powerset Y(A) as 

follows: the order is the inclusion order, and c$?J if and only if for all a E c( and 

b E /?, ubl in A, in which case 

This < -pea is trivial. To make it less trivial, restrict to the nonempty subsets of A 
(One can also restrict to the nonempty, finite subsets of A). This is my motivating 

example. 

4. Suppose A is a pcu and (P, <) is a linear order with top element T. Order the 

set A x P partially by putting 

(a,p)<(b,q) iff a=bandp<q, 

and let (a, p)(b, q) be defined iff abJ. in A, in which case 

(a, p)(b,q) = (ab,min{p,q)). 

5. Given a pea A, construct a nontrivial total d -pea into which A embeds, as 

follows: the set of A-terms is inductively defined by: every a E A is an A-term, and 

if u and u are A-terms, then so is (uu). Now choose elements k,s EA satisfying the 

combinator axioms, and define a reduction relation -vyt by the clauses: 

l (ab) -+ c if, in A, ub is defined and equal to c. 

l If u -w, U’ then (uu) -+ (vu’) and (uv) -uv) (u’v). 

l ((ku)v) -+ u and (((su)u)w) -w) ((uw)(uw)). 

The reflexive-transitive closure of -+ gives only a preorder on the set of A-terms, so 

we have to quotient by an equivalence relation: two A-terms u and u are equivalent iff 

there is a sequence 

Define application by [u][u] = [(uu)]; this is well-defined. A is embedded in this in the 

following sense: the embedding I does not preserve application, but if ab is defined 

then I( G Z(ub). This seems to me the natural notion of “morphism of d -pcus”, 
but I will not pursue this fnrther here. 
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6. Let A be a A-semilattice (with or without top element). Put ab = a A b; any 

element of A may serve as k and s. 

7. (Generalizing Example 3) We may relax the definition of a < -pcu by requiring 

< to be just a preorder rather than a partial order. Then, given a nontrivial < -pea 

A, we can preorder the set of nonempty subsets of A by 

a d /I iff Vx E 013~ E fl (X d y). 

This gives again a nontrivial < -pcu P+@(A). 

From the examples it is immediate that a lot of the beautiful (but also sometimes 

rather bizarre) theory of pcus is lost in this context: we may have k=s without having 

every possible identity, a < -pcu may be nontotal without there being a nowhere 

defined element, every pcu may be embedded in a total < -pcu. However, what 

remains is sufficient for my purposes: 

Proposition 3.10 (Combinatory completeness for < -pcu.s). Let A be a d -pcu. For 

every term t composed by elements of A, application and the variable x, there is an 

element [Ax.t] in A such that for all UEA : if t[u/x]J then [Ax.t]uJ,, and 

[Ax. t]u d t[u/x]. 

Proof. The construction of these terms in the usual proof of combinatory completeness 

for pcus will do. 0 

In the case of a pcu A one can form a category P(A) with objects the subsets of A, 

and as morphisms: CI 4 fl those functions f : CI + B such that for some a E A for all 

b E LX: ubl and ub = f(b). 

For < -pcus A one has to modify this: morphisms are those functions f for which 

there is a satisfying for all b E a, 

ubl A ub d f(b). 

That this gives a category follows at once by combinatory completeness. 

Furthermore: 

Proposition 3.11. Given a < -pcu A, there is a tripos I(A)(-), where Z(A) denotes 

the set of downwards closed subsets of A (c( E Z(A) iff a E c1 and a’ < a imply a’ E a), 

and I(A)x is preordered by: cp t- rc/ ifs there is a E A such that for all x E X and all 

b E p(x), abl and ab E $(x). 

Proof. The proof for pcus, in [ 111, suffices; use combinatory completeness. The same 

terms testify all desired entailments. 0 

Note, that if A is trivial in the sense defined above, the tripos I(A)(-) is equivalent 

to the tripos 2(-j (with the subset order). 
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In the case of Example 6 (A a A-semilattice; for nontriviality let us assume there 

is no bottom element), the topos represented by I(A)(-) turns out to be a jilter quo- 
tient of the topos SetsA” by the filter of all non-initial subobjects of 1 (see [14] for 

this construction). This topos satisfies ~cp V -~cp, but need not be Boolean as far as 

I can see. 

Still another definition: 

Definition 3.12. A Q -pea A will be said to have the pasting property iff the underly- 

ing partial order has pushouts (i.e. for every a,b EA: if there is c 6 a,c < b in A, then 

the join a V b exists in A) and application preserves them in each variable separately 

(i.e. a(b V b’) = ab V ab’ and (a V a’)b = ab V a’b whenever this is defined). 

Proposition 3.13. Let A be a < -pea with the pasting property. Denote by J(A) 
the set of those downwards closed subsets of A which are also closed under pushouts. 
Preorder J(A)X in the same way as Z(A)X. Then J(A)(-) is a tripos, and the inclusion 

J(A) C Z(A) induces a geometric inclusion of triposes: J(A)(-) -+ Z(A)(-) 

A geometric inclusion of triposes is a geometric morphism of triposes for which 

each counit is an isomorphism. It was noted in [13] (and straightforward to check 

directly), that a geometric inclusion of triposes gives rise to a geometric inclusion of 

the represented toposes. 

Proof. Left adjoint to the inclusion is of course the map which takes for every down- 

ward closed set, its closure under pushouts. 0 

3.4. Another topos for e-realizability 

The idea for finding a “simpler” topos for e-realizability is as follows: instead of 

looking at partial equivalence relations, look at what “generates” them, in a suitable 

way (this is familiar practice: e.g. in the theory of locales one often works not with 

locales but with presentations of them). 

In [22] the fact is exploited (for an axiomatization of higher order Kleene realiz- 

ability) that in the effective topos &fl, there is a surjection d(Y(N)) ---+ Sz which 

classifies (viewing d(Y( N)) as the object of YT-closed subsets of N) exactly the 

inhabited elements of d(Y( N)). 

Somehow this highlighted for me the trivial observation that subsets of N are gener- 

ated by singletons under the operation of taking unions. Similarly, partial equivalence 

relations are generated by nonempty finite sets under the operations of taking unions 

and closing under pushouts. 

So let N be the =$ -pea of nonempty subsets of N, as in Example 3 of the preceding 

subsection. This Q -pea clearly has the pasting property. It is clear that there is a 

bijection 

P : PER + J(N) 



340 J. van Oostenl Annals of Pure and Applied Logic 84 (1997) 317-349 

(where J(N) refers to Proposition 3.13), sending (A, -) to 

(ccENlUC‘4 AVubEcc(a-b)} 

and that, for pers (41,-r) and (AZ,-2), 

where the + on the right-hand side refers to the tripos .Z(m)(-). 

So PER(-) is the same as J(m)(-) and a subtripos of Z(N)(-), and it is this last 

tripos and the topos represented by it, that will be studied a bit in this subsection. 

Some logic of the tripos Z(m)(-): define for P, Q E I(m) 

PxQ={~~NIpocc~Pandp,a~Q}, 

P-+Q={cl~fVIb’fl~P(ao/?L andcr*bEQ)}, 

P+Q={ct~~~p~a={O} and plor~P} 

U{ctE~~p,p={l} and ptcr~Q> 

l-I P, = f&~ + P,), 
XEX 

where pia = {(u)i 1 a E LX}. 

The preorder Z(m)x has meets cp A $ given by kx.q~(x) x I&), joins and Heyting 

implication similarly given by + and +, and top and bottom elements T = Ax.m, 

I=2x.&Formapsf:X + Y, left and right adjoint 3f and Vf to Z(m)f are given 

by 

@f (cp)>(Y> = r(F, cp(X)> 

(Vf (cp)KY) = ,k, cp@). 
x 

The topos represented by Z(m)(-) will be called d. 

Let us first observe that the geometric morphism of triposes PER(-) + g(N)(-) 

factors through the inclusion PER(-) -+ Z(m)(-) by maps g: Z(N) + 9(N) and 

f : P( N ) --+ Z(N) given by 

g(P)=UP and f(A)={crEmIcrCA}. 

From the description of finite meets in Z(N)(-) it is immediate that f’-’ preserves 

them. Also, f i g. 

From this, it follows that the natural number object N of d can be given as (N, =) 

with 

[n=m]= 
{ 

{{n}} if II = m, 

0 else. 
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We also need another object of ~4: the object % = (m, =) with 

uot=p]l= C {YEmIyCcr} ifcr=p, 

0 else. 

There is an element relation E --t N x r represented by 

I[nECC] = 
{{n}} if II E c(, 

0 else. 

Using this relation E we can interpret the language of HA* (see Definition 1.7) in d, 

letting F be the sort of the set variables c( and N be the sort of the natural numbers. 

We have: 

Proposition 3.14. All the axioms of HAa are valid in d under this interpretation and, 
moreover, truth in ~2 of sentences in this language coincides with the realizability 

notion of Definition 1.9. 

Proof. Again, left to the reader. 0 

Corollary 3.15. First-order arithmetic in d coincides with e-realizability. 

So, true first-order arithmetic in d is the same as in Ext. I now want to extend this 

result to the logic of all finite types over N. 

By a straightforward analogy to [9], there is a geometric inclusion (d,T): Sets 

-+ &‘. It is defined in exactly the same way as for &fl, and Sets is -l-sheaves 

in LZ?. 

Consequently, an object of d is separated iff it is isomorphic to an object (X, =) 

which has the property that I[ x = y ] = 0 for different x, y E X. Such objects are called 

canonically separated. 

From now on I identify Ext with the topos represented by the tripos J(m)(-); the 

sheafification d + Ext is induced by the map J : Z(m) + J(m) which takes every 

downwards closed subset of N to its closure under pushouts. The internal topology in 

& to which this gives rise, is denoted by j. 

Proposition 3.16. Suppose (X,=) is a canonically separated object of d such that 
[x=x]EJ(m)f or all x E X. Then (X, =) is a j-sheaf 

Proof. The heart of the matter is that if F : Y x X -+ J(m) represents a morphism 

(Y, J(=)) -+ (X, J(=)) in Ext and (X, =) is canonically separated in LX!, then F is a 

total relation (for the equalities J(=)), i.e. J(y = y) 4 3F(y,x) is valid in the topos 

J(N)(-). Now 
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Since F is single-valued and (X, =) canonically separated, this is equal to lJxEX 
J(F(y,x)), which is 

U F(Y4) 
XEX 

because F maps into J(m). So if we define, for such F, a map F : Y xX -+ Z(m) by 

P(YA = u (I[ Y’ = Y 1 A F(Y’d)), 
Y’EY 

then E represents a map (Y, =) + (X, =) in J& (check that it is single-valued!). So 
there is a natural l-l correspondence between maps: (Y,J(=)) ---f (X,J(=)) in Ext, 
and maps (Y, =) + (X, =) in d; which by the Yoneda Lemma proves that (X, =) is 
a j-sheaf. 

So N is a j-sheaf, and since for any topology the sheaves form an exponential ideal, 
the finite type structure over N consists of j-sheaves. The computation of this structure 
is easy: if (Y, =) is separated there is an expression for (Y, =)(&=) completely similar 
to the one in [9], and we see: 

volition 3.17. The~n~te type structure over N in Sa is the~~lu~ing: the u~ject of 
type a‘ has as underlying set the eflective operations of type a, and equality: Ix = x] 
is the set of those tl which consist of codes for n, whereas [x = y ]i is empty fur x # y. 

Proposition 3.18. The logic of the jinite type structure over N in & is the same as 

that in Ext. 

Proof. The finite type objects in d as defined in the preceding proposition, have the 
following properties: 
l They are modest, i.e. canonically separated and such that for different x,y, the set 

[x=~Jnfy=y] is empty. 
l The equalities are all closed under pushouts, as well as the relations representing 

the evaluation maps. 
Now if q(x) is a strict predicate for x of type a modest object, and C&C) is closed under 
pushouts, then Clxcp(x) is also closed under pushouts. It is trivial that the property of 
being closed under pushouts (for predicates) is preserved under the logical operations 
+, A,V and V’, so there you are. 0 

3.5. d and Ext as exact completions 

The categorical and logical analysis of & can be pushed a lot further, exploit- 
ing the analogy with &# and what is known for that topos. For example, there is 
a smjection: d(Z(R)) -D Q in ~4, which classifies, viewing d(Z(R)) as the object 
of -T-closed, downwards closed subsets of F in &‘, exactly the inhabited ones; this 
should be the starting point for the definition of an “internal realizability” as in [22], 
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and an axiomatization (over a suitable expansion of higher-order arithmetic) of an ex- 

tension of the realizability of Definition 1.9. In the expansion of arithmetic one will 

need sorts for x and its powers; it would be nice if these could be eliminated, i.e. 

if ?? would be, in d, definable from higher-order arithmetic. I doubt this, but do not 

know. 

Here I just present an analogy of a characterization of 8ff as exact completion of 
its category of projectives, obtained in [16] and also explained in [4]. Both papers start 

from the basic result in [5], which is the construction of the exact completion Eex/lex 

of a left exact category E. Let me first explain what it means. A left exact category 

is said to be exact if 

(a) For every map f : A --t B the coequalizer of the kernel pair of f (i.e. the two 

projections A x~ A + A) exists. 

(b) Regular epimorphisms (i.e. those which are coequalizers) are stable under 

pullback. 

(c) Equivalence relations are effective, that is: kernel pairs. 

A left exact functor between exact categories is called exact if it preserves regular 

epimorphisms. 

If EX denotes the (2-)category of exact categories and exact fimctors, and LEX is 

the category of left exact categories and left exact ftmctors, then the exact completion 

Eex,lex of a left exact category E is its image under the reflection of LEX to EX (the left 

adjoint to the inclusion of EX into LEX). It is important to notice that the inclusion 

of EX into LEX is not full and faithful, so an exact category is not automatically 

equivalent to the exact completion of something. For this to be the case, we need to 

look at the projective objects of the category: an object A is projective (One should say: 

regular projective, but never mind) iff every regular epimorphism to A has a section. 

It turns out that an exact category E is an exact completion if and only if the 

following two conditions hold: 

(i) E has enough projectives, which means that for every object A of E there is a 

projective object B and a regular epimorphism B --D A. 
(ii) The full subcategory of E on the projective objects is left exact. 

([4]) If these conditions are satisfied, E is the exact completion of its category of 

projectives. 

The authors of [ 161 were able to identify the projectives of &fl and show that &fl 

is the exact completion of its category of projectives. This category looks as follows: 

objects are surjective functions X +I where X is a set and I & N; morphisms are 

commutative diagrams 

Y-+J 
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where + : I -+ J is the restriction to I of a partial recursive function (II/ is uniquely 

determined by f since the horizontal maps are surjective). In other words, this category 

is the full subcategory of the comma category (SetslP(N)) on the surjections (P(N) 

is the category of subsets of N and partial recursive functions). 

Since m is only a < -pm, the category P(m) (as defined in Section 3.3) has as 

maps f : A -+ B, those functions f such that for some partial recursive function +, 

for all cx E A and for all n E a, $(n) is defined, and 

So the full subcategory of (SetsJ,P(m)) on the surjective functions looks as 

follows: 

l Objects are surjective functions f : X -DA from a set X to a subset A of m. 

l Morphisms from f to g : Y -D B are functions h : X + Y such that for some 

partial recursive function $ there is a diagram 

Y9-B 

where it is meant that $ acts on a to give $[a] = {e(n) 1 n E a}, and the diagram 

commutes “up to inclusion”. 

The claim is now that this category is the category of projectives in d, that it is left 

exact and that JJ has enough projectives, so that d is the exact completion of this 

category. 

The result is a direct adaptation of the method of [16]. First a lemma: 

Lemma 3.19. Every object of d is covered by a separated object. 

Proof. Given (X, =), define the object (Q, =) by 

Q={(x,a)[x~X, aE[x=x]}, 

Uha) = (Y,P)I = 
{YENIyCa} ifx=y and a=/?, 

0 otherwise. 

The reader can check that the function Ku : Q x X -+ I(N) given by 

K~((x,a),y)={ylyCa}x[x=yD 

represents a surjection (Q, =) --D (X, =). 0 
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Proposition 3.20. Call an object (X, =) of d canonically projective if it is canonically 
separated, and for all x EX there is IX E N such that 

Then an object of d is projective if and only if it is isomorphic to a canonically 
projective object. 

It is easily seen that the category of canonically projectives is the same as the 
full subcategory of (SetslP(m)) on the surjections, as given above. Also, from this 
description it is obvious that this is a left exact category: it has products because if 

Ix =x] = {yl~Ca} and [y = y] = {yIyC/?} then for (x,y) (in the product) we 
have 

with a x fi = {(n, m) 1 n E a A m E /3}; it has equalizers because Tl-closed subobjects 
of canonically projective objects are canonically projective: in complete analogy to the 
situation for 8” (see [9]), a subobject of (X,=) is TT-closed iff isomorphic to one of 
form (A, =) with A GX and = the restriction to A of the equality = on X. 

Proof. Suppose X is projective; let Q 5 X be the cover in the proof of Lemma 
3.19. Then Q is canonically projective, m has a section i, and X is isomorphic to the 
equalizer of im and id: Q --+ Q. Since the canonically projective objects are closed 
under equalizers, X is isomorphic to a canonically projective object. 

To show the converse, suppose (P, =) canonically projective and 

(X=)-+(P,=) 

a surjection, represented by G. By surjectivity, pick a /? with 

PE~?~(UP=P~--‘[~G(~,~)I). 

Let [p = p] = {y IyCa,}. Pick for each PEP a xp with fi*ap E G(x,,p); then the 
relation 

is easily seen to represent a section for the given surjection. El 

Since the category of canonically projective objects of d is clearly isomorphic to 
the full subcategory of (SetsJP(N) on the surjective functions, described just before 
Lemma 3.19, and this category is left exact, we have that d is the exact completion 
of its category of projectives. 

Of course, the real content of [ 161 is in their argument that the category of projec- 
tives of &fl is itself a completion: it is the category which results from freely adding 
nonempty, recursively indexed coproducts to the category of sets. 



346 J. van Oostenl Annals of Pure and Applied Logic 84 (1997) 317-349 

We can relate the categories of projectives in &fl and Cal as follows. There is, 

analogously to the exact completion, the notion of a regular completion of a left exact 

category, denoted (-)reg/tex (a regular category is a category satisfying the axioms for 

an exact one minus the requirement that equivalence relations be effective). Carboni has 

shown in [4], that the category of TT-separated objects in &fl is the regular completion 

of the category of projectives in 8fl. Now it does not take much inspiration to see, 

that the separated objects in 8” are equivalent to the projectives of JZ!. Summing up: 

Theorem 3.21. Let Proj and Sep denote, respectively, the categories of projective and 
TT-separated objects in the eflective topos. 

Then d is (Sepklex, equivalently ((Proj),gikx)eti~ex. 

What about Ext? Does it have enough projectives? Is it an exact completion? The 

first question would be easy to answer if the inclusion Ext+ & would preserve epi- 

morphisms. However: 

Proposition 3.22. The inclusion Ext + d does not preserve epis. 

Proof. Given the inclusion: Ext-+ d and the fact that d has enough projectives, this 

is equivalent to the statement that the inverse image functor of the inclusion does not 

preserve projectives. So I give a counterexample to this. 

Let (X, =) and (Y, =) be the canonically separated objects of & given by 

X = {xi,x~,x3,~4} and 
[Xl =x1 ] = [x2 = x2 ] = l{O, 1) 

[X3=X3]=[Xq=X4]=~{0,2} 

UYl =Y11=1{0,1) 

y = {yl,yZ,y3} and [Y2 = y21= l{O, 192) 

[Y3 = n] = L{O,2). 

I have started writing la for { y ( y C a}. 

Let f :X + Y be the function: f(xl) = yl, f(x2) = f(x3) = ~2, f(x4) = y3. Then 

so the predicate F defined by F(x, y) = [x = x 1 A [ f(x) = y ] represents a morphism 

[F] in &‘. Now the objects (X, =), (Y, =) and the morphism [F] also live in Ext; 

and by Proposition 3.20 both are projective in d. But (Y, =), taken as object of Ext 
(which is the inverse image of itself as object of JZZ’) is not projective: the map [F] is 

surjective in Ext (not in a!) since 

[=‘(x,n)DExt =J(F(x2,~2)UF(x3,~2)) 

which is equal to 

l{O, 1,2} x I{09 192). 
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so {~~.(+I E fly&Y = rn + I[ lxF(x, y)]. But of course, [F] cannot 

section in Ext. 0 

341 

have a 

The above proof clearly indicates what should be the projectives in Ext, since obvi- 

ously, in the example, the element y2 is the problematic guy. Its existence, the downset 

of a three-element set, can be glued together from two downsets of two-element sets by 

pushout. This suggests the following definition, which embodies the deep mathematical 

intuition that an equivalence relation is generated by sets of “equivalent pairs”. 

Definition 3.23. Call an object (X, =) of Ext canonically projective if it is canonically 

separated, and for all x EX there is an u with at most two elements such that 

[x =x] = la = {y 1 y C ‘2). 

Lemma 3.24. Every object of Ext, is covered by a canonically projective object. 

Proof. Given (X, =), let (Q, =) be defined by 

Q = {(x, a) 1 ct E [x = x ] and #cc < 2}, 

The rest is left to the reader, who just has to keep in mind how an existential quantifier 

is interpreted in the tripos J(m)(-). 0 

Proposition 3.25. An object of Ext is projective if and only if it is isomorphic to a 

canonically projective object. 

Proof. This is completely analogous to the proof of Proposition 3.20; one uses the 

canonically projective cover and one realizes that, if 

,?p (up= P1’J(LJxGkP))) 

is nonempty and [ p = p ] is of form la with #cr < 2, then so is 

,?p (UP’ Pn+uxw~P)) 

nonempty. 0 

So Ext does have enough projectives; from the definition of canonically projective 

however, it is clear that this is not closed under products. In fact, if A is the canonically 

separated object ({a, b}, =) with [a = a] = l(O) and [b = b] = l{O, 1) then one can 

check that A x A is not projective in Ext. 
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It follows, that in Ext, the notions of projective and internally projective (in a topos, 
an object Q is called internally projective if the functor (-)Q preserves surjections) do 
not coincide, as they do in &fl. 

Since the projectives in Ext do not form a left exact category, Ext can not be an 
exact completion of a left exact category. Of course, the question then naturally arises 
whether there are exact completions with respect to weaker structures than finite limits. 
This question has been solved by Carboni and Vitale in [6] and [21] in the following 
way. A category E is said to have weak jinite limits if for any finite diagram in E 

there is a cone C in E such that every other cone for the diagram factors through C 
(not necessarily uniquely). 

For every category E with weak finite limits then, there is an exact completion 
E ex,wlex with the following universal property: there is, for every exact category d, 
an equivalence of categories between exact functors: Eexlwlex -+ d and left covering 
functors E -+ d, where a fimctor F : E + d from a category E with weak finite 
limits to an exact category d is left covering if the factorization in d of the F-image 
of a weak limiting cone through the limiting cone, is a regular epimorphism. 

An exact category E will be an exact completion (over weak limits) of its category 
of projectives if it has enough projectives: it is easy to show that in this case, the ml1 
subcategory of E on the projectives has weak finite limits. 

So Ext is the exact completion over weak limits of its category of projectives. 
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