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ABSTRACT We present a method for calculating the configurational-dependent diffusion coefficient of a globular protein as
a function of the global folding process. Using a coarse-grained structure-based model, we determined the diffusion coefficient,
in reaction coordinate space, as a function of the fraction of native contacts formed Q for the cold shock protein (TmCSP). We
find nonmonotonic behavior for the diffusion coefficient, with high values for the folded and unfolded ensembles and a lower
range of values in the transition state ensemble. We also characterized the folding landscape associated with an energetically
frustrated variant of the model. We find that a low-level of frustration can actually stabilize the native ensemble and increase the
associated diffusion coefficient. These findings can be understood from a mechanistic standpoint, in that the transition state
ensemble has a more homogeneous structural content when frustration is present. Additionally, these findings are consistent
with earlier calculations based on lattice models of protein folding and more recent single-molecule fluorescence measurements.
INTRODUCTION
The energy landscape theory of protein folding (1–5) has

been an invaluable theoretical framework for understanding

protein folding (6–10), oligomerization (11–13), and func-

tional transitions (14–18). According to the theory, the

energy landscape associated with protein folding lacks large

energetic traps and has an overall funnel shape where the

native ensemble is the lowest energy state. These minimally

frustrated landscapes can be idealized as being devoid of

energetic roughness, which enables the use of structure-

based (G�o-like) models (8,10,19–23) to study the thermody-

namic and kinetic properties of the folding process. Because

these structure-based models lack energetic trapping, they

also provide a means to characterize the topological contri-

butions to folding.

Although there is a strong correlation between simulated

barrier heights and experimental folding times (24), rates

are a consequence of both the free-energy profile and the

diffusion coefficient (25,26). Accordingly, direct compar-

ison between experiments and theory requires both quanti-

ties. In principle, one may circumvent the need for the

diffusion coefficient by simulating many thousands of fold-

ing trajectories and calculating the mean first passage time

of folding (27–29). Such approaches are often computation-

ally intractable and they do not always advance our physical

understanding of the process. Therefore, it is desirable to
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calculate both the free energy F and the diffusion coefficient

D as functions of a global folding coordinate Q (30–34). If D
is constant, then it only serves as a prefactor to the folding

rate. However, when D is not constant, as we describe below,

it can give rise to kinetic barriers in addition to the thermo-

dynamic barriers (32).

The diffusion coefficient D is a result of the underlying

energy landscape. As every conformation has a unique set

of locally accessible interactions, D is a function Q. Although

Q can be defined by a variety of measures, here we use the frac-

tion of native contacts, as it has been shown to capture, accu-

rately, the transition state ensemble of two-state proteins (35).

Low values of Q correspond to the unfolded state and high

values correspond to the folded ensemble. When Q is low,

energetic contributions are largely from water-protein interac-

tions. In the folded state (high Q), the burial of hydrophobic

surface area can be the dominant energetic contribution. In

these two regimes, the local energetic roughness can be quite

different, which can lead to different diffusion coefficients.

Many recent efforts have attempted to characterize D(Q)

via experimental methods (36–42) and theoretical calcula-

tions (26,32–34,43–49). These studies have found that diffu-

sion is not constant as a protein folds to the native state. This

naturally leads to the question: Does diffusion vary with the

degree of compactness because of energetic trapping, or

topological constraints? To address this, we calculate D for

a structure-based model that lacks energetic roughness and

compare the findings to variants of the model that include

energetic frustration.

In this article, we present the diffusive properties of a Ca

structure-based model in molecular dynamics simulations.
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FIGURE 1 Cold-shock protein from Thermotoga maritima (TmCSP

Protein DataBank entry 1G6P (36)), shown in (a) cartoon representation

and (b) Ca representation. The size of the atoms in panel b correspond to

the excluded volume radii used in this model. The structures are colored

from red (C-terminus) to blue (N-terminus) and were visualized with

VMD (82). The TmCSP is a small globular protein with 66 amino acids,

molecular mass of 7.5 kDa, and a three-dimensional structure known as

a Greek-key b-barrel (five b-strands divided in two antiparallel b -sheets).
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We compare the results obtained from the unfrustrated model

(i.e., only native interactions are stabilizing) with an energet-

ically frustrated variant of the model, which allows for a

quantitative, and qualitative, comparison of topological and

energetic contributions to the diffusion coefficient. As there

is a large body of experimental data available, including

denaturant-dependent diffusion coefficient measurements,

we chose to study the cold shock protein from the hyperther-

mophilic bacterium Thermotoga maritima known as TmCSP

(36) (Fig. 1 a). TmCSP is a 66-amino-acid b-barrel protein

that is known to have well-defined two-state folding behavior

(50–53). Through comparison with previous computational,

theoretical, and experimental results, we provide evidence of

the degree of roughness present in TmCSP.
MODELS AND METHODS

Structure-based Ca model

Here, we employ a well-studied coarse-grained structure-based model (8).

In this model, each residue is represented as a single bead, located at the

position of the Ca atom (Fig. 1 b). For unfrustrated simulations, only native

interactions are stabilizing and all residue pairs not in contact in the native

structure are given a repulsive interaction to prevent chain crossing. In this

model, the native structure is the global energetic minimum and the land-

scape lacks energetic traps. Native contacts were determined by the Contact

of Structural Units software package (54). The functional form of the

potential is
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P
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where er¼ 100, eq¼ 20, ef¼ 1, eC¼ 1, eNN¼ 1, and sNN¼ 4.0 Å. ro, qo, fo,

and sij are given the values found in the native structure.

To model nonspecific energetic frustration, we introduced an additional

attractive interaction between all residue pairs that are not in contact in the

native state and are separated by at least four residues in sequence. The func-

tional form of the nonnative interactions is

Vf ðrÞ ¼ �eNCexp

(
�
�
r � rg

�2

s2
g

)
; (2)

with rg ¼ 6.5 Å and sg ¼ 1.0 Å. The degree of energetic frustration is deter-

mined by eNC. In this study, we performed simulations with eNC ¼ 0.1–0.7.
Biasing potential

To calculate the diffusion coefficient about a specific value of Q, we intro-

duced umbrella potentials (55,56) that restrained each simulation to a speci-

fied range of Q values. See Supporting Material for technical details.
f-values analysis

Experimentally, the structural content of the transition state ensemble in

proteins is often studied by measuring changes in native stability and

folding/unfolding rates upon point mutations. An approximate kinetic

measure of the protein structure around a mutated residue is given by (57,58)

fh
�RTlnkmut=kwt

DDG0
; (3)

where kmut and kwt are the mutant and the wild-type folding rates, and DDG0

is the change in stability of the folded state upon mutation.

From a simulation, one may also calculate f-values by determining the

change in the thermodynamic free energy barrier upon site mutation and

comparing it to the change in native stability DDGF–U. Computationally,

this is less demanding than trying to determine differences in folding rates

upon mutation. The f-values from structure-based simulations for each

native contact pair (residues i and j) can be further approximated as (8,59)

fij ¼
DDGTS�U

DDGF�U
z

PTS
ij � PU

ij

PF
ij � PU

ij

; (4)

where Pij
X is the probability of a contact between i and j being formed in

state X (with X being F, TS, or U). For ease of discussion, here, we report

fi-values averaged over all native contacts with residue i.
RESULTS

Diffusion coefficient is robust to changes
in restraining potential

The primary objective of this study was to determine how the

diffusion coefficient D, in reaction coordinate space, changes

during the folding process of TmCSP (Fig. 1 a). To calculate

D, we employed a Ca structure-based model (Fig. 1 b) with

a restraining potential to ensure that each simulation sampled

the phase space local to a particular value of Q (see Models

and Methods for full description). The restraining potential

was harmonic, centered at Q*, and was given a strength of

KQ. When adding such a restraint, one must first ensure that

the quantities of interest are not dependent on the strength of

the restraint. To ensure that the diffusion coefficients are
Biophysical Journal 99(2) 600–608



602 Oliveira et al.
a result of the underlying energy landscape, and not the

biasing potential, several sets of simulations were performed,

each with a different strength of the restraint.

To calculate the diffusion coefficient from a simulation,

we employed a quasiharmonic diffusive approximation (25)

D ¼ DQðTÞ2

2tðTÞ ; (5)

where DQ(T)2 is the mean-squared fluctuations in Q, and

t(T) is the relaxation time associated with the decay of the

autocorrelation function of Q, i.e., CQ(t). Here, Q(t) is

defined as the fraction of native Ca-Ca contacts formed as a

function of time (see Models and Methods). To use Eq. 5, the

value of KQ must be in a range for which a quasiharmonic

approximation is warranted and D is not dependent on KQ.

To determine values of KQ for which the quasiharmonic

approximation is valid, we compared the probability distri-

butions in Q for a variety of KQ values. Fig. 2 a shows the

probability distributions for several values of KQ (where

the harmonic restraint is centered at Q* ¼ 0.5), each at the

folding temperature in the unrestrained case. For KQ ¼ 10,

the probability distribution is clearly bimodal, with one

peak corresponding to nativelike structures (Q z 0.8) and

one peak corresponding to the unfolded ensemble (Q z 0.2).

For KQ ¼ 50, the probability distribution possesses a single

peak near the minimum of the restraining potential Q ¼ 0.5.

For KQ ¼ 100, the width of the distribution is further

reduced. This additional reduction of the width is undesir-

able. Because the diffusion coefficient describes the multi-

dimensional process of the protein escaping from local

energetic/topological minima, an overly-strong restraint may

lead to artifacts by disallowing some possible routes of

escape. In that scenario, our calculations of D could probe

the restraining potential and not the underlying energy land-

scape.
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FIGURE 2 (a) Probability distributions in Q for biased (KQ > 0,

Q* ¼ 0.5) simulations with different strengths of the restraining potential

KQ. As KQ increases, the distribution changes from a bimodal distribution,

with peaks corresponding to the native and unfolded ensembles, to a single

peak centered about the minimum of the restraining potential Q*. The distri-

bution is quasiharmonic for KQ > 10. (b) The diffusion coefficient D is

shown, on a semilog plot, as a function of KQ for five values of Q*. For

10 < KQ < 50 (region delimited by the vertical dashed lines) D(Q) is rela-

tively constant, demonstrating that estimates of D will be independent of KQ

over this interval. Simulations were performed at the folding temperature of

the pure structure-based model Tf
0.
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In addition to identifying a range of value of KQ for which

a quasiharmonic approximation is valid, we also determined

a range of KQ-values for which the calculated diffusion

coefficients are not KQ-dependent. Fig. 2 b shows D as a

function of KQ for a wide range of Q values. For low values

of KQ (< 10), all calculated values of D increase with KQ.

As discussed above, this is due to the probability distribution

being altered from a bimodal distribution to a distribution

centered about the Q value of interest. For 10 < KQ < 50

the calculated D is nearly constant for all Q values. Above

KQ ¼ 50, the values of D again increase for Q > 0.7. Based

on these data, we concluded that KQ ¼ 50 will provide reli-

able values for the position-dependent diffusion.
Diffusion coefficient dependence on Q

To understand the origins of the Q-dependence of the diffu-

sion coefficient, one must consider the fluctuations in Q and

the decay time of these fluctuations tQ. As our calculated

values of D are not sensitive to KQ at KQ ~ 50, all further

values are reported for simulations performed at the fold-

ing temperature of the unrestrained simulations Tf
0 with

KQ ¼ 50. Fig. 3 a shows the time autocorrelation functions

of Q for a variety of Q* values. As Q* is increased from

0.2 to 0.5 the characteristic decay time, tQ, increases. At

higher Q values (>0.5), the decay time decreases to a value

smaller than in the unfolded ensemble (larger 1/tQ values in

Fig. 3 b). The dispersion in Q (DQ2) also displays a nonlinear

dependence on Q (Fig. 3 b). Similar to tQ, DQ2 initially

increases with increasing Q (0.2–0.5) and then decreases as

the native ensemble is reached (Q ¼ 0.8). Fluctuations in

Q, shown in Fig. 3 b, rise considerably near the transition

state due to the intrinsic instability of the transition state

ensemble (TSE). In other words, Q exhibits large amplitude

fluctuations as it overcomes the free energy barrier. For high

and low Q values (the folded and unfolded ensembles), Q is
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FIGURE 3 (a) Normalized correlation functions of Q, CQ(t), shown on

a log-log plot (time in reduced units) for different values of Q*. Because

a single exponential did not always fit well, each curve was fit to the sum

of three exponentials to obtain an average decay time tQ. KQ ¼ 50 was

used and the temperature was the folding temperature of the unbiased simu-

lations Tf
0. The characteristic decay time tQ is used to calculate the diffusion

coefficient D. (b)The dispersion of the reaction coordinate DQ2 as a function

of the reaction coordinate Q (left axis), with and without energetic frustra-

tion. The inverse correlation time of Q (1/tQ) shown as a function of Q (right

axis), with and without the frustration term. Calculations are shown at Tf of

each eNC.
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highly localized, which results in a small dispersion in Q.

While DQ2 is roughly symmetric about the TSE, the autocor-

relation time, as well as its inverse, is asymmetric. This

symmetry-breaking in tQ leads to an asymmetric relationship

between D and Q.

The diffusion coefficient as a function of Q, D(Q), is

proportional to the product of DQ2 and 1/tQ, and is shown in

Fig. 4. We find D has large variations as a function of the

folding reaction, which is in agreement with earlier studies

on lattice models (32) and analytic studies (30,31,33,43).

As discussed above, D(Q) (Fig. 4) largely follows 1/tQ

(Fig. 3 b). Fluctuations of the reaction coordinate DQ2 appear

to have less influence on D(Q), as DQ2 changes only mod-

estly with Q. The fact that D(Q) reaches a minimum around

the TSE suggests the presence of a kinetic barrier, in addition

to a thermodynamic one. After the protein moves from the

TSE to the folded state, D(Q) once again increases and

eventually reaches values that are 10-times larger than those

corresponding to the unfolded ensemble.

The one-dimensional position-dependent diffusion coeffi-

cient variations indicate that the ruggedness of the energy

landscape is not the same over the one-dimensional configu-

ration space. D(Q) describes the local moves over micro-

scopic barriers that connect states with similar values of Q.

If the microstate is deep, it acts like a speed bump slowing

both the drift and the superimposed Brownian move-

ment (60) (i.e., the diffusion coefficient becomes small and

escape-time from traps increases (7)). Because our energeti-

cally unfrustrated model gives rise to values of D that vary

with Q, our results clearly indicate that the topology of the

ensemble about a particular value of Q is inextricably linked

to the diffusive dynamics. In other words, each configuration

of the protein has a particular set of accessible escape routes,

independent of the energetic roughness, which lead to the

nonconstant form of D(Q).
Energetic frustration alters the diffusive dynamics

Due to the funnel-like nature of protein-folding energy land-

scapes, completely unfrustrated models, such as the one

employed in this study, are sufficient to capture many aspects

of protein folding (7,9,59,62–73). However, there is mount-

ing evidence that a low degree of frustration can lead to

accelerated folding rates (63) and provide a more accurate

description of the unfolded ensemble (74). Such findings

suggest a potential influence of energetic frustration on

the diffusive properties associated with protein folding. To

investigate this further, we employed a modified structure-

based model in which the degree of frustration may be

controlled. Specifically, we used the structure-based Ca-

model and added nonspecific attractive interactions between

all nonnative atom pairs, where the functional form is a

Gaussian with an energetic weight eNC (see Models and

Methods). Accordingly, eNC ¼ 0 corresponds to the purely

structure-based model.

Thermodynamic quantities were calculated for each frus-

trated system (eNC > 0.0) with KQ ¼ 0. For each parameter

set, the fraction of native proteins fN(T) was defined as

fNðTÞ ¼
R

native
exp½ � FðQÞ=kBT�dQR 1

0
exp½ � FðQÞ=kBT�dQ

; (6)

where F(Q) is the free energy as a function of Q, the integral

in the numerator is over all native conformations, and the

denominator is over all possible Q values. We define the

folding temperature Tf as the temperature where fN ¼ 0.5

(dotted horizontal line in Fig. 5 a). As the degree of frustra-

tion is increased from 0, Tf initially increases and reaches

its maximum at eNC ¼ 0.2. Because Tf measures thermody-

namic stability, an increase in native-state stability with

increased nonnative interaction strength may be surprising.

This feature has two origins. First, in the native state

ensemble, proteins are constantly fluctuating (75), which

allows nonnative residue pairs to fluctuate toward and

away from each other and form transient nonnative interac-

tions (10). When nonspecific interactions are stabilizing,

these transient nonnative interactions increase the stability

of near-native conformations. The second contribution to
Biophysical Journal 99(2) 600–608
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the unfolded ensemble. Panel a shows the density of states for the unfrus-

trated (eNC ¼ 0.0) and frustrated (eNC ¼ 0.2) systems. The Ca model has

a highly degenerate folded state, indicating the presence of residual entropy

which allows for an increase in D after the protein passes through the TSE.

For the lattice model there is a rapid decrease in the density of states with

a nondegenerate folded state (n(Efolded)¼ n(Qfolded)¼ 1) and monotonically

decreasing values of D (32).
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the increased native-state stability may be due to using a Ca

representation. All nonnative interactions were given ener-

getic minima at 6.5 Å. When coarse-graining, Ca pairs

may be within that distance, but the side-chain configura-

tions may lead to these pairs being considered not-in-

contact. Thus, the noncontacting residues may stabilize these

native configurations via the nonspecific interactions. Above

eNC ¼ 0.2, the energetic frustration stabilizes the unfolded

ensemble more than the folded ensemble and the folding

temperature decreases, as expected. These findings are

consistent with experimental results indicating that weakly

attractive nonspecific interactions can increase the stability

of Src homology 3 domain (70). In addition to affecting

native stability, these experiments also revealed variations

in the thermodynamic properties of the transition state

ensemble, which were manifested as increased unfolding

and refolding rates.

Increased levels of frustration also have direct effects on

the calculated D(Q) profiles (Fig. 4). Similar to the unfrus-

trated simulations, the majority of the changes in D(Q)

may be attributed to fluctuations in tQ (Fig. 3). When ener-

getic frustration is introduced, DQ2 is only marginally per-

turbed while 1/tQ exhibits substantial deviations (Fig. 3).

Comparison of the frustrated and unfrustrated simulations

(Fig. 3) indicates that frustration has little effect on the

DQ2 and 1/tQ values associated with the unfolded ensemble

(Q< 0.5). After the protein has reached the folding transition

state (Q z 0.5) and moves to higher Q values, 1/tQ increases

for both the unfrustrated and eNC¼ 0.2 simulations, although

there is a larger increase in 1/tQ for the frustrated simulations

than the unfrustrated ones. This finding may be counterintu-

itive, but it shows that a low degree of frustration can actu-

ally reduce the height of the microscopic barriers that are

described by the diffusion coefficient.
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FIGURE 7 The f-values calculated for the unfrustrated simulations

(eNC ¼ 0.0, black bars) and a weakly-frustrated system (eNC ¼ 0.2, red dia-

monds). Many residues with lower fi-values increase, and high values

decrease, upon the addition of frustration. This indicates a more homoge-

neous TSE when a low level of frustration is introduced. Simulations

were performed without a restraining potential (KQ ¼ 0) and at Tf(eNC).
Residual entropy of the native state ensemble

The fact that D(Q) reaches a maximum in the folded

ensemble can be understood by analyzing the density of

states as a function of Q. Fig. 6 shows the density of states

as a function Q for a lattice model (32) and the presented

Ca model. Although there is an increase in D(Q) as Q goes

to 1, D(Q) remains on the same scale for large Q as for small

Q. This is due to the ensemble nature of the native state. That

is, in the Ca model, the protein may interconvert between

local structures without changing the value of Q, even

when all native contacts are formed (Q ¼ 1). This leads to

a degenerate native state, residual entropy, and nonzero

correlation times. In contrast, in the lattice model, every

possible move from the Q ¼ 1 state results in a decrease in

Q. This nondegenerate native state leads to very low correla-

tion times, and hence very large diffusion coefficients for the

native state. Additionally, in the lattice model, single rear-

rangements can result in multiple contacts being formed or

broken simultaneously. This lack of residual entropy in the
Biophysical Journal 99(2) 600–608
lattice model has prevented previous evaluation of D(Q¼ 1).

Here, by using an off-lattice Ca model, we are able to calcu-

late D(Q) for the full range of Q.
Folding mechanism and f-values analysis

The introduction of attractive nonnative interactions, or

energetic frustration, changes the folding energy landscape

(62,63,76) and can alter the structural content of the transi-

tion state ensemble. The e-values are commonly used exper-

imentally to measure the degree of native structural content

in the TSE about each residue. Computationally, f-values

can also be determined, where a value of 0 indicates no

native structural content and 1 indicates full structural con-

tent in the TSE. Fig. 7 shows fi (f-value for each residue i)
obtained from simulations with no frustration (eNC ¼ 0.0)

and a low degree of frustration (eNC¼ 0.2). When eNC¼ 0.2,



FIGURE 8 Probability of contacts being formed for each residue P(i, Q,

eNC) as a function of the reaction coordinate Q, for the unfrustrated and

weakly frustrated system. (a) P(i, Q, 0) increases (blue to red) as the protein

folds. (b) Difference between the probabilities for the frustrated and unfrus-

trated simulations, P(i, Q, eNC) – P(i, Q, 0.0), where eNC ¼ 0.2. The simula-

tions were performed at T ¼ Tf . (Open bars) Residues lacking any native

contacts.
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there is a shift in structural content from the C-terminus to

the N-terminus. Specifically, when eNC is increased from

0.0 to 0.2 the f-values for residues 0–20 increase and resi-

dues 55–65 decrease. Additionally, other regions with low

f-values, such as residues 42–45, increase when frustration

is introduced.

Overall, introducing a low-degree of frustration appears to

(partially) homogenize the f-values. Because residues that

are less native (low f-values) are not surrounded by formed

native interactions, they are more exposed to nonnative inter-

actions. Accordingly, nonspecific stabilizing interactions are

more accessible to less-native residues than highly-native

ones. These nonspecific attractive interactions can then

localize the residues involved in native-contacts, which

results in additional native structure formation and a shift

in the f-values.

To characterize the effects of frustration on the unfolded

and folded basins, in addition to the TSE, we calculated

the probability of contacts being formed with each residue,

as functions of Q (Fig. 8). The probabilities for the unfrus-

trated case are shown in Fig. 8 a. For low Q, the probabilities

are not homogeneously distributed, but are high around resi-

dues 22, 53, and 56, and nearly zero for all other residues. At

approximately the transition state (Q¼ 0.5), the probabilities

follow the f-values, and have peaks around residues 22, 35,

and 55. After passing the transition state, these regions may

be considered nucleation sites, about which the rest of the

protein’s native structure is formed. Fig. 8 b shows the

changes in the probabilities when frustration is introduced.

Blue corresponds to decreased structure and red indicates

increased structure formation. Similar to the f-values, in

the TSE there is a shift in probabilities from the C-terminal
residues to the N-terminal residues. Surprisingly, the effects

of the energetic frustration appear to be isolated to the TSE.

One explanation for this feature is that frustration in the

unfolded ensemble may not be well described by Gaussian

potentials, as we have employed here. Instead, longer-range,

screened-electrostatic interactions may be a larger contrib-

utor to frustration in the unfolded ensemble (74). In contrast,

using a coarse-grained structure-based model, Das et al. (77)

showed that introducing nonnative interactions and energetic

heterogeneity has a large effect on the TSE, and improves

agreement between experimental and theoretical f-values

for Src homology 3 domain. Although our finding suggest

short-range frustration is most important in the TSE, real

proteins likely exhibit a combination of short-range and

long-range nonnative interactions. Further investigation will

be necessary to untangle the relationship among different

types of frustration, the folding mechanism, and the diffusive

dynamics of the folding process.

Perl et al. (78) explored the role of the chain termini resi-

dues on the folding stability by comparing the cold shock

proteins BcCSP from the thermophile Bacillus caldolyticus
with its homolog BsCSPB Bacillus subtilis. These two

cold shock proteins have nativelike activated states of fold-

ing, similar to that of the hyperthermophilic Thermotoga
maritima TmCSP (50) studied in this work. Their studies

illustrate that major contributors to the difference in stability

are residue 3 (which takes on nativelike structure in the TSE)

and the C-terminal residue 66 (which forms late in the

folding process) (78). Despite the fact that the C-terminal

residues have high f-values in experiments and low f-values

for the unfrustrated model, as discussed above, the f-values

of the termini increase with increased energetic roughness.

As suggested by our analysis of stability as a function

of roughness, this comparison also demonstrates that

cold shock protein likely has a modest degree of energetic

roughness, though the exact degree, and type, of frustration

cannot be unambiguously determined from the presented

simulations.
CONCLUSIONS

In this work, we have studied the folding of TmCSP using

a coarse-grained structure-based model and we calculated

the diffusion coefficient as a function of a reaction coordinate

Q. Our main results can be outlined as follows: The diffusion

coefficient displays nonmonotonic behavior as a function of

Q, which can be attributed to a residual entropy of the native

state ensemble. A role of residual entropy has been suggested

previously (33), though here we explicitly calculate it and

show its relationship to the diffusive dynamics. By intro-

ducing varied degrees of energetic roughness, we have

shown that for low levels of frustration, TmCSP displays

increased thermal stability and diffusion coefficients, relative

to the unfrustrated regime, which agrees with previous find-

ings (62,63). As frustration is increased, the stability reaches
Biophysical Journal 99(2) 600–608



606 Oliveira et al.
a maximum, after which increased frustration leads to a less

stable protein. At this optimum degree of frustration, the

transition state is characterized by a more homogeneous

distribution of f-values, relative to the unfrustrated case.

In addition to changes in the structural content of the TSE,

the diffusion coefficient is also affected by a low-degree of

energetic frustration.

This work has shown that the diffusive dynamics are inti-

mately linked to the topological and energetic aspects of

a protein, and lays a foundation for understanding the diffu-

sive properties of protein folding. Many examples can be

found where the diffusion coefficient provides a nontrivial

contribution to the folding dynamics. For example, as the

presence of additional small free-energy barriers can actually

accelerate folding rates (79,80), there must be a balance

between folding barriers and diffusion along the reaction

coordinate. The folding of proteins with smaller free-energy

barriers, such as BBL (81), will also depend more on the

precise structure of the diffusion coefficient (44,41,42),

such that the nonmonotonic behavior of the diffusion may

be the limiting factor that determines folding rates. With

the presented framework, further investigation will explore

the details of how the diffusive dynamics contributes to the

folding of these and other systems.
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