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The role of metabolism in ovarian aging is poorly described, despite the fact that ovaries fail earlier than most
other organs. Growing interest in ovarian function is being driven by recent evidence that mammalian females
routinely generate new oocytes during adult life through the activity of germline stem cells. In this perspec-
tive, we overview the female reproductive system as a powerful and clinically relevant model to understand
links between aging andmetabolism, andwe discuss new concepts for how oocytes and their precursor cells
might be altered metabolically to sustain or increase ovarian function and fertility in women.
Introduction
Early in life’s history, a complex signaling network evolved to

maximize the number of descendants a cell could produce in a

particular environment. This ancient network, which still exists

in cells today, promotes growth and reproduction when the

environment is favorable and suppresses these activities during

harsh times (Kirkwood, 1987). This system explains in large part

why many species gain health benefits from dietary restriction

(DR) and how the body adapts to changing supplies and

demands for energy. As we learn more about this survival

network, it is becoming increasingly plausible to stimulate it

pharmacologically. Indeed, molecules that mimic DR are in

development for treatment of many aging-related health issues,

such as type II diabetes, inflammation, andmuscle degeneration

(Blum et al., 2011; Chiba et al., 2010). Despite rapid progress in

this area, one aspect of human health that has been largely

neglected is reproductive potential.

The Ovary as a Model for Aging Studies
The main functional unit of mammalian ovaries is a multicellular

structure referred to as the follicle (Gougeon, 1996). Each follicle

is composed of an oocyte, which is a partially differentiated

female germ cell arrested in prophase of the first meiotic cell

division, enclosed by one or more layers of specialized somatic

cells that support the oocyte during its growth. Starting with

a resting (primordial) follicle that contains an oocyte and just a

single layer of somatic granulosa cells, each follicle attempts

to complete progressive developmental stages associated with

extensive replication of the granulosa cell population and the

acquirement of a second somatic cell type known as theca-

interstitial cells. Through complex cell-to-cell interactions, the

oocyte gains developmental competence so that it can initiate

embryogenesis if fertilized after ovulation (Matzuk et al., 2002;

Orisaka et al., 2009). Simultaneously, the follicular somatic cells

become highly responsive to circulating factors and secrete a

spectrum of hormones that exert effects both locally in the

ovaries and in many other tissues including the brain, bones,

skin, and cardiovascular system (Buckler, 2005; Prior, 1998).
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Because of the central importance of follicles to maintaining

endocrine function of the female gonads as well as to fertility,

ovarian life span is dictated by the number of follicles present

in the tissue—an endpoint often referred to as the ‘‘ovarian

reserve.’’ Since the 1950s, it was widely believed that females

of most mammalian species are provided with a nonrenewable

ovarian reserve around the time of birth (Zuckerman, 1951).

Following growth activation, each primordial follicle in this

reserve either completes maturation for release of its enclosed

oocyte at ovulation, or undergoes a degenerative process

referred to as atresia. Historical studies of mouse, rat, and

human ovaries have shown that atresia actually claims the vast

majority of follicles present in the gonads, ultimately leading to

complete exhaustion of the ovarian reserve long before death

due to advanced chronological age (Faddy et al., 1992; Gosden

et al., 1983; Richardson et al., 1987). More contemporary work

has revealed that this massive oocyte loss occurs largely

through apoptosis, involving an array of genes and signaling

pathways that share many similarities to the regulation of

apoptosis in other organ systems (Tilly, 2001). Follicle loss can

be dramatically accelerated by external insults, including

chemotherapy, radiation, and environmental toxicants (Tilly,

2001), leading to the premature onset of many health problems

associated with natural menopause.

The concept of irreversible exhaustion of the ovarian reserve

in mammals is based on the presumed absence of replicative

germ cells in postnatal ovarian tissue that could give rise to

new oocytes. This contrasts sharply with observations from

females of nonmammalian species, including flies and fish,

which retain germline stem cells (GSCs) that actively support

oocyte renewal during adult life (Kirilly and Xie, 2007; Nakamura

et al., 2010). However, in 2004 a study was published offering

multiple lines of evidence for the existence of female GSCs

(or, more appropriately, oogonial stem cells or OSCs, to be

consistent with the nomenclature applied to spermatogonial

stem cells—their male counterparts in the adult testis) in

postnatal ovaries of mice that generate oocytes to form new

follicles (Johnson et al., 2004). These findings countered dogma
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and thus were met with skepticism by many scientists (Powell,

2007).

Nonetheless, the possibility that the ovarian reserve could be

replenished became a focal point of investigation for many labo-

ratories (Tilly et al., 2009). These efforts ultimately led to the isola-

tion of OSCs from neonatal and adult mouse ovaries by at least

three groups using different strategies (Pacchiarotti et al., 2010;

White et al., 2012; Zou et al., 2009), and the purification of a

similar population of oocyte-producing progenitor germ cells

from adult human ovaries (White et al., 2012). In addition, studies

in mice have shown that when OSCs are reintroduced into adult

ovaries, the cells differentiate to form follicle-enclosed oocytes

that mature, ovulate, and fertilize to produce viable embryos

and offspring (White et al., 2012; Zou et al., 2009). In lower organ-

isms, function of these types of germ cells has been tied to

nutrient availability (McLeod et al., 2010; Jasper and Jones,

2010) and can even govern the pace of aging (Hsin and Kenyon,

1999; Flatt et al., 2008). These paradigm-shifting studies

therefore provide a framework for introduction of OSCs into

discussions of how female fertility and ovarian life span might

be modulated in mammals.

Dietary Restriction, Longevity Genes, and Female
Fertility
Mice and rats maintained on DR have reduced fertility or are

completely infertile (Selesniemi et al., 2008; Visscher et al.,

1952). Similarly, women below ideal body weight due to self-

imposed DR have reduced fertility (Bates, 1985) and exhibit

marked changes in gonadotropic hormones to levels that

resemble those in women with ovarian insufficiency. Although

the common wisdom is that DR negatively impacts fertility, it is

less well known that DR can also have a positive impact. Almost

a century ago, studies of rats noted that the ‘‘menopause has

been postponed [by DR] long beyond the age at which it naturally

appears’’ (Osborne et al., 1917). While rodents do not undergo a

true menopause, this work, and several rodent studies that fol-

lowed, clearly established that moderate DR extends functional

ovarian life span in mammals.

At first glance, this finding appears at odds with the ‘‘Dispos-

able Soma Theory,’’ in which the longevity of a species is a direct

result of how it divides its resources between reproduction and

protecting the soma (Kirkwood and Holliday, 1979). But it is

not. Through analysis of physiological and ecological data on

mouse survival and fertility, as well as life-history modeling,

the temporary cessation of active fertility exhibited during

DR in mice is believed to free up energy that can be used to

enhance maintenance, thereby preserving viability and fertility

for when the period of famine has passed (Shanley and Kirk-

wood, 2000).

Consistent with this idea, longevity can be achieved without

sacrificing fertile potential in many species, including Podospora

anserina (van Diepeningen et al., 2010), Saccharomyces

cerevisiae (Jiang et al., 2000), Caenorhabditis elegans (Wood

et al., 2004), and Drosophila melanogaster (Grandison et al.,

2009). In nematodes, starvation shuts down reproduction

through enforced quiescence of GSCs, which resume active

gametogenesis for offspring production upon refeeding (Angelo

and Van Gilst, 2009). In flies, altering the balance of specific

amino acids can increase longevity without reducing fertility
(Grandison et al., 2009). The DR mimetic and SIRT1 activator

resveratrol, which boosts mitochondrial function and extends

life span in C. elegans and Drosophila, increases the number of

eggs laid per organism (Wood et al., 2004). Together these

data indicate that during adversity, many organisms downregu-

late fertility but simultaneously upregulate defense systems

to preserve the germline. When conditions improve, fertility

rebounds.

A similar situation may hold true for mammals. A stepwise

40% reduction in caloric intake in mice instituted after sexual

maturation showed that while reproductive capacity is impaired

during DR, these animals remain fertile much longer than contin-

uously ad libitum (AL)-fed controls once the DR females are

allowed to resume AL feeding (Selesniemi et al., 2008). Further-

more, at advanced ages when offspring number per litter deliv-

ered by AL-fed females is close to zero, the number of pups

born per litter by female mice maintained on DR for several

months and then returned to an AL diet remains remarkably

high (Selesniemi et al., 2008). The conclusion from these rodent

studies is that if the DR regimen is mild, or if normal food intake is

restored after a period of moderate DR, fertility is not negatively

impacted and can actually be maintained for longer. In accor-

dance with this, infertile women on DR rapidly regain their

fertility if they increase their food consumption (Bates, 1985).

An intriguing possibility is that DR mimetics provided to women

on a normal diet could provide a means to activate germ cell

defense networks, thereby maintaining or restoring oocyte qual-

ity and extending fertile life span.

Such findings underscore the need to better define molecular

mechanisms underlying organismal responses to DR or DR

mimetics, and to then test these findings in the context of female

fertility. The original idea that DR works passively by simply

reducing metabolic rate or the generation of reactive oxygen

species (ROS) has been largely discarded. In its place is a funda-

mentally different model in which DR works by triggering an

active response that evolved to promote organismal survival dur-

ing harsh conditions (Guarente, 2008; Kirkwood, 2005). At the

center of this response are so-called ‘‘longevity regulatory path-

ways’’ (Figure 1).

Although there are hundreds of longevity genes in dozens of

species, four signaling pathways stand out as particularly impor-

tant mediators of the DR response. These are insulin/insulin-like

growth factor-1 (IGF-1) signaling, the mammalian target of rapa-

mycin (mTOR) pathway, AMP-activated kinase (AMPK), and sir-

tuins. With the exception of sirtuins, which were first identified as

mediators of gene silencing (Klar et al., 1979), these pathways

were discovered for their roles in nutrient sensing decades

before any role in aging was suspected. In the past few years,

however, the fields of metabolism and aging have been united

by the realization that all four of these metabolic sensors in

eukaryotes form a complex regulatory network that responds

to changes in a cell’s internal and external environment by stor-

ing or utilizing energy for processes that boost cellular defenses

against tissue damage, deterioration, and disease (Cantó and

Auwerx, 2009; Katewa and Kapahi, 2011).

As one might expect, at least some of these pathways appear

operational in female germ cells, although much of this work has

focused on oocyte growth activation and not egg quality (Reddy

et al., 2008; Li et al., 2010). Exceptions include reports linking
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Figure 1. Longevity Pathways that Promote
Health and Survival
Current data indicate that environmental signals
alter the pace of aging by modulating key metabolic
sensors, such as SIRT1 and AMPK. These path-
ways interact with both mTOR and insulin/IGF-1 to
control cell growth and energy intake. Obesity and
aging reduce the ratios of NAD+/NADH and AMP/
ATP, whereas DR has the opposite effect. Down-
stream, the actions of two transcriptional regula-
tors, PGC-1a and FOXO, induce mitochondrial
function and stress resistance, among other
protective mechanisms. Together, this network
coordinates cellular responses to stress, nutrient
availability, and metabolic demands, with mito-
chondria as key nexus points.
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mTOR and the phosphatidylinositol 3-kinase (PI3K)/phospha-

tase and tensin homolog (PTEN) pathway, which ties into

mTOR signaling, to meiotic progression in oocytes and embry-

onic genome activation in fertilized eggs, respectively (Lee

et al., 2012; Zheng et al., 2010). In addition, several sirtuin family

members are expressed inmouse oocytes. Of particular interest,

loss of sirtuin-3 function in mouse eggs increases mitochondrial

ROS production, leading to impaired preimplantation embryonic

development after fertilization (Kawamura et al., 2010).

Effects of Diet on Egg Quality
Although early reports indicated that reduced dietary food intake

can slow follicle depletion from ovaries in rats and mice (Lintern-

Moore and Everitt, 1978; Nelson et al., 1985), the ovarian reserve

in aged females subjected to DR followed by AL feeding is, like

their age-matched AL-fed counterparts, severely diminished

when compared to that of young adult females (Selesniemi

et al., 2008). Thus, the beneficial effects of DR on female fertility,

fecundity, and offspring survival are apparently not due to main-

tenance of a larger follicle reserve with age. While it is conceiv-

able that the benefits of DR in this model are partly a result of

improved capacity of the uterus of aged females to establish

and support a pregnancy, oocyte donation studies in humans

have demonstrated that aging-related infertility can be effec-

tively overcome by use of oocytes from young adult donors

(Klein and Sauer, 2002; Sauer et al., 1992). In fact, given that

women in their sixties have successfully carried pregnancies to

term as surrogates (Paulson et al., 2002; Sauer et al., 1995),

the single most important factor for determining pregnancy suc-

cess rates in women of advanced maternal age seems to be

oocyte quality and not uterine dysfunction (Navot et al., 1991).

Production of a developmentally competent egg requires the

successful completion of meiosis, ultimately reducing its chro-
840 Cell Metabolism 17, June 4, 2013 ª2013 Elsevier Inc.
mosome number to one-half once pene-

trated by the sperm at fertilization. The

joining of the male and female pronuclei

in the fertilized egg then restores a normal

chromosome complement in the newly

formed embryo. Unfortunately, the meiotic

cell cycle is highly prone to errors with

increasing age, leading to aneuploid

oocytes (Hassold and Chiu, 1985; Hassold

and Hunt, 2009; Hunt, 1998). Even with
ovulation continuing in women into their early forties, the quality

of oocytes ovulated by women as they grow older becomes

compromised, elevating the risk for fertilization or embryonic fail-

ure, miscarriage, and birth defects. The most widely known

example of this maternal aging effect is the dramatic rise in risk

for conception of offspring with trisomy 21 or Down syndrome,

which increases from around 2% of clinical pregnancies for

women in their twenties to 30% or more of clinical pregnancies

for women in their forties (Hassold and Chiu, 1985).

The clinical importance of overcoming this aging-related

decline in oocyte quality has become much more relevant as

increasing numbers of women bear children in the second half

of their fertile period (Matthews and Hamilton, 2009; Ventura,

1989). Compounding this problem is the inherent difficulty in cir-

cumventing fertility issues even with assisted reproductive tech-

nologies such as in vitro fertilization (IVF). Since several factors

contribute to the decline in oocyte quality with advancing age,

a widely held assumption in the field of human reproduction is

that any single or simple pharmacological intervention will be

insufficient to overcome this problem. However, very recent

studies with mice indicate that this fundamental belief, like that

of a fixed ovarian reserve at birth, may be invalid. For example,

recent studies show that female mice maintained on DR for

7 months and then allowed to AL feed for 1 month do not exhibit

any of the hallmark features of deteriorating egg quality with age

observed in AL-fed control females (Selesniemi et al., 2011).

Notably, the increased incidence of aneuploidy, meiotic spin-

dle abnormalities, chromosomal misalignment, mitochondrial

aggregation, and declining ATP levels detected in oocytes of

aged AL-fed females is absent in oocytes of aged females previ-

ously maintained on DR. Although additional studies are needed

to address the mechanisms underlying these striking beneficial

effects, aging-related aneuploidy and spindle defects in eggs
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at least no longer appear to be unreachable targets for therapeu-

tic manipulation.

Energy, Aging, and the Role of Mitochondria
Whether one is working on metabolism or aging, it is hard to

ignore mitochondria, the structures at the center of cellular

energy production and utilization. These organelles are essential

for generating most of the ATP in the body, which in humans

amounts to about 65 kg per day to meet basic metabolic

demands (Törnroth-Horsefield and Neutze, 2008). Other key

functions of mitochondria include calcium buffering, reduction-

oxidation (redox) homeostasis, and programmed cell death

(apoptosis). Mitochondria are continuously moving throughout

the cell—undergoing fusion, fission, and degradation—to elimi-

nate and replace damaged organelles, and to meet fluctuating

energy needs (Palmer et al., 2011).

Data from flies, rats, mice, monkeys, and humans show that as

tissues age, both the number and activity of mitochondria

decline, compensated by an increase in their overall size (Cho

et al., 2011; Ferguson et al., 2005; Short et al., 2005; Wallace,

2001). Mitochondrial dysfunction is associated with, and poten-

tially contributes to, common aging-related diseases such as

atherosclerosis, obesity-induced type II diabetes, sarcopenia,

and neurodegenerative disorders (Di Lisa et al., 2009; Lin and

Beal, 2006; Wallace, 2001). Underlying processes include a

decline in mitochondrial membrane potential and ATP output,

increased activation of the mitochondrial permeability transition

pore (mPTP), mitochondrial membrane depolarization, and

leakage of mitochondrial matrix solutes into the cytoplasm (Di

Lisa et al., 2001; Hafner et al., 2010; Liu et al., 2011; Wallace,

2001).

In addition to aging and aging-related diseases, considerable

evidence supports a role for mitochondria as mediators of the

benefits of DR in rodents and humans (Cerqueira et al., 2011;

Civitarese et al., 2007; López-Lluch et al., 2006, 2008). In a vari-

ety of species (Guarente, 2008; Johannsen and Ravussin, 2009),

DR increases mitochondrial number and function. A recent rat

study, however, did not observe this change (Hancock et al.,

2011). The sirtuin-1 (SIRT1)-AMPK network, considered a medi-

ator of DR physiology, acts to raise both the number and activity

of mitochondria (Gerhart-Hines et al., 2007), as do DR mimetics

that stimulate SIRT1 or AMPK activity, such as resveratrol (Baur

et al., 2006; Feige et al., 2008; Funk et al., 2010; Lagouge et al.,

2006), SRT1720 (Minor et al., 2011), and metformin (Cantó et al.,

2009; Suwa et al., 2006). In flies and nematodes, changes in

mitochondrial metabolism are known to be necessary (Bahador-

ani et al., 2010; Bishop and Guarente, 2007; Zid et al., 2009) and

sufficient (Bahadorani et al., 2010; Durieux et al., 2011; Rera

et al., 2011) for DR to extend life span.

Mitochondria and Oocyte Competency
Of the many potential mechanisms by which DR benefits

oocytes, one of the more plausible is prevention of abnormal

mitochondrial aggregation and decreased ATP levels that occur

in oocytes of aged females (Selesniemi et al., 2011). Many

studies have proposed a link between insufficient ATP availabil-

ity in eggs and defective chromosomal segregation—an

outcome that probably ties to meiotic spindle abnormalities

(Eichenlaub-Ritter et al., 2004; Schon et al., 2000; Zheng et al.,
2007). Defective spindle formation would result in a reduced

capacity for successful fertilization and the failure of zygotes pro-

duced from energetically compromised eggs to form viable blas-

tocysts (Bentov et al., 2010). Consistent with this idea, disruption

of mitochondrial oxidative phosphorylation in mouse oocytes

results in reduced potential for meiotic maturation and fertiliza-

tion, as well as decreased preimplantation embryonic develop-

mental potential (Van Blerkom et al., 1995).

Other studies with mice have demonstrated that failure of

oocytes to adequately readjust ATP levels after sperm penetra-

tion disrupts intracellular calcium oscillations (Igarashi et al.,

1997, 2005), which are critical for immediate postfertilization

events that ensure developmental competency of the embryo

(Dumollard et al., 2004; Vitullo and Ozil, 1992). In human eggs,

higher ATP levels have been correlated with a greater potential

for successful embryonic development and implantation (Van

Blerkom et al., 1995). These findings, along with observations

that mitochondria in oocytes of women in their forties frequently

exhibit swelling and abnormal cristae (Müller-Höcker et al.,

1996), collectively support the idea that impaired bioenergetic

capacity in oocytes is a primary contributor to declining egg

and embryo quality with advancing maternal age.

Additional aspects of mitochondrial physiology must be

considered when evaluating a central role for these organelles

in oocyte development, meioticmaturation, fertilization, and pre-

implantation embryonic competency. Obviously, the generation

of ROS during the oxidative phosphorylation steps associated

with ATP production is closely linked to mitochondrial bioener-

getics. In turn, it may be of little surprise that studies of mice

have reported chronic antioxidant treatment throughout adult

life can sustain egg quality in aging females (Tarı́n et al.,

2002a). Unfortunately, the function of other cells and tissues in

the reproductive tract is simultaneously impaired by this

approach, with excessive fetal loss and diminished offspring

numbers noted (Tarı́n et al., 2002b). Accordingly, long-term sys-

temic administration of antioxidants has little, if any, clinical

application for improving human female fertility.

On amore basic level, a striking aspect of mitochondrial phys-

iology that warrants consideration is the amplification of mito-

chondrial numbers as human oocytes develop from their most

immature state containing between 5 and 10 3 103 mitochon-

dria, to mature metaphase II eggs containing 1–5 3 105 or

more mitochondria (Jansen and Burton, 2004; Pikó and Matsu-

moto, 1976). The reasons for this tremendous expansion of

mitochondrial numbers during oocyte maturation are not fully

understood. One belief is that the oocyte is actively preparing

itself for the increased energy demands of successful fertilization

and early cleavage divisions associated with embryonic devel-

opment. This seems reasonable, especially if one considers

that the machinery required for mitochondrial replication is shut

off at themetaphase II egg stage and is not reactivated in the em-

bryo until after the blastocyst implants in the uterinewall (Larsson

et al., 1998). Accordingly, one would expect a steep decline in

mitochondrial numbers as an embryo expands from the one-

cell zygote to a blastocyst containing 100 or more cells, a predic-

tion supported by assessment of mitochondrial DNA (mtDNA)

content during preimplantation embryogenesis (Spikings et al.,

2007; Wai et al., 2008) and mitochondrial numbers per cell in

blastocyst stage embryos (Van Blerkom, 2008).
Cell Metabolism 17, June 4, 2013 ª2013 Elsevier Inc. 841
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It bears mentioning that mtDNA content rather than absolute

numbers of mitochondria, which contain one to ten copies of

mtDNA per organelle, may actually be a more reliable indicator

of the competence of a given oocyte. Past studies have shown

that mtDNA copy numbers in oocytes and early stage embryos

positively correlate with fertilization and developmental poten-

tial, respectively (Santos et al., 2006; Spikings et al., 2006). In

fact, successful embryogenesis has been tied to threshold levels

of mtDNA content per egg at the time of fertilization, with those

oocytes at the low range of this threshold more prone to failed

maturation, reduced fertilization rates, and embryonic develop-

mental arrest (El Shourbagy et al., 2006; Pikó and Taylor, 1987;

Reynier et al., 2001; Santos et al., 2006; Wai et al., 2010). In addi-

tion, studies of porcine oocytes have revealed that suppression

of mtDNA replication during in vitro maturation to the metaphase

II egg stage results in reduced fertilization competence aswell as

preimplantation embryonic developmental arrest, and that the

severity of these outcomes is tightly linked to aminimal threshold

copy number of mtDNA (Spikings et al., 2007).

Another intriguing feature of the oocyte is that its mitochondria

tend to be very small (%1 mm in diameter), with electron-dense

matrices and few cristae. Despite these structural features,

oocyte mitochondria are highly active and produce the majority

of energy needed by the egg and early embryo (Dumollard

et al., 2007; Motta et al., 2000; Van Blerkom et al., 1995). After

fertilization, mitochondria in developing embryos undergo strik-

ing ultrastructural changes. By the time of blastocyst formation,

these organelles have acquired an elongated appearance with

complex cristae and less electron-dense matrices, more typical

of mitochondria in somatic cells (Sathananthan and Trounson,

2000; Van Blerkom, 1989a, 1989b, 1993; Van Blerkom and

Motta, 1979; Van Blerkom et al., 1973). The significance of this

mitochondrial remodeling is unclear; however, human embryos

that arrest in vitro often contain mitochondria that have failed

to transform into amore orthodoxmorphology, a step that is pre-

sumably necessary to meet the energy demands of the devel-

oping embryo (Van Blerkom, 1989a).

Finally, mitochondria in oocytes play another critical role in

reproduction: they serve as the source for uniparental inheri-

tance of the mitochondrial genome from one generation to the

next. It is fairly well established that paternal (sperm-derived)

mitochondria are degraded in newly formed embryos within

the first few cleavage divisions, leaving maternally derived mito-

chondria as the sole pool for replication of these organelles in the

embryo and resultant offspring (Cummins, 1998; Giles et al.,

1980; Hutchison et al., 1974; Kaneda et al., 1995; Sutovsky

et al., 2000). Themechanisms underlying this sex-specific selec-

tion against the transmission of paternal mtDNA are not

completely understood. In many species, however, the selection

appears to result from ubiquitination of sperm-derived mito-

chondria, which allows for their subsequent removal from the

embryo (Sutovsky et al., 2004). Equally unclear is why paternal

mtDNA inheritance is actively selected against. One idea is

that it minimizes the transmission of mtDNA mutations that arise

in sperm exposed to ROS during spermatogenesis (Aitken,

1995). Consistent with this idea, sperm mitochondria often har-

bor mtDNA mutations and deletions (Reynier et al., 1998), which

in turn are linked to poor spermmotility and male-factor infertility

(Kao et al., 1995; Ruiz-Pesini et al., 2000; St John et al., 2001).
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Irrespective of the mechanisms that drive uniparental mtDNA

inheritance or the advantages it provides, this process necessi-

tates strict maintenance of mtDNA integrity in the female germ-

line. Otherwise, a cumulative mutational disaster could occur,

as mitochondria from the oocyte are used to seed the new

embryo in each successive generation (Jansen and de Boer,

1998). To ensure asexual maintenance of mitochondrial genome

integrity, a multistep process has been proposed that involves

an initial quantitative restriction on mtDNA genotypes that will

potentially be passed (the so-called ‘‘mitochondrial bottleneck’’),

followed by a period of tremendous amplification. Then, under

pressure to achieve improved fitness in subsequent generations,

a competitive mass selection occurs (Jansen, 2000). The quan-

titative restriction event takes place in the developing embryo

as mtDNA content in the embryo, and mitochondrial numbers

per cell, decline exponentially from peak levels at the fertilized

egg stage to extremely low levels in the implanting blastocyst.

In fact, embryonic primordial germ cells contain ten or fewer

mitochondria per cell, in stark contrast to the hundreds of thou-

sands of mitochondria present in each egg (Jansen and Burton,

2004; Pikó and Matsumoto, 1976). This latter point exemplifies

the importance of the second step in the process of mtDNA

selection, which entails a period of tremendous amplification

with minimal selection that presumably allows for some degree

of genetic drift (Brown et al., 2001). The third and final stage of

the process—competitive mass selection—is the least estab-

lished in terms of actual mechanism.

One theory is that constant culling of oocyte-containing folli-

cles by atresia serves to identify a given follicle that will release

an egg at ovulation with the highest degree of mtDNA integrity

(Jansen and Burton, 2004; Jansen and de Boer, 1998). Although

this is an attractive proposal, direct evidence for it is currently

lacking. However, the existence of a tightly controlled surveil-

lance system for ensuringmaternal mtDNA integrity is supported

by observations that mtDNA deletions are usually not trans-

mitted to the offspring of clinically symptomatic women. In addi-

tion, the common DmtDNA4977 deletion is greater in unfertilized

human eggs than in early cleavage stage embryos (Brenner

et al., 1998; Perez et al., 2000), and two-thirds of degenerated

or arrested oocytes carry the DmtDNA4977 deletion (Duran

et al., 2011).

Energetics, Aging, and Female Fertility: Connecting
the Dots
Direct causative relationships between impaired mitochondrial

function, suboptimal bioenergetic capacity, and reduced devel-

opmental competency of eggs in aging females have not yet

been unequivocally established. Nevertheless, evidence for

such relationships continues to solidify, as does the link between

longevity pathways and fertility. Studies of hamsters and mice

have reported that maternal aging is associated with significant

decreases in ATP content and mitochondrial numbers in

oocytes. In addition, the demonstration that DR instituted during

adulthood not only benefits multiple parameters of egg quality in

aging female mice (Selesniemi et al., 2011) but also extends the

natural reproductive period (Selesniemi et al., 2008) argues

strongly that the same signaling pathways mediating responses

of somatic cells to DR are also at work in the female germline.

Further supporting this conclusion are recent data showing
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that sirtuins are expressed in rat and mouse oocytes (Kawamura

et al., 2010; Luo et al., 2012), that DR increases the expression of

sirtuins in the rat ovary (Luo et al., 2012), and that the develop-

ment of embryos arising from oocytes lacking mitochondrial-

associated sirtuin-3 is significantly impaired (Kawamura et al.,

2010).

Although progress has been made in connecting the dots, we

are still far from understanding or manipulating the bioenergetic

and longevity pathways that impact female fertility. Thus, the

experimental and clinical data currently in hand can be viewed

as opening chapters in a saga that may one day offer unprece-

dented opportunities for the clinical management of egg quality,

fertilization, and preimplantation embryogenesis in human assis-

ted reproduction. Looking ahead, we will conclude with two

examples of potential future chapters that integrate many of

the concepts discussed herein.

Autologous Germline Mitochondrial Energy Transfer
and Egg Quality
In the mid to late 1990s, 27 female subjects who had repeatedly

failed to become pregnant following assisted reproduction due

to poor embryo quality and implantation failure participated in

a trial of a new fertility protocol termed ooplasmic transfer (Barritt

et al., 2001; Brenner et al., 2000; Cohen et al., 1997, 1998; Har-

vey et al., 2007). Under the assumption that the recurrent failure

of these women to achieve pregnancies was due, at least in part,

to an age-related impairment in the quality of their eggs, their

next cycle of IVF included transfer of a small amount of cyto-

plasm extracted from young donor oocytes (viz., obtained from

different women) into their oocytes. Thirty attempts of ooplasmic
transfer were performed by the first clinic, resulting in 13 live

births (17 babies total, comprised of 11 singletons, 1 set of twins,

and 1 set of quadruplets) and 1 first trimester miscarriage (45, XO

karyotype). The twin pregnancy resulted in birth of a female with

a normal karyotype (46, XX) and a chromosomally abnormal

sibling (45, XO). Of the babies born, the rate of chromosomal

abnormalities (1 of 17, or 5.9%) was within the normal range of

IVF outcomes for women at the ages tested in that region of

the United States (Harvey et al., 2007). The high pregnancy suc-

cess rates achieved in this relatively small cohort of patients,

who had repeatedly failed all prior IVF attempts, raised hopes

that human assisted reproduction would finally have a new tool

in its arsenal to combat infertility associated with poor egg and

embryo quality.

Other clinical sites were quick to join in (Lanzendorf et al.,

1999); however, enthusiasm for widespread adoption of ooplas-

mic transfer as a clinical protocol was short-lived, in part

because of concerns about mitochondrial heteroplasmy (Barritt

et al., 2001; Brenner et al., 2000). Although the procedure

involved transfer of cytoplasm from donor eggs, and not purified

mitochondria, it is widely believed that the benefit to recipient

eggs came from the transfer of active donor mitochondria (Ben-

tov et al., 2011; Van Blerkom et al., 1998). This conclusion has

been substantiated by animal studies (El Shourbagy et al.,

2006; Yi et al., 2007) and, to a degree, by follow-up studies of

the children born through ooplasmic transfer who carry mito-

chondria from both the biological mother and the egg donor

(Brenner et al., 2000; Barritt et al., 2001). At present, the negative

health impact, if any, of heteroplasmy in these children is

unknown, but animal models indicate there may be at least
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Figure 3. Identification and Utility of Female Germ Cell Mitochondrial Boosters
Culture of human OSCs, which are natural precursor cells for human oocytes, allows high-throughput screening of biological and pharmacological entities for
their ability to increase various aspects of mitochondrial dynamics, including mtDNA content, mitochondrial membrane potential, and ATP-generating capacity.
Positive hits can be further tested using a combination of in vitro and in vivo assays to assess if aging-related impairments in egg quality, embryonic devel-
opmental competence, and fertility can be minimized.
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some cause for concern. For example, studies in mice show that

mitochondrial heteroplasmy can produce an adult-onset pheno-

type consistent with metabolic syndrome (Acton et al., 2007).

Other work has shown that heteroplasmy can also negatively

impact cognitive function (Sharpley et al., 2012).

Additionally, oocyte mitochondria contain genetic material

that is distinct from nuclear genes contributed by the biological

mother and father. Accordingly, the children conceived following

this procedure possess genetic material derived from not two

but three distinct sources: the biological mother, the biological

father, and the egg donor. Aside from an array of potential ethical

and legal issues associated with heterologous ooplasmic trans-

fer, the U.S. Food and Drug Administration (FDA) viewed this

procedure as genetic manipulation of human germ cells for the

purpose of generating embryos. Thus, in 2001 the FDA ruled

that heterologous ooplasmic transfer could no longer be used

for human assisted reproduction unless the procedure was sub-

mitted for review and testing under Investigational New Drug

(IND) guidelines (Zoon, 2001).While use of autologousmitochon-

dria from a woman’s own somatic cells would avoid mito-

chondrial heteroplasmy, somatic mitochondria are prone to

aging-related mtDNA damage resulting in heritable mutations.

Introduction of these mitochondria into oocytes at fertilization

could lead to propagation of mutant mitochondria in newly
844 Cell Metabolism 17, June 4, 2013 ª2013 Elsevier Inc.
formed embryos and resultant offspring, a risk too great to

consider for clinical protocol development.

However, the discovery that OSCs are present in ovaries not

just of adult mice but also of reproductive age women (Johnson

et al., 2004; White et al., 2012; Zou et al., 2009) has opened pros-

pects for bringing a modified version of ooplasmic transfer into

clinical practice. Termed AUGMENT (for autologous germline

mitochondrial energy transfer; Woods et al., 2013), this proce-

dure would provide an autologous germline-derived source of

cytoplasmic extract or purified mitochondria for the bioenergetic

reinvigoration of eggs whose capacity for fertilization and

embryogenesis has been compromised by aging (Figure 2).

The use of OSCs as a source of mitochondria for enhancing

egg and embryo quality is attractive for reasons other than

simply being a patient-matched source of these important en-

ergy-boosting organelles. First, since OSCs function as natural

precursor cells for the generation of oocytes (White et al.,

2012; Zou et al., 2009), if mitochondria in the female germline

are indeedmanaged quite differently from those in somatic cells,

the use of OSCs as a source of mitochondria for rejuvenation of

eggs would be compatible with the natural processes of surveil-

lance and selection that govern maternal mitochondrial transfer

from one generation to the next. Second, OSC mitochondria,

being derived from slowly dividing stem/progenitor cells, are
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more likely to be free of cumulative damage to their genomes

than mitochondria in patient-matched somatic cells. Preliminary

observations from studies of human OSCs support this conten-

tion (Woods and Tilly, 2013). Perhaps equally important are

observations that the bioenergetic potential of mitochondria in

human OSCs, as measured by ATP generation over time, far

exceeds that of equivalent numbers of mitochondria isolated

from several other human cell lineages, including embryonic

and adult somatic stem cells (Woods and Tilly, 2013). Finally,

the cell lineage-specific transfer of key nuclear-encoded pro-

teins into mitochondria would be better preserved through the

use of OSCs versus nongermline cells. Given all of these consid-

erations, along with the preclinical and clinical proof-of-concept

data available from prior studies discussed above, the use of

AUGMENT for safely improving human assisted reproduction

without the ethical, legal, and biological issues surrounding het-

erologous ooplasmic transfer is an exciting prospect to consider.

Mitochondrial Activators to Boost Egg Quality
Another potential approach to overcoming energy deficits in

eggs is to identify new biological and chemical entities that

enhance mitochondrial numbers or the efficacy of mitochondrial

ATP generation in oocytes. The development of such com-

pounds that safely reproduce the striking benefits of DR on

egg quality in aging females (Selesniemi et al., 2011) could repre-

sent a significant leap forward in human assisted reproduction.
The main hurdle faced is the extreme rarity of oocytes for con-

ducting large-scale mitochondrial screening assays, coupled

with the cost and complexities of performing aging studies

with mice. However, the availability of mouse and human

OSCs, which can be maintained and expanded ex vivo to

generate essentially unlimited numbers of cells for screening

(White et al., 2012), may provide a solution (Figure 3). Because

these cells function as natural oocyte progenitors, it is reason-

able to predict that compounds identified as mitochondrial

boosters in OSCs would exhibit similar properties in oocytes.

In addition, use of OSCs as a screening platform offers an oppor-

tunity to map molecular events through which a given com-

pound, or family of compounds, boosts mitochondrial numbers

or activity in female germ cells. Such studies would further

benefit by generating OSC lines that carry desired manipulations

of key components of the longevity regulatory pathways dis-

cussed earlier (Figure 1). Establishment of these types of female

germ cell lines could facilitate identification of control points that

coordinate bioenergetic potential in oocytes. In turn, this may

lead to a more directed approach for identifying potential lead

compounds that could be tested in aging female mice for their

ability to improve egg quality.

There is ample reason to believe that IVF outcomes for

patients with energetically compromised eggs or embryos would

benefit from mitochondrial activators (Bentov et al., 2010; Van

Blerkom, 2011), similar to the energetic boost provided to eggs
Cell Metabolism 17, June 4, 2013 ª2013 Elsevier Inc. 845
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by direct mitochondrial transfer. However, mitochondrial activa-

tors may also prove valuable as in vivo agents to ensure that

oocytes ultimately released from the ovaries at ovulation or

retrieved from IVF patients after ovarian stimulation are fully pre-

pared, from a bioenergetic perspective, to undergo the final

maturational steps needed for full developmental competency.

One example of their potential utility would be to combat the

increase in oocyte aneuploidy associated with maternal repro-

ductive aging, a process that, at least in mice, has been tied to

mitochondrial dysfunction and energy deficits in the ovulated

eggs (Selesniemi et al., 2011).

Mechanistically, the formation andmaintenance of the meiotic

spindle is an energy-driven process that is highly susceptible to

failure in oocytes of aged females (Figure 4). The resultant chro-

mosomal misalignment or unequal chromosomal segregation

produces an egg with too few or too many chromosomes, lead-

ing to genetic errors that can be passed to resultant embryos af-

ter fertilization (Gaulden, 1992). Clinically, maternal aging-related

increases in egg and embryo aneuploidy are tied directly to par-

allel increases in trisomic conceptions, implantation failures, and

miscarriages (Benadiva et al., 1996; Hassold and Chiu, 1985;

Munné and Cohen, 1998; Munné et al., 1995). Identification of

orally active compounds that boost the energetic capacity of oo-

cytes prior to ovulation or retrieval for IVFmay therefore provide a

novel strategy to maximize the chances of obtaining eggs from

females at advanced reproductive ages that are free fromgenetic

errors and other problems that contribute to postfertilization em-

bryonic failure. In turn, such strategies might also mitigate the

maternal aging-related increase in risk for miscarriage and birth

defects, including Down syndrome.
ACKNOWLEDGMENTS

Work conducted by the lab of J.L.T. was supported by a Method to Extend
Research in Time (MERIT) Award from the National Institute on Aging (NIH
R37-AG012279), the Glenn Foundation for Medical Research, and the Henry
and Vivian Rosenberg Philanthropic Fund. Work conducted by the lab of
D.A.S. was supported by NIH grant R01-AG028730, the Ellison Medical Foun-
dation, the Glenn Foundation for Medical Research, the Juvenile Diabetes
Foundation, the UnitedMitochondrial Disease Foundation, and a philanthropic
gift from R. Shulsky-David. The authors thank D.C. Woods for helpful discus-
sions and citation of work from preliminary studies conducted with J.L.T. Inter-
est is declared by J.L.T. in intellectual property described in U.S. Patent
7,955,846, related to work discussed herein; J.L.T. and D.A.S. are cofounders
of OvaScience, Inc. (Cambridge, MA); D.A.S. is a cofounder of and con-
sultant to Cohbar (Washington, DC) and Sirtris, a GlaxoSmithKline company
(Cambridge, MA).
REFERENCES

Acton, B.M., Lai, I., Shang, X., Jurisicova, A., and Casper, R.F. (2007). Neutral
mitochondrial heteroplasmy alters physiological function in mice. Biol.
Reprod. 77, 569–576.

Aitken, R.J. (1995). Free radicals, lipid peroxidation and sperm function.
Reprod. Fertil. Dev. 7, 659–668.

Angelo, G., and Van Gilst, M.R. (2009). Starvation protects germline stem cells
and extends reproductive longevity in C. elegans. Science 326, 954–958.

Bahadorani, S., Cho, J., Lo, T., Contreras, H., Lawal, H.O., Krantz, D.E., Brad-
ley, T.J., and Walker, D.W. (2010). Neuronal expression of a single-subunit
yeast NADH-ubiquinone oxidoreductase (Ndi1) extends Drosophila lifespan.
Aging Cell 9, 191–202.
846 Cell Metabolism 17, June 4, 2013 ª2013 Elsevier Inc.
Barritt, J.A., Brenner, C.A., Malter, H.E., and Cohen, J. (2001). Mitochondria in
human offspring derived from ooplasmic transplantation. Hum. Reprod. 16,
513–516.

Bates, G.W. (1985). Body weight control practice as a cause of infertility. Clin.
Obstet. Gynecol. 28, 632–644.

Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A.,
Prabhu, V.V., Allard, J.S., Lopez-Lluch, G., Lewis, K., et al. (2006). Resveratrol
improves health and survival of mice on a high-calorie diet. Nature 444,
337–342.

Benadiva, C.A., Kligman, I., and Munné, S. (1996). Aneuploidy 16 in human
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chondria and vascular pathology. Pharmacol. Rep. 61, 123–130.

Dumollard, R., Marangos, P., Fitzharris, G., Swann, K., Duchen, M., and Car-
roll, J. (2004). Sperm-triggered [Ca2+] oscillations and Ca2+ homeostasis in the
mouse egg have an absolute requirement for mitochondrial ATP production.
Development 131, 3057–3067.

Dumollard, R., Duchen, M., and Carroll, J. (2007). The role of mitochondrial
function in the oocyte and embryo. Curr. Top. Dev. Biol. 77, 21–49.

Duran, H.E., Simsek-Duran, F., Oehninger, S.C., Jones, H.W., Jr., and Castora,
F.J. (2011). The association of reproductive senescence with mitochondrial
quantity, function, and DNA integrity in human oocytes at different stages of
maturation. Fertil. Steril. 96, 384–388.

Durieux, J., Wolff, S., and Dillin, A. (2011). The cell-non-autonomous nature of
electron transport chain-mediated longevity. Cell 144, 79–91.

Eichenlaub-Ritter, U., Vogt, E., Yin, H., and Gosden, R. (2004). Spindles, mito-
chondria and redox potential in ageing oocytes. Reprod. Biomed. Online 8,
45–58.

El Shourbagy, S.H., Spikings, E.C., Freitas, M., and St John, J.C. (2006). Mito-
chondria directly influence fertilisation outcome in the pig. Reproduction 131,
233–245.

Faddy, M.J., Gosden, R.G., Gougeon, A., Richardson, S.J., and Nelson, J.F.
(1992). Accelerated disappearance of ovarian follicles in mid-life: implications
for forecasting menopause. Hum. Reprod. 7, 1342–1346.

Feige, J.N., Lagouge, M., Canto, C., Strehle, A., Houten, S.M., Milne, J.C.,
Lambert, P.D., Mataki, C., Elliott, P.J., and Auwerx, J. (2008). Specific SIRT1
activation mimics low energy levels and protects against diet-induced meta-
bolic disorders by enhancing fat oxidation. Cell Metab. 8, 347–358.

Ferguson, M., Mockett, R.J., Shen, Y., Orr, W.C., and Sohal, R.S. (2005). Age-
associated decline in mitochondrial respiration and electron transport in
Drosophila melanogaster. Biochem. J. 390, 501–511.

Flatt, T., Min, K.J., D’Alterio, C., Villa-Cuesta, E., Cumbers, J., Lehmann, R.,
Jones, D.L., and Tatar, M. (2008). Drosophila germ-line modulation of insulin
signaling and lifespan. Proc. Natl. Acad. Sci. USA 105, 6368–6373.

Funk, J.A., Odejinmi, S., and Schnellmann, R.G. (2010). SRT1720 induces
mitochondrial biogenesis and rescues mitochondrial function after oxidant
injury in renal proximal tubule cells. J. Pharmacol. Exp. Ther. 333, 593–601.

Gaulden, M.E. (1992). Maternal age effect: the enigma of Down syndrome and
other trisomic conditions. Mutat. Res. 296, 69–88.

Gerhart-Hines, Z., Rodgers, J.T., Bare, O., Lerin, C., Kim, S.H., Mostoslavsky,
R., Alt, F.W., Wu, Z., and Puigserver, P. (2007). Metabolic control of muscle
mitochondrial function and fatty acid oxidation through SIRT1/PGC-1a.
EMBO J. 26, 1913–1923.

Giles, R.E., Blanc, H., Cann, H.M., and Wallace, D.C. (1980). Maternal inheri-
tance of humanmitochondrial DNA. Proc. Natl. Acad. Sci. USA 77, 6715–6719.

Gosden, R.G., Laing, S.C., Felicio, L.S., Nelson, J.F., and Finch, C.E. (1983).
Imminent oocyte exhaustion and reduced follicular recruitment mark the tran-
sition to acyclicity in aging C57BL/6J mice. Biol. Reprod. 28, 255–260.

Gougeon, A. (1996). Regulation of ovarian follicular development in primates:
facts and hypotheses. Endocr. Rev. 17, 121–155.

Grandison, R.C., Piper, M.D., and Partridge, L. (2009). Amino-acid imbalance
explains extension of lifespan by dietary restriction in Drosophila. Nature 462,
1061–1064.

Guarente, L. (2008). Mitochondria—a nexus for aging, calorie restriction, and
sirtuins? Cell 132, 171–176.

Hafner, A.V., Dai, J., Gomes, A.P., Xiao, C.Y., Palmeira, C.M., Rosenzweig, A.,
and Sinclair, D.A. (2010). Regulation of the mPTP by SIRT3-mediated deace-
tylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy.
Aging (Albany NY) 2, 914–923.
Hancock, C.R., Han, D.H., Higashida, K., Kim, S.H., and Holloszy, J.O. (2011).
Does calorie restriction induce mitochondrial biogenesis? A reevaluation.
FASEB J. 25, 785–791.

Harvey, A.J., Gibson, T.C., Quebedeaux, T.M., and Brenner, C.A. (2007).
Impact of assisted reproductive technologies: a mitochondrial perspective
of cytoplasmic transplantation. Curr. Top. Dev. Biol. 77, 229–249.

Hassold, T., and Chiu, D. (1985). Maternal age-specific rates of numerical
chromosome abnormalities with special reference to trisomy. Hum. Genet.
70, 11–17.

Hassold, T., and Hunt, P. (2009). Maternal age and chromosomally abnormal
pregnancies: what we know and what we wish we knew. Curr. Opin. Pediatr.
21, 703–708.

Hsin, H., and Kenyon, C. (1999). Signals from the reproductive system regulate
the lifespan of C. elegans. Nature 399, 362–366.

Hunt, P.A. (1998). The control of mammalian female meiosis: factors that influ-
ence chromosome segregation. J. Assist. Reprod. Genet. 15, 246–252.

Hutchison, C.A., 3rd, Newbold, J.E., Potter, S.S., and Edgell, M.H. (1974).
Maternal inheritance of mammalian mitochondrial DNA. Nature 251, 536–538.

Igarashi, H., Takahashi, E., Hiroi, M., and Doi, K. (1997). Aging-related changes
in calcium oscillations in fertilized mouse oocytes. Mol. Reprod. Dev. 48,
383–390.

Igarashi, H., Takahashi, T., Takahashi, E., Tezuka, N., Nakahara, K., Takaha-
shi, K., and Kurachi, H. (2005). Agedmouse oocytes fail to readjust intracellular
adenosine triphosphates at fertilization. Biol. Reprod. 72, 1256–1261.

Jansen, R.P. (2000). Germline passage of mitochondria: quantitative consider-
ations and possible embryological sequelae. Hum. Reprod. 15(Suppl 2 ),
112–128.

Jansen, R.P., and Burton, G.J. (2004). Mitochondrial dysfunction in reproduc-
tion. Mitochondrion 4, 577–600.

Jansen, R.P., and de Boer, K. (1998). The bottleneck: mitochondrial impera-
tives in oogenesis and ovarian follicular fate. Mol. Cell. Endocrinol. 145, 81–88.

Jasper, H., and Jones, D.L. (2010). Metabolic regulation of stem cell behavior
and implications for aging. Cell Metab. 12, 561–565.

Jiang, J.C., Jaruga, E., Repnevskaya, M.V., and Jazwinski, S.M. (2000). An
intervention resembling caloric restriction prolongs life span and retards aging
in yeast. FASEB J. 14, 2135–2137.

Johannsen, D.L., and Ravussin, E. (2009). The role of mitochondria in health
and disease. Curr. Opin. Pharmacol. 9, 780–786.

Johnson, J., Canning, J., Kaneko, T., Pru, J.K., and Tilly, J.L. (2004). Germline
stem cells and follicular renewal in the postnatal mammalian ovary. Nature
428, 145–150.

Kaneda, H., Hayashi, J., Takahama, S., Taya, C., Lindahl, K.F., and Yonekawa,
H. (1995). Elimination of paternal mitochondrial DNA in intraspecific crosses
during early mouse embryogenesis. Proc. Natl. Acad. Sci. USA 92, 4542–4546.

Kao, S., Chao, H.T., andWei, Y.H. (1995). Mitochondrial deoxyribonucleic acid
4977-bp deletion is associated with diminished fertility and motility of human
sperm. Biol. Reprod. 52, 729–736.

Katewa, S.D., and Kapahi, P. (2011). Role of TOR signaling in aging and related
biological processes in Drosophila melanogaster. Exp. Gerontol. 46, 382–390.

Kawamura, Y., Uchijima, Y., Horike, N., Tonami, K., Nishiyama, K., Amano, T.,
Asano, T., Kurihara, Y., and Kurihara, H. (2010). Sirt3 protects in vitro-fertilized
mouse preimplantation embryos against oxidative stress-induced p53-medi-
ated developmental arrest. J. Clin. Invest. 120, 2817–2828.

Kirilly, D., and Xie, T. (2007). The Drosophila ovary: an active stem cell commu-
nity. Cell Res. 17, 15–25.

Kirkwood, T.B. (1987). Immortality of the germ-line versus disposability of the
soma. Basic Life Sci. 42, 209–218.

Kirkwood, T.B. (2005). Understanding the odd science of aging. Cell 120,
437–447.
Cell Metabolism 17, June 4, 2013 ª2013 Elsevier Inc. 847



Cell Metabolism

Perspective
Kirkwood, T.B., and Holliday, R. (1979). The evolution of ageing and longevity.
Proc. R. Soc. Lond. B Biol. Sci. 205, 531–546.

Klar, A.J., Fogel, S., and Macleod, K. (1979). MAR1—a regulator of the HMa
and HMa loci in Saccharomyces cerevisiae. Genetics 93, 37–50.

Klein, J., and Sauer, M.V. (2002). Oocyte donation. Best Pract. Res. Clin.
Obstet. Gynaecol. 16, 277–291.

Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin,
F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., et al. (2006). Resveratrol
improves mitochondrial function and protects against metabolic disease by
activating SIRT1 and PGC-1a. Cell 127, 1109–1122.

Lanzendorf, S.E., Mayer, J.F., Toner, J., Oehninger, S., Saffan, D.S., and
Muasher, S. (1999). Pregnancy following transfer of ooplasm from cryopre-
served-thawed donor oocytes into recipient oocytes. Fertil. Steril. 71,
575–577.

Larsson, N.G., Wang, J., Wilhelmsson, H., Oldfors, A., Rustin, P., Lewandoski,
M., Barsh, G.S., and Clayton, D.A. (1998). Mitochondrial transcription factor A
is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet.
18, 231–236.

Lee, S.E., Sun, S.C., Choi, H.Y., Uhm, S.J., and Kim, N.H. (2012). mTOR is
required for asymmetric division through small GTPases in mouse oocytes.
Mol. Reprod. Dev. 79, 356–366.

Li, J., Kawamura, K., Cheng, Y., Liu, S., Klein, C., Liu, S., Duan, E.K., and
Hsueh, A.J. (2010). Activation of dormant ovarian follicles to generate mature
eggs. Proc. Natl. Acad. Sci. USA 107, 10280–10284.

Lin, M.T., and Beal, M.F. (2006). Mitochondrial dysfunction and oxidative
stress in neurodegenerative diseases. Nature 443, 787–795.

Lintern-Moore, S., and Everitt, A.V. (1978). The effect of restricted food intake
on the size and composition of the ovarian follicle population in the Wistar rat.
Biol. Reprod. 19, 688–691.

Liu, L., Zhu, J., Brink, P.R., Glass, P.S., and Rebecchi, M.J. (2011). Age-asso-
ciated differences in the inhibition of mitochondrial permeability transition pore
opening by cyclosporine A. Acta Anaesthesiol. Scand. 55, 622–630.
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