Abstract

In this work we study a system of an integral equation of Volterra type coupled with an original renewal equation. This model arises in the context of cell motility (Oelz et al., 2008 [6]): the integral equation describes the trajectory of a binding site which is connected via transiently remodelling linkages to the substrate and which evolves driven by a given force. The renewal model accounts for the remodelling process of linkages which attach and break with given probabilities.

In the present paper we analyze existence and uniqueness issues for the coupled system of interest and provide a rigorous justification of the asymptotic limit of infinitesimally rapid turnover of linkages.

The renewal model for the age distribution of linkages differs from more classical ones in that it describes competition between population size and birth and because it admits a new and specific Lyapunov functional. On the other side, using a comparison principle which applies to non-convolution linear Volterra kernels and the peculiar transport properties of the linkages, one establishes a convergence result when the turnover parameter ε tends to zero.

© 2011 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article, on étudie un système d’une équation intégrale de Volterra couplée avec une équation de renouvellement d’un type particulier. Ce modèle apparaît dans le contexte de la motilité cellulaire (Oelz et al., 2008 [6]) : l’équation intégrale décrit la trajectoire d’un site d’adhésion connecté au substrat par des liaisons protéiques éphémères et soumis à une force extérieure. Le processus de remodelage des liaisons qui se détruisent ou se créent sur ce site avec une certaine probabilité est décrit par une équation de renouveau.

Ici, on analyse les questions d’existence et d’unicité des solutions de ce système couplé et on donne une justification rigoureuse de la limite asymptotique instantanée du taux de renouvellement des liaisons (noté ε).

Le modèle de renouvellement pour la distribution de l’âge des liaisons diffère des modèles classiques en ce qu’il décrit la compétition entre la taille totale de la population et le taux de naissance. Pour tenir compte de cette dernière difficulté, on a exhibé une nouvelle fonctionnelle de Liapounov. Par ailleurs, en utilisant un principe de comparaison propre aux équations de Volterra à noyau non-convolutif, on établit un résultat de convergence lorsque le paramètre ε tend vers zéro.

© 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

We consider the integral equation:

\[
\begin{cases}
\frac{1}{\varepsilon} \int_0^\infty (z_\varepsilon(t) - z_\varepsilon(t - \varepsilon a)) \rho_\varepsilon(a, t) \, da = f(t), & t \geq 0, \\
z_\varepsilon(t) = z_p(t), & t < 0,
\end{cases}
\]

where \(z_\varepsilon = z_\varepsilon(t) \in \mathbb{R}\) represents the time dependent position of a linkage binding site and the function \(f(t) \in \text{Lip}(\mathbb{R}_+, \mathbb{R})\) represents a given exterior force. The kernel \(\rho_\varepsilon = \rho_\varepsilon(a, t)\) is interpreted as the density of existing linkages to the substrate with respect to the age \(a \geq 0\) and is defined by the renewal model,

\[
\begin{align*}
\varepsilon \frac{\partial}{\partial t} \rho_\varepsilon &+ \frac{\partial}{\partial a} \rho_\varepsilon + \zeta_\varepsilon(a, t) \rho_\varepsilon = 0, & t > 0, \quad a > 0, \\
\rho_\varepsilon(a, 0, t) &= \beta_\varepsilon(t) \left(1 - \int_0^\infty \rho_\varepsilon(\tilde{a}, t) \, d\tilde{a}\right), & t > 0, \\
\rho_\varepsilon(a, t = 0) &= \rho_{I, \varepsilon}(a), & a \geq 0,
\end{align*}
\]

with the kinetic rate functions \(\beta_\varepsilon = \beta_\varepsilon(t) \in \mathbb{R}_+\) and \(\zeta_\varepsilon = \zeta_\varepsilon(a, t) \in \mathbb{R}_+,\) both possibly depending on the dimensionless parameter \(\varepsilon > 0\) which represents the speed of linkage turnover. The two submodels are finally complemented by their respective past and initial data \(z_p \in \text{Lip}(\mathbb{R}_+, 0)\) and \(\rho_{I} \in L^1(\mathbb{R}_+) \cap L^\infty(\mathbb{R}_+).\)

The system (1)–(2) is a model describing the mechanical effect of a set of chemical linkages dynamically remodelled in time. For instance the cross-linking proteins attaching to actin filaments in the lamellipodia of living cells can be modelled in this way. The complete model was introduced and developed in [6]. A reverse coupling between both submodels was established through the possible dependence of \(\beta_\varepsilon,\) the on-rate and \(\zeta_\varepsilon,\) the off-rates on the geometrical configuration of the mechanical structures where the binding sites are located. In the present study, however, we do not take into account a functional dependence of these rates on the function \(z_\varepsilon.\)

The integral equation (1) models a force balance between the time dependent exterior force \(f(t)\) and elastic forces exerted by a population of linkages which connect the moving binding site to binding sites on the substrate. The competing force contributions are visualized in Fig. 1 by arrows.

Linkages are originally established between the moving binding site positioned at \(z_\varepsilon(t)\) and the substrate at the very same position. As a consequence linkages with a given age \(a\) connect the moving binding site to the substrate at position \(z_\varepsilon(t - \varepsilon a)\) where the dimensionless scaling parameter \(\varepsilon\) represents the ratio of the age scale in the \(\rho_\varepsilon\)-model and the time scale in the \(z_\varepsilon\)-model, i.e. small \(\varepsilon\) reflects rapid lifecycle of the linkage proteins.

The model (2) for the age distribution of linkages states that chemical bonds break, respectively detach with a given rate \(\zeta_\varepsilon = \zeta_\varepsilon(a, t) \geq 0.\) Moreover, creation of new chemical bonds with a given rate \(\beta_\varepsilon = \beta_\varepsilon(t) \geq 0\) is proportional to the abundance of empty binding sites which itself is given by the difference of the constant total number of binding sites, in this study scaled to 1, and the number of occupied ones.

Fig. 1. The position of the moving binding site at time \(t\) and time \(t - a_1\) with some of the respective linkages. The scaling parameter is set to \(\varepsilon = 1.\)
The renewal is visualized in Fig. 1. The grey arrows connecting the ball-shaped binding site at position $z(t-a_1)$ to some of its past positions represent the set of existing linkages in the past. When going from time $t-a_1$ to time t, some of the connections break, some of them still exist like the one connecting the point $z(t-a_2)$ on the substrate to the present position of the moving binding site, and some linkages have been established in the meantime like the one connecting the moving binding site to its actual position $z(t)$.

In this sense we consider the above model to be a renewal equation, using intentionally the same nomenclature as for similar and more classical renewal models (see for instance [7] and numerous references therein). In those models the generation of offspring is positively coupled with the abundance of existing individuals and therefore one might call them self-renewal models. However in (2) this dependence is inverse, i.e. the more chemical bonds exist, the smaller is the pool of empty binding sites to generate new linkages. Below we detail what this implies for the models the generation of offspring is positively coupled with the abundance of existing individuals and therefore one might call them self-renewal models. In those models the generation of offspring is positively coupled with the abundance of existing individuals and therefore one might call them self-renewal models. However in (2) this dependence is inverse, i.e. the more chemical bonds exist, the smaller is the pool of empty binding sites to generate new linkages. Below we detail what this implies for the mathematical analysis.

In [5] the asymptotic scaling, which induces rapid turnover of the linkage proteins, was introduced and the formal limit as $\epsilon \to 0$ was computed. In the framework of the present study it is given by:

$$
\begin{aligned}
\mu_{1,0} \partial_t z_0 &= f \quad \text{with } \mu_{1,0}(t) := \int_0^\infty a \rho_0(a,t) \, da, \quad t > 0, \\
z_0(t=0) &= z_I := z_\rho(0),
\end{aligned}
$$

(3)

where the limit distribution ρ_0 is explicitly given by,

$$
\rho_0(a,t) = \frac{1}{\beta_0(t)} + \int_0^\infty \exp(-\int_0^a \zeta_0(\tilde{a},t) \, d\tilde{a}) \, da \exp\left(\int_0^a \zeta_0(\tilde{a},t) \, d\tilde{a}\right),
$$

(4)

being the solution of

$$
\begin{aligned}
\partial_a \rho_0 + \zeta_0(a,t) \rho_0 &= 0, \quad t > 0, \, a > 0, \\
\rho_0(t,a=0) &= \beta_0(t) \left(1 - \int_0^\infty \rho_0(\tilde{a},t) \, d\tilde{a}\right), \quad t > 0.
\end{aligned}
$$

(5)

Combining (3) and (4) we are able to give an explicit expression for the viscosity constant $\mu_{1,0}$, which represents the macroscopic friction effect, in terms of the microscopic rate constants. In the special case where the limit off-rate does not depend on age, $\zeta_0 = \zeta_0(t)$, the viscosity constant is given by:

$$
\mu_{1,0}(t) = \frac{1}{\zeta_0(t)(1 + \zeta_0(t)/\beta(t))}.
$$

(6)

The macroscopic friction law (3) is similar to the Stokes Law. The biological setting we refer to, the relative movement of actin-filaments with respect to crossing filaments and with respect to the substrate, has conceptual parallels with the movement of solids on lubricated surfaces. In the theory of lubrication as well, there exist friction laws depending on the speed of the motion [2].

The existence and uniqueness of continuous solutions to Volterra type integral equations like (1) is a well known fact [1,3] and even an explicit representation formula for the solution in terms of a resolvent function can be given [8,1]. In our analysis, however, we are confronted with the difficulty that these classical results do not imply a priori estimates on the solution and do not provide a control which is uniform with respect to ϵ, our scaling parameter. The renewal model (2) on the other hand is different in nature from those treated in the existing theory. The inverse relation between the population size and the birth term does not allow, again, to apply techniques presented in [4,7] as for instance the Generalized Relative Entropy Method. In this work we therefore develop specific tools to tackle all these peculiarities.

The program of this study is then as follows. First, for fixed ϵ, we prove existence and uniqueness results for the linkage age distribution model (2) in $C(\mathbb{R}_+; L^1(\mathbb{R}_+)) \cap L^\infty(\mathbb{R}_+ \times \mathbb{R}_+)$. In a second step we also give existence and uniqueness results for the integral equation (1). Then we focus on the rigorous study of the asymptotic limit of the system as ϵ tends to zero and we show in a two step manner that $(\rho_\epsilon, z_\epsilon)$ tends in a sense defined below to the solution (ρ_0, z_0) of the formal limit system (3), (5).
Concerning the age distribution model (2) we establish that its homogeneous version admits the Lyapunov functional,

\[
\mathcal{H}[u] := \left\| \int_0^\infty u(a) da \right\| + \int_0^\infty \left| u(a) \right| da,
\]

which satisfies for any nonnegative time \(t \),

\[
\frac{d}{dt} \mathcal{H}\left[\rho_\varepsilon(\cdot, t) - \rho_0(\cdot, t) \right] \leq -\frac{1}{\varepsilon} \xi_{\min} \mathcal{H}\left[\rho_\varepsilon(\cdot, t) - \rho_0(\cdot, t) \right].
\]

The Lyapunov functional does not only yield a result on the convergence in time but also on the convergence as the scaling parameter \(\varepsilon \) tends to zero. The convergence result \(z_\varepsilon \to z_0 \) is then established via a comparison principle satisfied by certain Volterra integral equations.

The framework of our analysis relies on the following hypotheses on the on- and off-rates.

Assumption 1.1. The dimensionless parameter \(\varepsilon > 0 \) is assumed to induce two families of chemical rate functions that satisfy:

(i) For any \(T > 0 \) the function \(\beta_\varepsilon(t) \) is a uniform Lipschitz function in \([0, T] \) and \(\zeta_\varepsilon(a, t) \) is in \(\text{Lip}_t([0, T]; L_\alpha^\infty(\mathbb{R}^+_a)) \), i.e.

\[
\zeta_\varepsilon \in L_\infty((0, T) \times \mathbb{R}^+_a) \quad \text{and} \quad \sup_{a \in \mathbb{R}^+_a, t \in [0, T]} \left| \partial_t \zeta_\varepsilon(a, t) \right| \leq C,
\]

for a constant \(C > 0 \). Moreover we suppose that for a fixed positive age \(a_0 \geq 0 \) the off-rate \(\zeta_\varepsilon(a + t/\varepsilon, t) \) is monotonically increasing on \([a_0, \infty) \).

(ii) For limit functions \(\beta_0 \in L_\infty^t \) and \(\zeta_0 \in L_\infty^t L_\alpha^\infty \) it holds that

\[
\| \zeta_\varepsilon - \zeta_0 \|_{L_\infty^t L_\alpha^\infty} \to 0 \quad \text{and} \quad \| \beta_\varepsilon - \beta_0 \|_{L_\infty^t} \to 0
\]

as \(\varepsilon \to 0 \).

(iii) We also assume that there are upper and lower bounds such that

\[
0 < \zeta_{\min} \leq \zeta_\varepsilon(a, t) \leq \zeta_{\max} \quad \text{and} \quad 0 < \beta_{\min} \leq \beta_\varepsilon(t) \leq \beta_{\max},
\]

for all \(\varepsilon > 0, a \geq 0 \) and \(t > 0 \).

The initial data for the density model (2) satisfies some hypotheses that we sum up here:

Assumption 1.2. The initial condition \(\rho_{I, \varepsilon} \in L_\alpha^\infty(\mathbb{R}^+_a) \) satisfies,

- positivity

\[
\rho_{I, \varepsilon}(a) \geq 0, \quad \text{a.e. in} \, \mathbb{R}^+_a,
\]

moreover, one has also that the total initial population satisfies,

\[
0 < \int_{\mathbb{R}^+_a} \rho_{I, \varepsilon}(a) da < 1;
\]

- boundedness of higher moments,

\[
0 < \int_{\mathbb{R}^+_a} a^p \rho_{I, \varepsilon}(a) da \leq c_p, \quad \text{for} \, p = 1, 2,
\]

where \(c_p \) are positive constants depending only on \(p \).
there exists a constant denoted $A_{\text{max}} > a_0$ s.t.
\[
\int_{a_0}^{\infty} a\rho_{1,\varepsilon}(a)\,da \leq A_{\text{max}} \int_{a_0}^{\infty} \rho_{1,\varepsilon}(a)\,da
\]
uniformly in ε.

Concerning the integral equation (1) we assume:

Assumption 1.3. The time dependent rhs $f = f(t)$ in (1) is a uniform Lipschitz function on $[0, T]$ for any $T > 0$. The past condition z_p belongs to Lip($(-\infty, 0]$), the set of uniform Lipschitz functions on \mathbb{R}_-.

We are then able to claim our main result:

Theorem 1.1. Let Assumptions 1.1, 1.2 and 1.3 hold. For every fixed ε there exists a unique solution of the coupled system (1)–(2), $(z_{\varepsilon}, \rho_{\varepsilon}) \in C^0([0, T]) \times (C^0([0, T] ; L^1(\mathbb{R}_+)) \cap L^\infty(\mathbb{R}_+^2))$. Let (z_0, ρ_0) be the unique solution to the formal limit system (3)–(5), then for every $T > 0$ it holds that

\[
\|z_{\varepsilon} - z_0\|_{C^0([0, T])} + \|\rho_{\varepsilon} - \rho_0\|_{C^0([0, T]; L^1(\mathbb{R}_+))} \to 0
\]
as $\varepsilon \to 0$.

2. Existence and uniqueness

Theorem 2.1. Let Assumptions 1.1 and 1.2 hold, then for every fixed ε there exists a unique solution $\rho_{\varepsilon} \in C^0([0, T] ; L^1(\mathbb{R}_+))$ of the problem (2). It satisfies (2) in the sense of characteristics, namely

\[
\rho_{\varepsilon}(a, t) = \begin{cases}
\beta_{\varepsilon}(t - \varepsilon a)(1 - \int_{\mathbb{R}_+} \rho_{\varepsilon}(\tilde{a}, t - \varepsilon a)\,d\tilde{a}) \exp\left(-\int_{0}^{a} \xi_{\varepsilon}(\tilde{a}, t - \varepsilon(a - \tilde{a}))\,d\tilde{a}\right), & a < t/\varepsilon, \\
\rho_{1,\varepsilon}(a - t/\varepsilon) \exp\left(-\frac{1}{\varepsilon} \int_{0}^{a} \xi_{\varepsilon}(\tilde{a} - \varepsilon(a - \tilde{a}))\,d\tilde{a}\right), & a \geq t/\varepsilon.
\end{cases}
\]

\[
(9)
\]

Proof. The existence proof relies on the Banach–Picard fixed point theorem in $C^0([0, T] ; L^1(\mathbb{R}_+))$. Indeed for a given function $m \in C^0([0, T]; L^1(\mathbb{R}_+))$ we define $n := T(m)$ as

\[
n(a, t) := \begin{cases}
\beta_{\varepsilon}(t - \varepsilon a)(1 - \int_{\mathbb{R}_+} m(\tilde{a}, t - \varepsilon a)\,d\tilde{a}) \exp\left(-\int_{0}^{a} \xi_{\varepsilon}(\tilde{a}, t - \varepsilon(a - \tilde{a}))\,d\tilde{a}\right), & a < t/\varepsilon, \\
\rho_{1,\varepsilon}(a - t/\varepsilon) \exp\left(-\frac{1}{\varepsilon} \int_{0}^{a} \xi_{\varepsilon}(\tilde{a} - \varepsilon(a - \tilde{a}))\,d\tilde{a}\right), & a \geq t/\varepsilon.
\end{cases}
\]

For regular data n would solve,

\[
\begin{align*}
\varepsilon \partial_t n + \partial_a n + \xi n &= 0, & a > 0, & t \in (0, T], \\
n(a = 0, t) &= \beta_{\varepsilon}(t) \left(1 - \int_{\mathbb{R}_+} m(\tilde{a}, t)\,d\tilde{a}\right), & t > 0, \\
n(a, t = 0) &= \rho_{1,\varepsilon}(a), & a \geq 0;
\end{align*}
\]

hypotheses on $\rho_{1,\varepsilon}, \beta_{\varepsilon}$ and ξ_{ε} imply that T is indeed an endomorphism of $C^0([0, T]; L^1(\mathbb{R}_+))$. It is also a contraction for a time T small enough since it holds that

\[
\|n_2 - n_1\|_{C^0([0, T]; L^1(\mathbb{R}_+))} \leq \frac{\beta_{\text{max}} T}{\varepsilon} \|m_2 - m_1\|_{C^0([0, T]; L^1(\mathbb{R}_+))},
\]

where $n_i := T(m_i)$ for $i = 1, 2$. Thus there exists a unique fixed point in $C^0([0, T]; L^1(\mathbb{R}_+))$ by the Banach–Picard fixed point theorem if $T_0 < \varepsilon/\beta_{\text{max}}$. As this timespan is fixed the result can be extended to $[T_0, 2T_0], [2T_0, 3T_0]$ etc., giving existence and uniqueness in $C^0(\mathbb{R}_+, L^1(\mathbb{R}_+))$ of ρ_{ε} such that $\rho_{\varepsilon} = T(\rho_{\varepsilon})$, which is exactly (9). \(\square\)
Lemma 2.1. Let ρ_ε be the unique solution of problem (2) according to Theorem 2.1, then it satisfies a weak formulation of this problem, namely

$$
\begin{align*}
&\int_{\mathbb{R}_+}^T \int_0^T \rho_\varepsilon(a, t)(\varepsilon \partial_t \varphi + \partial_a \varphi + \zeta_\varepsilon \varphi) \, dt \, da - \varepsilon \int_{\mathbb{R}_+}^T \rho_\varepsilon(a, t)\varphi(a, t = T) \, da \\
+ &\int_{\mathbb{R}_+}^T \rho_\varepsilon(a = 0, t)\varphi(0, t) \, dt + \varepsilon \int_{\mathbb{R}_+}^T \rho_{1, \varepsilon}(a)\varphi(a, t = 0) \, da = 0,
\end{align*}
$$

for every $T > 0$ and every test function $\varphi \in C^\infty(\mathbb{R}^2_+) \cap L^\infty(\mathbb{R}^2_+)$.

Proof. Suppose that ρ_ε satisfies (9). We set:

$$
J := \int_{\mathbb{R}_+}^T \int_0^T \rho_\varepsilon(a, t)(\varepsilon \partial_t \varphi + \partial_a \varphi) \, dt \, da.
$$

Performing the change of variables $x = (a - t/\varepsilon)/2, y = (\varepsilon a + t)/2$, one transforms $\mathbb{R}_+ \times (0, T)$ into $\Omega = \{(x, y)\} = \Omega_1 \cup \Omega_2$, where $\Omega_1 := \{ -T/(2\varepsilon), 0[\times] - \varepsilon x, \varepsilon x + T/2 \}$ and $\Omega_2 := \{ 0; \infty[\times] \varepsilon x, \varepsilon x + T/2 \}$. Setting $\tilde{\varphi}(x, y) := \varphi(a, t)$ one has then that

$$
\varepsilon \partial_t \varphi + \partial_a \varphi = \varepsilon \partial_y \tilde{\varphi},
$$

and

$$
J = \int_{\Omega_1} \rho_\varepsilon \varepsilon \partial_y \tilde{\varphi} \, dy \, dx + \int_{\Omega_2} \rho_\varepsilon \varepsilon \partial_y \tilde{\varphi} \, dy \, dx =: I_1 + I_2.
$$

We treat each term separately because they correspond to the two cases of Duhamel’s formula:

$$
I_1 = \int_{\Omega_1} \int_{-\frac{T}{2\varepsilon}}^0 \rho_\varepsilon(0, -\varepsilon x)g(x, y)\varepsilon \partial_y \tilde{\varphi}(x, y) \, dy \, dx.
$$

The function $g(x, y) := \exp(-\int_0^{x+\frac{T}{2\varepsilon}} \xi_\varepsilon(\tilde{\alpha}, \varepsilon(\tilde{a} - 2x)) \, d\tilde{a})$ is in $H^1_y([-\varepsilon x, \varepsilon x + T/2])$ since $\xi_\varepsilon \in L^\infty_{a,t}$ and it holds that $\tilde{\varphi}$ is $C^\infty \subset H^1_x$. Hence the integration by parts is well defined,

$$
I_1 = \int_{\Omega_1} \int_{-\frac{T}{2\varepsilon}}^0 \rho_\varepsilon(0, -\varepsilon x) \left\{ \varepsilon \left[g(x, y)\tilde{\varphi} \right]_{y = -\varepsilon x}^{y = \varepsilon x + T/2} - \int_{-\frac{T}{2\varepsilon}}^{\varepsilon x + T/2} \xi_\varepsilon \left(x + \frac{y}{\varepsilon}, y - \varepsilon x \right) g(x, y)\tilde{\varphi}(x, y) \, dy \right\} \, dx
$$

$$
= \varepsilon \int_{\Omega_1} \int_{-\frac{T}{2\varepsilon}}^0 \rho_\varepsilon(0, -\varepsilon x) \left\{ \tilde{\varphi}(x, \varepsilon x + T/2)g(x, \varepsilon x + T/2) - \tilde{\varphi}(x, -\varepsilon x) \right\} \, dx - \int_{\Omega_1} \xi_\varepsilon \rho_\varepsilon \tilde{\varphi} \, dy \, dx
$$

$$
= \int_{\Omega_1} \int_{-\frac{T}{2\varepsilon}}^0 \rho_\varepsilon(0, -\varepsilon x) \left\{ \tilde{\varphi}(x, \varepsilon x + T/2)g(x, \varepsilon x + T/2) - \tilde{\varphi}(x, -\varepsilon x) \right\} \, dx - \int_{\Omega_1} \xi_\varepsilon \rho_\varepsilon \tilde{\varphi} \, dy \, dx
$$

and similarly one gets the complementary result for I_2, which ends the proof. □

In the following two lemmas we prove bounds on the moments of ρ_ε which we denote by:
\[\mu_{p,\varepsilon}(t) := \int_{\mathbb{R}^+} a^p \rho \varepsilon(a, t) \, da, \quad \text{where} \ p = 1, 2. \]

Lemma 2.2. Let Assumptions 1.1 and 1.2 hold, then the unique solution \(\rho \varepsilon \in C^0(\mathbb{R}^+; L^1(\mathbb{R}^+)) \cap L^\infty(\mathbb{R}^+_+) \) of the problem (2) from Theorem 2.1 satisfies:

\[\rho \varepsilon(a, t) \geq 0 \quad \text{a.e. in} \ \mathbb{R}^+_+, \quad \text{and} \quad \mu_{0, \text{min}} \leq \mu_{0, \varepsilon}(t) < 1, \ \forall t \in \mathbb{R}^+, \text{where} \ \mu_{0, \text{min}} := \min\left(\mu_{0, \varepsilon}(0), \frac{\beta_{\text{min}}}{\beta_{\text{min}} + \zeta_{\text{max}}} \right). \]

Proof. First, we show that \(\mu_{0, \varepsilon}(t) < 1 \) and \(\rho \varepsilon \geq 0 \) for all times. We start with initial data which satisfies both properties, hence \(\mu_{0, \varepsilon}(0) = \| \rho \varepsilon(., t) \|_{L^1} < 1 \). Due to the continuity of \(\| \rho \varepsilon \|_{L^1} \) it holds that \(\mu_{0, \varepsilon}(t) \leq \| \rho \varepsilon(., t) \|_{L^1} < 1 \) at least on a time interval \([0, T]\) small enough. On that time interval it also holds that \(\rho \varepsilon \geq 0 \) for all \(a \geq 0 \), since due to (9) its value is obtained by transport either from the nonnegative initial data \(\rho_{I, \varepsilon} \) or from the positive boundary.

Assume that \(\mu_{0, \varepsilon}(T) = 1 \). We use that \(\rho \varepsilon \) satisfies the weak formulation (10). Choose \(\varphi(a, t) = \varphi(t) \geq 0 \) to obtain,

\[\int_0^T \left[-\mu_{0, \varepsilon} \varepsilon \partial_t \varphi + \varphi(t) \int_0^\infty \zeta \varepsilon \rho \varepsilon \, da - \varphi(t) \rho \varepsilon(0, t) \right] \, dt + \varepsilon \left(\mu_{0, \varepsilon}(T) \varphi(T) - \mu_{0, \varepsilon}(0) \varphi(0) \right) = 0. \quad (12) \]

This implies

\[\varepsilon \left\{ -\varphi(T)(1 - \mu_{0, \varepsilon}(T)) + \varphi(0)(1 - \mu_{0, \varepsilon}(0)) \right\} \leq \int_0^T \left(-\varepsilon \partial_t \varphi + \varphi(t) \beta \varepsilon(t) \right)(1 - \mu_{0, \varepsilon}(t)) \, dt \]

\[\leq \int_0^T \left(-\varepsilon \partial_t \varphi + \varphi(t) \beta_{\text{max}} \right)(1 - \mu_{0, \varepsilon}(t)) \, dt. \]

Set \(\varphi = \exp(t\beta_{\text{max}}/\varepsilon) \) to obtain that

\[(1 - \mu_{0, \varepsilon}(T)) \geq \exp(-T\beta_{\text{max}}/\varepsilon)(1 - \mu_{0, \varepsilon}(0)) > 0, \]

contradicting the assumption \(\mu_{0, \varepsilon}(T) = 1 \). Duhamel’s principle formulated in (9) then directly implies:

\[0 \leq \rho \varepsilon(a, t) \leq \max(\beta_{\text{max}}, \| \rho_{I, \varepsilon} \|_{L^1}), \ \text{a.e.} \ (a, t) \in (\mathbb{R}^+)^2. \]

In order to obtain a lower bound we set \(\tilde{\mu}(t) := \mu_{0, \varepsilon}(t) - \mu_{0, \text{min}} \) with \(\mu_{0, \text{min}} \) as defined in (11). According to the same definition, we start with an initial datum which satisfies \(\mu_{0, \varepsilon}(0) := \mu_{I, \varepsilon} \geq \mu_{0, \text{min}} \). The formal computation yields \(\varepsilon \partial_t \tilde{\mu} \geq -\frac{\beta_{\text{min}}}{\mu_{0, \text{min}}} \tilde{\mu} \) which we can confirm in the same way as the upper bound: observe that \(\tilde{\mu} \geq 0 \) on a small interval \([0, T]\) due to the continuity of \(\mu_{0, \varepsilon} \). As above we assume that \(\tilde{\mu}(T) = 0 \) and obtain

\[\varepsilon \left((\mu_{0, \varepsilon}(T) - \mu_{0, \text{min}}) \varphi(T) - (\mu_{0, \varepsilon}(0) - \mu_{0, \text{min}}) \varphi(0) \right) \]

\[= \int_0^T \left[(\mu_{0, \varepsilon} - \mu_{0, \text{min}}) \varepsilon \partial_t \varphi - \varphi(t) \int_0^\infty \zeta \varepsilon \rho \varepsilon \, da + \varphi(t) \beta(1 - \mu_{0, \varepsilon}) \right] \, dt \]

\[\geq \int_0^T \left[(\mu_{0, \varepsilon} - \mu_{0, \text{min}}) \varepsilon \partial_t \varphi - \varphi(t) \zeta_{\text{max}} \mu_{0, \varepsilon} + \varphi(t) \beta_{\text{min}}(1 - \mu_{0, \varepsilon}) \right] \, dt \]

\[= \int_0^T \left[(\mu_{0, \varepsilon} - \mu_{0, \text{min}})(\varepsilon \partial_t \varphi - \varphi(t)(\zeta_{\text{max}} + \beta_{\text{min}}) + \varphi(t)(\beta_{\text{min}} - \mu_{0, \text{min}}(\beta_{\text{min}} + \zeta_{\text{max}})) \right] \, dt \geq 0. \]

By choosing \(\varphi = \exp(t(\zeta_{\text{max}} + \beta_{\text{min}})/\varepsilon) \) and using the definition of \(\mu_{0, \text{min}} \), we conclude that
\[
(\mu_{0,\varepsilon}(T) - \mu_{0,\text{min}}) \geq \exp(-T(\zeta_{\text{max}} + \beta_{\text{min}})/\varepsilon)(\mu_{0,\varepsilon}(0) - \mu_{0,\text{min}}) > 0,
\]
which contradicts the assumption \(\mu_{0,\varepsilon}(T) = \mu_{0,\text{min}}\) and thus finishes the proof of the lower bound in (11).

In a more straightforward manner one gets for higher moments as well.

Lemma 2.3. Let Assumption 1.2 hold, then

\[\mu_{p,\text{min}} < \mu_{p,\varepsilon}(t) \leq k \quad \text{for} \quad p = 1, 2, \text{where} \quad \mu_{p,\text{min}} := \min\left(\mu_{p,\varepsilon}(0), \frac{\mu_{p-1,\text{min}}}{\zeta_{\text{max}}}\right),\]

and the generic constant \(k\) is independent of both time and \(\varepsilon\).

Proof. The proof is made by induction. The case of the zeroth order moment is already treated as \(\mu_{0,\varepsilon}\) which is uniformly bounded by 1. We set \(q_{\varepsilon,k}(a, t) = a^k \rho_{\varepsilon}(a, t)\) for \(k = 1, 2\) and assume that the property is true for \(k - 1\). It holds that

\[
\begin{dcases}
\varepsilon \partial_t q_{\varepsilon,k} + \partial_a q_{\varepsilon,k} + \zeta_{\varepsilon} q_{\varepsilon,k} - p q_{\varepsilon,k-1} = 0, & a > 0, \ t > 0, \\
q_{\varepsilon,k}(a, 0, t) = 0, & t > 0, \\
q_{\varepsilon,k}(a, t = 0) = a^k \rho_{1,\varepsilon}(a), & a \geq 0.
\end{dcases}
\]

After integration in age one obtains:

\[
\varepsilon \frac{d}{dt} \int_{\mathbb{R}_+} q_{\varepsilon,k}(a, t) \, da \leq -\int_{\mathbb{R}_+} \zeta_{\text{min}} q_{\varepsilon,k}(a, t) \, da + p \int_{\mathbb{R}_+} q_{\varepsilon,k-1} \, da,
\]

which by Gronwall’s inequality implies:

\[
\int_{\mathbb{R}_+} q_{\varepsilon,k}(a, t) \, da \leq e^{-\zeta_{\text{max}} t} \int_{\mathbb{R}_+} a^k \rho_{1,\varepsilon}(a) \, da + k \sup_{s \in [0, t]} \int_{\mathbb{R}_+} q_{\varepsilon,k-1}(a, s) \, da.
\]

Now take the supremum with respect to \(T\) on both sides. The fact that the property is true for \(k - 1\) ends the proof.

For the lower bound we proceed as in the case of Lemma 2.2, so we just give the formal sketch of the proof: for any constant \(c\) one has:

\[
\varepsilon \partial_t (\mu_{p,\varepsilon} - c) \geq -\zeta_{\text{max}} (\mu_{p,\varepsilon} - c) + \mu_{p-1,\varepsilon}(t) \geq -\zeta_{\text{max}} (\mu_{p,\varepsilon} - c) - \zeta_{\text{max}} c + \mu_{p-1,\text{min}}.
\]

Two situations occur:

- either \(\mu_{p,\varepsilon}(0) > \mu_{p-1,\text{min}}/\zeta_{\text{max}}\). We set \(c := \mu_{p-1,\text{min}}/\zeta_{\text{max}}\). One gets after integration in time

\[
\mu_{p,\varepsilon}(t) - \frac{\mu_{p-1,\text{min}}}{\zeta_{\text{max}}} \geq e^{-\zeta_{\text{max}} t} \left(\mu_{p,\varepsilon}(0) - \frac{\mu_{p-1,\text{min}}}{\zeta_{\text{max}}}\right) > 0;
\]

- or \(\mu_{p,\varepsilon}(0) \leq \mu_{p-1,\text{min}}/\zeta_{\text{max}}\). In this case setting \(c = \mu_{p,\varepsilon}(0)\) gives, after integration in time,

\[
\mu_{p,\varepsilon}(t) - \mu_{p,\varepsilon}(0) \geq \frac{1}{\varepsilon} \int_0^t e^{-\frac{(p-1)\max}{\zeta_{\text{max}}}} ds \left(-\zeta_{\text{max}} \mu_{p,\varepsilon}(0) + \mu_{p-1,\text{min}}\right) > 0,
\]

which ends the proof.

Lemma 2.4. Consider the expectation value of a given density \(\rho_{\varepsilon}\) with respect to the tail \(a > t/\varepsilon\),

\[
A_{\varepsilon}[\rho_{\varepsilon}](t) := \frac{\int_0^t a \rho_{\varepsilon}(\frac{a}{\varepsilon} + a, t) \, da}{\int_0^\infty \rho_{\varepsilon}(\frac{t}{\varepsilon} + a, t) \, da},
\]

then under Assumptions 1.1 and 1.2, one has:
\[A_\varepsilon[\rho_\varepsilon](t) \leq A_{\max} \quad \text{a.e. } t > 0 \]

uniformly wrt \(\varepsilon \).

Proof. Observe that
\[\frac{d}{dt} A_\varepsilon[\rho_\varepsilon](t) = A_\varepsilon[\rho_\varepsilon](t) \left(- \int_0^\infty q_{1,\varepsilon}(a)(t/\varepsilon + a) \rho_\varepsilon(t/\varepsilon + a) da + \int_0^\infty q_{0,\varepsilon}(a) \right) \]

where
\[q_{1,\varepsilon}(a) := \frac{\rho_\varepsilon(t/\varepsilon + a)}{\int_0^\infty \rho_\varepsilon(t/\varepsilon + a) da} \]

and
\[q_{0,\varepsilon}(a) := \frac{\rho_\varepsilon(t/\varepsilon + a)}{\int_0^\infty \rho_\varepsilon(t/\varepsilon + a) da} \].

Let \(Q_{1,\varepsilon}(a) := \int_0^a q_{1,\varepsilon}(a) da \) and define the transformation \(T_{\varepsilon,t}(a) := Q_{1,\varepsilon}^{-1}(Q_{0,\varepsilon}(a)) \) which allows to rewrite the above identity as

\[\frac{d}{dt} A_\varepsilon[\rho_\varepsilon](t) = A_\varepsilon[\rho_\varepsilon](t) \left(- \int_0^\infty q_{0,\varepsilon}(a) \left(\frac{\rho_\varepsilon(t/\varepsilon + T_{\varepsilon,t}(a))}{\rho_\varepsilon(t/\varepsilon + a + t)} - \right) da - \int_0^\infty q_{0,\varepsilon}(a) \left(\frac{\rho_\varepsilon(t/\varepsilon + T_{\varepsilon,t}(a))}{\rho_\varepsilon(t/\varepsilon + a + t)} - \right) da \right) \]

Finally observe that \(T_{\varepsilon,t}(a) \geq a \) since the inequality \(Q_{0,\varepsilon}(a) \geq Q_{1,\varepsilon}(a) \) is equivalent to

\[\int_0^1 a \rho_\varepsilon(\frac{t}{\varepsilon} + a) da \leq \int_0^1 \rho_\varepsilon(\frac{t}{\varepsilon} + a) da \]

which can be easily verified. If \(\xi_\varepsilon \) were monotonically increasing with respect to \(a \), then the right hand side of (14) would be negative. In the weaker case defined in the assumptions of the present lemma, where \(\xi_\varepsilon \) is only monotone on \([a_0, \infty)\), define,

\[\tilde{\rho}_\varepsilon(a,t) = \begin{cases} \rho_\varepsilon(a,t) & a > \frac{t}{\varepsilon} + a_0, \\ 0 & \text{otherwise,} \end{cases} \]

to exclude the area where the decay rate is not monotonically increasing. For fixed \(t > 0 \) either it holds that \(\tilde{\rho} \equiv 0 \), which directly implies that \(A_\varepsilon[\rho_\varepsilon](t) \leq a_0 \leq A_{\max} \), or in the opposite case we use that \(\int_0^\infty \rho_{t,\varepsilon}(a,t) da > 0 \) and obtain:

\[A_\varepsilon[\rho_\varepsilon](t) \leq A_\varepsilon[\tilde{\rho}_\varepsilon](t) \leq A_\varepsilon[\tilde{\rho}_\varepsilon](t) \leq A_{\max} \]

where the first inequality can be reduced to (15), while the second one is due to an analogous application of (14). The integral in the numerator is bounded because the first moment of the initial datum \(\rho_{t,\varepsilon}(t) \) is bounded.

We give existence and uniqueness results for (1).

Theorem 2.2. Let \(\rho_\varepsilon \in C^0(\mathbb{R}_+; L^1(\mathbb{R}_+)) \cap L^\infty(\mathbb{R}_+^2) \) be given and let Assumption 1.3 hold, then there exists for every fixed \(\varepsilon > 0 \) a unique function \(z_\varepsilon \in C^0(\mathbb{R}_+) \) solving (1).

Proof. Setting \(k_\varepsilon(\tilde{a}, t) := \frac{1}{\mu(t)} \rho_\varepsilon(\frac{t-\tilde{a}}{\varepsilon}, t) \) we write (1) as

\[z_\varepsilon(t) - \int_0^t \xi_\varepsilon(\tilde{a}) k_\varepsilon(\tilde{a}, t) d\tilde{a} = \tilde{f}_\varepsilon(t), \quad \text{with} \quad \tilde{f}_\varepsilon(t) := \frac{1}{\mu_{t,\varepsilon}(t)} f(t) + \int_t^\infty z_\rho(\tilde{a}) k_\varepsilon(\tilde{a}, t) d\tilde{a} \]

for all \(t \geq 0 \). Using the results of Theorem 2.1 we obtain that according to Section 9.5 in [1] (Definition 5.2 and Theorem 5.4) the kernel \(k_\varepsilon \) of the integral equation is of bounded continuous type, which, together with the continuity of \(\tilde{f}_\varepsilon(t) \), implies the existence of unique solution \(z_\varepsilon \in C^0(\mathbb{R}_+) \). \(\square \)
3. Convergence

Consider the difference \(\hat{\rho}_\varepsilon := \rho_\varepsilon - \rho_0 \). A formal computation using (2) and (5) implies that it satisfies:

\[
\begin{cases}
\varepsilon \partial_t \hat{\rho}_\varepsilon + \partial_a \hat{\rho}_\varepsilon + \xi_\varepsilon(a, t) \hat{\rho}_\varepsilon = \mathcal{R}_\varepsilon, & a > 0, \ t > 0, \\
\hat{\rho}_\varepsilon(a = 0, t) = -\beta_\varepsilon(t) \int_0^\infty \hat{\rho}_\varepsilon(\bar{a}, t) \, d\bar{a} + M_\varepsilon, & t > 0, \\
\hat{\rho}_\varepsilon(a, t = 0) = \rho_{\varepsilon, t}(a) - \rho_0(a, 0), & a \geq 0.
\end{cases}
\]

with \(\mathcal{R}_\varepsilon := -\varepsilon \partial_t \rho_0 - \rho_0(\xi_\varepsilon - \xi_0) \) and \(M_\varepsilon := (\beta_\varepsilon - \beta_0)(1 - \int_0^\infty \rho_0 \, da) \). Like for its counterpart \(\rho_\varepsilon \), we find that \(\hat{\rho}_\varepsilon \) satisfies the above system (16) in the sense of integration along characteristics. Namely combining the system (9) with (4) we obtain:

Corollary 3.1. The function \(\hat{\rho}_\varepsilon \) satisfies the following integrated version of (16),

\[
\hat{\rho}_\varepsilon(a, t) = \begin{cases}
(-\beta_\varepsilon(t - \varepsilon a) \int_0^\infty \hat{\rho}_\varepsilon(\bar{a}, t - \varepsilon a)) \, d\bar{a} \\
+ M_\varepsilon(t - \varepsilon a) \exp(-\int_0^a \xi_\varepsilon(\bar{a}, t - \varepsilon(a - \bar{a})) \, d\bar{a}) \\
+ \int_0^a R_\varepsilon(t - \varepsilon(a - \bar{a})) \exp(-\int_0^a \xi_\varepsilon(\bar{a}, t - \varepsilon(a - \bar{a})) \, d\bar{a}) \, d\bar{a}, & a < t/\varepsilon, \\
(\rho_{\varepsilon, t}(a - t/\varepsilon)) - \rho_0(a - t/\varepsilon), 0) \exp(-\frac{1}{\varepsilon} \int_0^a \xi_\varepsilon((\bar{t} - \bar{t})/\varepsilon + a, \bar{t}) \, d\bar{t}) \\
+ \frac{1}{\varepsilon} \int_0^a R_\varepsilon(\bar{t}) \exp(-\frac{1}{\varepsilon} \int_0^a \xi_\varepsilon((\bar{t} - \bar{t})/\varepsilon + a, \bar{t}) \, d\bar{t}), & a \geq t/\varepsilon.
\end{cases}
\]

Finally we formally multiply (16) by \(\text{sign}(\hat{\rho}_\varepsilon) \) to obtain:

\[
\begin{cases}
\varepsilon \partial_t |\hat{\rho}_\varepsilon| + \partial_a |\hat{\rho}_\varepsilon| + \xi_\varepsilon(a, t)|\hat{\rho}_\varepsilon| = \mathcal{R}_\varepsilon \text{sign}(\hat{\rho}_\varepsilon), & a > 0, \ t > 0, \\
|\hat{\rho}_\varepsilon(a = 0, t)| = -\beta_\varepsilon(t) \int_0^\infty \hat{\rho}_\varepsilon(\bar{a}, t) \, d\bar{a} + M_\varepsilon, & t > 0, \\
|\hat{\rho}_\varepsilon(a, t = 0)| = |\rho_{\varepsilon, t}(a) - \rho_0(a, 0)|, & a \geq 0.
\end{cases}
\]

which we also re-interpret using the method of characteristics:

Lemma 3.1. \(|\hat{\rho}_\varepsilon| \) satisfies the system (18) in the same way as \(\hat{\rho}_\varepsilon \) fulfills (16) in the sense of (17).

Proof. We reparametrize (17) like in the proof of Lemma 2.1 by \(\tilde{\rho}(x, y) = \hat{\rho}(a, t) \) and obtain \(\varepsilon \partial_y \tilde{\rho} + \xi_\varepsilon \tilde{\rho} = R_\varepsilon \) in the domain \(\Omega_1 \cup \Omega_2 \) parametrized by the variables \((x, y) \). Solving this equation in the \(y \) variable and thanks to the assumptions it is easy to show that \(\tilde{\rho}_\varepsilon \) is indeed continuous with respect to \(y \) for every fixed \(x \). Thus one can write in the weak sense that \(\partial_y |\tilde{\rho}_\varepsilon| = \text{sign}(\hat{\rho}_\varepsilon) \partial_y \tilde{\rho}_\varepsilon \) for every fixed \(x \). Thus \(\varepsilon \partial_y |\tilde{\rho}_\varepsilon| + \xi_\varepsilon |\tilde{\rho}_\varepsilon| = \text{sign}(\hat{\rho}_\varepsilon) R_\varepsilon \) holds a.e. with respect to \(y \) for every fixed \(x \). We then integrate and transform back to obtain the system which is the analog to (17). Using Lemma 2.1 one concludes then that \(|\hat{\rho}_\varepsilon| \) solves (18) in the weak sense. \(\square \)

Taking advantage of both systems (16) and (18) we find that

Lemma 3.2. Let \(\xi_{\text{min}} > 0 \) be the lower bound to \(\xi_\varepsilon(a, t) \) according to Assumption 1.1 and let \(\hat{\rho}_\varepsilon \) be the solution to (16), then it holds that

\[
\frac{d}{dt} \mathcal{H}[\hat{\rho}_\varepsilon] \leq -\frac{1}{\varepsilon} \xi_{\text{min}} \mathcal{H}[\hat{\rho}_\varepsilon] + \frac{2}{\varepsilon} (\|\mathcal{R}_\varepsilon\|_{L^1(\mathbb{R})} + |M_\varepsilon|),
\]

in a weak sense analogous to Eq. (12).

Proof. Observe that the integrations in this proof are expressed in a formal way but can be made rigorous in a weak sense like in the step leading to (12).
On one hand the system (18) implies that

$$
\frac{d}{dt} \int_0^\infty |\hat{\rho}_e| da \leq \frac{1}{\varepsilon} \left(\beta \int_0^\infty |\hat{\rho}_e| da - \int_0^\infty \xi_e |\hat{\rho}_e| da \right) + \int_0^\infty \frac{1}{\varepsilon} R_e \text{sign}(\hat{\rho}_e) da + \frac{1}{\varepsilon} |M_e|.
$$

(20)

On the other hand using (16) we write,

$$
\frac{d}{dt} \int_0^\infty \hat{\rho}_e da = \frac{1}{\varepsilon} \left(-\beta \int_0^\infty \hat{\rho}_e da - \int_0^\infty \xi_e \hat{\rho}_e da \right) + \frac{1}{\varepsilon} \int_0^\infty R_e da + \frac{1}{\varepsilon} M_e,
$$

which implies:

$$
\frac{d}{dt} \int_0^\infty \hat{\rho}_e da = \frac{1}{\varepsilon} \left(-\beta \int_0^\infty \hat{\rho}_e da - \int_0^\infty \xi_e \hat{\rho}_e da \right) + \frac{1}{\varepsilon} \int_0^\infty R_e da + \frac{1}{\varepsilon} M_e.
$$

(21)

The sum of (20) and (21) controls the evolution of the functional (7),

$$
\frac{d}{dt} H[\hat{\rho}_e] \leq -\frac{1}{\varepsilon} \left(\xi_e + \text{sign} \left(\int_0^\infty \hat{\rho}_e da \right) \hat{\rho}_e \right) \int_0^\infty R_e da + \frac{1}{\varepsilon} \int_0^\infty \text{sign}(\hat{\rho}_e) \int_0^\infty R_e da + \frac{1}{\varepsilon} |M_e| + \frac{1}{\varepsilon} M_e \text{sign} \left(\int_0^\infty \hat{\rho}_e da \right).
$$

(22)

where it is easy to check that $A \geq 0$ for almost any age a and any time t. We therefore conclude:

$$
\frac{d}{dt} H[\hat{\rho}_e] \leq -\frac{\xi_{\min}}{\varepsilon} \left(\int_0^\infty |\hat{\rho}_e| da + \int_0^\infty |\hat{\rho}_e| da \right) + \frac{2}{\varepsilon} \left(\int_0^\infty |R_e| da + |M_e| \right).
$$

which implies the result.

We add three remarks which explain and illustrate the consequences of the above crucial lemma:

Remark 3.1. Under more general conditions then in the present study, namely without a positive lower bound on ξ_e as assumed in Assumption 1.1, the functional (7) is still a Lyapunov functional. If $R_e = M_e = 0$ it satisfies,

$$
\frac{d}{dt} H[\hat{\rho}_e] = -\frac{1}{\varepsilon} \xi_e H[\hat{\rho}_e] \leq 0,
$$

in a weak sense analogous to Eq. (12). Hence, up to a scaling factor, it decreases at an exponential rate which is a certain mean value of the decay rate, $\xi_e := \int_0^\infty \xi_e(t,a) \pi(a,t) da$ where $\pi(a,t)$ stands for the probability density $\pi(a,t) := (|\hat{\rho}_e| + \text{sign}(\int_0^\infty \hat{\rho}_e da) / H[\hat{\rho}_e])$ (cf. (22)).

Remark 3.2. Under Assumption 1.1, the Lyapunov functional does not only control the solution $\hat{\rho}_e$ in the L^1_a norm but it also controls $\hat{\mu}_e := \mu_{0,e} - \mu_0$ which is related to the boundary value at $a = 0$, for any time.

Remark 3.3. Let the data be such that $R_e = M_e = 0$ and let Assumption 1.1 hold, then (8) implies time asymptotic exponential convergence of ρ_e towards ρ_0 wrt the L^1_a norm as well as of the averages $\mu_{0,e}$ towards μ_0.
Lemma 3.3. Let \(\zeta_{\text{min}} > 0 \) be the lower bound to \(\zeta_{\text{e}}(a, t) \) according to Assumption 1.1, then it holds that

\[
\mathcal{H}[\hat{\rho}_{\text{e}}(., t)] \leq \mathcal{H}[\rho_{\text{e},1} - \rho_0(., 0)] e^{-\frac{\zeta_{\text{min}} t}{\epsilon}} + \frac{2}{\zeta_{\text{min}}} \| \mathcal{R}_{\epsilon} \|_{L^1_t(L^1_\epsilon)} + |M_{\epsilon}| \| M_{\epsilon} \|_{L^\infty_t(L^1_\epsilon)},
\]

for all \(t \geq 0 \).

Proof. We intend to apply Gronwall’s inequality to the inequality (19) given in the weak sense. Hence we choose the

Proof.

Let \(\zeta_{\text{e}}(a, t) \) be the solution to the system (2) according to Theorem 2.1 and let \(\rho_0 \) be as defined in (4), then it holds that

\[
\rho_{\text{e}} \to \rho_0 \quad \text{in } C^0([0, \infty); L^1(\mathbb{R}_+)) \text{ as } \epsilon \to 0,
\]

where the convergence with respect to time is in the sense of uniform convergence on compact subintervals.

Proof. This is an immediate consequence of Lemma 3.3, because it holds that \(|\mathcal{H}[\rho_{\text{e},1} - \rho_0(., 0)]| \leq 4 \) due to (4) and Assumption 1.2 and because the residual terms tend to zero in the respective norms as \(\epsilon \to 0 \) by Assumption 1.1.

Remark 3.4. Note that in general \(\rho_{\text{e},1} \) does not converge to \(\rho_0(., 0) \) in \(L^1_t(\mathbb{R}_+) \) as \(\epsilon \to 0 \). A boundary layer will be observable if their difference does not oscillate and its profile will be shaped like a multiple of \(e^{-\frac{\zeta_{\text{min}} t}{\epsilon}} \), which is again a consequence of Lemma 3.3.

In the opposite case we obtain:

Corollary 3.2. Considering the asymptotic behaviour as \(\epsilon \to 0 \): Under the additional assumption that \(\rho_{\text{e},1} \to \rho_0(., 0) \) in \(L^1(\mathbb{R}_+) \) it holds by coercivity that \(|\mathcal{H}[\rho_{\text{e},1} - \rho_0(., 0)]| \to 0 \) and therefore the convergence \(\rho_{\text{e}} \to \rho_0 \) in \(L^1_t(\mathbb{R}_+) \) is uniform with respect to \(t \in \mathbb{R}_+ \). In fact it holds that

\[
\| \rho_{\text{e}} - \rho_0 \|_{L^\infty_t L^1(\mathbb{R}_+)} \leq \sup_{t \geq 0} \mathcal{H}[\hat{\rho}_{\text{e}}] \leq \mathcal{H}[\rho_{\text{e},1} - \rho_0(., 0)] + \frac{2}{\zeta_{\text{min}}} \| \mathcal{R}_{\epsilon} \|_{L^1_t(L^1_\epsilon)} + |M_{\epsilon}| \| M_{\epsilon} \|_{L^\infty_t(L^1_\epsilon)}.
\]

We need to estimate the convergence of the first moment as well:

Lemma 3.4. Let \(\rho_{\text{e}} \) be the solution to the system (2) according to Theorem 2.1 and let \(\rho_0 \) be as defined in (4), then it holds for \(t > 0 \) that

\[
\int_0^\infty a |\rho_{\text{e}} - \rho_0| \, da \leq e^{-\frac{\zeta_{\text{min}} t}{\epsilon}} \int_0^\infty a |\rho_{\text{e},1}(a) - \rho_0(a, 0)| \, da + \frac{1}{\zeta_{\text{min}}} C_{\epsilon},
\]

where the family of constants \(C_{\epsilon} \in \mathbb{R} \) is such that \(C_{\epsilon} \to 0 \) as \(\epsilon \to 0 \).

Proof. The proof follows the same lines as above, but is simpler because the presence of the factor \(a \) cancels boundary terms. Indeed, integrating (18) against \(a \) by setting \(\phi(t, a) = a\phi(t) \) in its weak formulation we obtain the weak formulation of
\[\varepsilon \partial_t \int_0^\infty a |\hat{\rho}_e| \, da = - \int_0^\infty \zeta_\varepsilon a |\hat{\rho}_e| \, da + \int_0^\infty |\hat{\rho}_e| \, da + \int_0^\infty a \mathcal{R}_\varepsilon \text{sign}(|\hat{\rho}_e|) \, da \leq - \zeta_{\min} \int_0^\infty a |\hat{\rho}_e| \, da + K_\varepsilon, \]

where \(K_\varepsilon := \int_0^\infty |\hat{\rho}_e| \, da + \varepsilon \int_0^\infty a |\hat{\rho}_0| \, da + \| \zeta_\varepsilon - \zeta_0 \|_{L_\infty^\varepsilon (R_+)} \int_0^\infty |a \rho_0| \, da \). An argumentation which is analogous to the one in the proof of Lemma 3.3 implies that

\[\int_0^\infty a |\hat{\rho}_e| \, da \leq e^{-\zeta_{\min}^\varepsilon} \int_0^\infty a |\hat{\rho}_e(a,0)| \, da + \frac{1}{\zeta_{\min}}(1 - e^{-\zeta_{\min}^\varepsilon})C_\varepsilon \]

for all \(\varepsilon > 0 \), where \(C_\varepsilon := \| K_\varepsilon \|_{L_\infty^\varepsilon (R_+)} \) satisfies \(C_\varepsilon \to 0 \) as \(\varepsilon \to 0 \) due to Lemma 3.3 and Assumption 1.1. Indeed one has:

\[\int_{R_+} a \rho_0(a,t) \, da \leq \beta_{\max}^\varepsilon \, \frac{\zeta_{\max}^\varepsilon}{\zeta_{\max}^\varepsilon} \quad \text{and} \quad \int_{R_+} a |\hat{\delta}_t \rho_0(a,t)| \, da \leq k \left(\zeta_{\min}^\varepsilon, \zeta_{\max}^\varepsilon, \| \beta_\varepsilon \|_{W_1^{t,\infty}}, \| \partial_t \zeta_\varepsilon \|_{L_2^\varepsilon} \right). \]

Since the first moments of \(\rho_0 \) and \(\rho_{\varepsilon,1} \) are bounded by (24) and Assumption 1.2 respectively, the expression \(\int_0^\infty a |\hat{\rho}_e(a,0)| \, da \) in (23) is uniformly bounded, which finishes the proof. \(\square \)

Having defined properly, for any fixed \(\varepsilon \), the solutions of the coupled system (1)–(2), we are finally able to prove the main theorem: as \(\varepsilon \) goes to 0, \((\rho_\varepsilon, z_\varepsilon) \) tends to \((\rho_0, z_0) \), which solves the limit system (5).

Setting \(\tilde{z}_\varepsilon := z_\varepsilon - z_0 \), where \(z_0 \) solves exactly (3), one has:

\[\frac{1}{\varepsilon} \int_0^\infty (\tilde{z}_\varepsilon(t) - \tilde{z}_\varepsilon(t - \varepsilon a)) \rho_\varepsilon(a,t) \, da = h_\varepsilon(t) \quad \text{with} \quad h_\varepsilon(t) := f(t) - \frac{1}{\varepsilon} \int_0^\infty (z_0(t) - z_0(t - \varepsilon a)) \rho_\varepsilon \, da. \]

(25)

To prepare the proof of the main theorem we state:

Lemma 3.5. For \(0 < \tilde{t} < T \) it holds that

\[\| h_\varepsilon \|_{L_\infty^\varepsilon (\tilde{t},T)} \leq C_1 \exp \left(- \frac{\tilde{\zeta}_{\min}^\varepsilon}{\varepsilon} \right) + C_2 \varepsilon + \tilde{C}_\varepsilon, \]

(26)

for constants \(C_1 > 0 \) and \(C_2 > 0 \) and a family of constants \(\tilde{C}_\varepsilon > 0 \) with \(C_\varepsilon \to 0 \) as \(\varepsilon \to 0 \).

Proof. We concentrate on the second part of the rhs,

\[\varepsilon h_\varepsilon(t) = \varepsilon f(t) - \int_0^{\tilde{t}/\varepsilon} \int_0^{t - \varepsilon a} \partial_t z_0(s) \, ds \rho_\varepsilon(a,t) \, da - \int_0^\infty \left(z_0(t) - z_0(t - \varepsilon a) \right) \rho_\varepsilon(a,t) \, da \]

\[= \varepsilon f(t) - \int_0^{\tilde{t}/\varepsilon} \int_0^{t - \varepsilon a} f(s) \frac{1}{\mu_{1,0}} \rho_\varepsilon(a,t) \, da - \int_0^\infty \left(\frac{f(s)}{\mu_{1,0}} \rho_\varepsilon(a,t) \, da \right) \]

\[= \int_0^{\tilde{t}/\varepsilon} \int_0^{t - \varepsilon a} \left\{ f(t) - \frac{f(s)}{\mu_{1,0}(s)} \right\} \frac{1}{\mu_{1,0}(s)} \rho_\varepsilon(a,t) \, da + \int_0^\infty \left\{ \frac{f(t)}{\mu_{1,0}(t)} - \frac{f(s)}{\mu_{1,0}} \right\} \rho_\varepsilon(a,t) \, da \]

\[\Rightarrow: I_1 \]

\[+ \varepsilon f(t) - \int_0^{\tilde{t}/\varepsilon} \int_0^{t - \varepsilon a} \frac{f(t)}{\mu_{1,0}(t)} \rho_\varepsilon(a,t) \, da - \int_0^\infty \frac{f(t)}{\mu_{1,0}(t)} \rho_\varepsilon(a,t) \, da. \]

\[\Rightarrow: I_2 \]
Due to the Regularity Assumptions 1.1 on β_ε and ζ_ε and Assumptions 1.3 on $f(t)$, it is easy to prove that the function $g := f/\mu_{1,0}$ is uniformly Lipschitz with respect to time with a Lipschitz constant L_g. This implies:

$$|I_1| \leq L_g \left\{ \int_0^{t/\varepsilon} \int_0^t (t-s) d\rho_\varepsilon(a,t) \, da + \int_{t/\varepsilon}^\infty (t-s) d\rho_\varepsilon(a,t) \, da \right\}$$

$$= \frac{L_g}{2} \left\{ \int_0^{t/\varepsilon} (\varepsilon a)^2 \rho_\varepsilon(a,t) \, da + \int_{t/\varepsilon}^\infty (\varepsilon a)^2 \rho_\varepsilon(a,t) \, da \right\} \leq \frac{\varepsilon^2 L_g}{2} \mu_{2,\varepsilon} \leq C_2 \varepsilon^2,$$

where $\mu_{2,\varepsilon} := \int a^2 \rho_\varepsilon(a,t) \, da$. The upper bound of Lemma 2.3 allows to state that the constant C_2 does not depend on ε. On the other hand

$$|I_2| = \left\| \varepsilon f(t) - \int_0^{t/\varepsilon} \varepsilon a f(t) \mu_{1,0}(t) \rho_\varepsilon(a,t) \, da - \int_{t/\varepsilon}^\infty \frac{f(t)}{\mu_{1,0}(t)} \rho_\varepsilon(a,t) \, da \right\|$$

$$\leq \varepsilon \left\| \frac{f}{\mu_{1,0}} \right\|_{L^\infty(0,T)} \left(|\mu_{1,0}(t) - \mu_{1,\varepsilon}(t)| + \int_{t/\varepsilon}^\infty \left(a - \frac{t}{\varepsilon} \right) \rho_\varepsilon(a,t) \, da \right),$$

where, using the second case in (9), it holds that

$$\int_{t/\varepsilon}^\infty \left(a - \frac{t}{\varepsilon} \right) \rho_\varepsilon(a,t) \, da \leq \mu_{1,\varepsilon}(0) \exp\left(-\frac{t \xi \min}{\varepsilon} \right) \text{ for } t > 0.$$

This, together with Lemma 3.4, defines the constants C_1 and \tilde{C}_ε in the result. □

Now we are ready to prove the main theorem.

Proof of Theorem 1.1. The idea of the proof is to use a comparison principle to construct a majorizing function $U_\varepsilon \geq |\tilde{z}_\varepsilon|$ such that $U_\varepsilon \to 0$ as $\varepsilon \to 0$.

The comparison principle applies to the integral equation (25) in a rewritten form, namely by setting $k_\varepsilon(\tilde{a},t) := \frac{1}{\mu_\varepsilon(t)} \rho_\varepsilon(\frac{t - \tilde{a}}{\varepsilon},t)$ it becomes:

$$\tilde{z}_\varepsilon(t) = \int_0^t \tilde{z}_\varepsilon(\tilde{a}) k_\varepsilon(\tilde{a},t) \, d\tilde{a} + \tilde{h}_\varepsilon \quad \text{with } \tilde{h}_\varepsilon(t) := \varepsilon \frac{1}{\mu_\varepsilon(t)} h_\varepsilon(t) + \int_0^{t/\varepsilon} \tilde{z}_\varepsilon(\tilde{a}) k_\varepsilon(\tilde{a},t) \, d\tilde{a} \quad (27)$$

for all $t \geq 0$. For the kernel of this integral operator we find that

$$0 \leq \int_0^t k_\varepsilon(\tilde{a},t) \, d\tilde{a} = \int_0^{t/\varepsilon} \frac{\rho_\varepsilon(a,t)}{\mu_\varepsilon(t)} \, da \leq 1 - \mu_{0,\varepsilon}(0) \exp\left(-\frac{t \xi \max}{\varepsilon} \right) < 1,$$

which implies that the Volterra kernel k_ε is of modulus
\[\|k_\varepsilon\|_{L^\infty(0,T)} := \sup_{0 \leq t \leq T} \int_0^t |k_\varepsilon(\tilde{a}, t)| \, d\tilde{a} \leq 1 - \mu_{0,\varepsilon}(0) \exp\left(-\frac{T \zeta_{\max}}{\varepsilon}\right) < 1, \]

according to Definition 5.1 in Chapter 9 of [1]. Hence, by Proposition 8.1 and the generalized Gronwall Lemma 8.2 (p. 257) in Chapter 9 of [1] a comparison principle holds: the control of the right hand side of the equation implies the control of the solution. First observe that

\[|\tilde{z}_\varepsilon(t)| - \int_0^t |\tilde{z}_\varepsilon(\tilde{a})|k_\varepsilon(\tilde{a}, t) \, d\tilde{a} \leq |\tilde{h}_\varepsilon|. \]

We will construct a function \(U_\varepsilon \) which satisfies,

\[|\tilde{h}_\varepsilon(t)| \leq \frac{1}{\mu_1(t)} |h_\varepsilon(t)| + \int_0^t |\tilde{z}_\varepsilon(\tilde{a})|k_\varepsilon(\tilde{a}, t) \, d\tilde{a} \leq U_\varepsilon(t) - \int_0^t U_\varepsilon(\tilde{a})k(\tilde{a}, t) \, d\tilde{a}, \]

and hence is a majorizing function such that \(U_\varepsilon(t) \geq |\tilde{z}_\varepsilon(t)| \) for all \(t \geq 0 \) due to the comparison principle.

To find such a function \(U_\varepsilon \) we also split up the integral operator applied to \(U_\varepsilon \),

\[U_\varepsilon(t) = \int_0^t U_\varepsilon(\tilde{a})k(\tilde{a}, t) \, d\tilde{a} = \int_0^t (U_\varepsilon(t) - U_\varepsilon(\tilde{a}))k_\varepsilon(\tilde{a}, t) \, d\tilde{a} + \int_0^t U_\varepsilon(\tilde{a})k_\varepsilon(\tilde{a}, t) \, d\tilde{a} = \int_{-\infty}^t \int_{t-\varepsilon a}^t \Phi_\varepsilon(a, t) \, da + \int_{t/\varepsilon}^\infty U_\varepsilon(t - \varepsilon a) \frac{\rho_\varepsilon(a, t)}{\mu_\varepsilon(t)} \, da =: H_{1,\varepsilon} + H_{2,\varepsilon}, \]

and intend to specify \(U_\varepsilon \) such that \(H_{1,\varepsilon} \geq \tilde{h}_{1,\varepsilon} \) and \(H_{2,\varepsilon} \geq \tilde{h}_{2,\varepsilon} \). To this end we make the ansatz

\[U_\varepsilon = \varepsilon C + \frac{1}{\mu_{1,\min}} \left(\int_0^t \|h_\varepsilon\|_{L^\infty(t,T)} \, dt \right), \quad t > 0, \]

\[U_\varepsilon = \varepsilon C + \frac{1}{\mu_{1,\min}} \left(\int_0^t \|h_\varepsilon\|_{L^\infty(0,T)} \, dt \right), \quad t \leq 0, \]

with a constant \(C > 0 \) which we will choose appropriately. The motivation for this ansatz is the following. Both, the integral equation (27) and the formal limit equation (3) represent a growth dynamic with the growth given by the inhomogeneity. To construct the majorizing function we hence take a suitable norm of the inhomogeneity and combine it with the structure of the formal limit function, since this can be given explicitly. This explains the integral part in (29). Furthermore, setting \(t = 0 \) in (27), one observes that \(\tilde{z}_\varepsilon(t) = O(\varepsilon) \) due to the Lipschitz-continuity of the past data \(z_p \) according to Assumption 1.3. This motivates the additional \(\varepsilon C \) term in (29), where \(C > 0 \) will be chosen large enough.

Since \(U_\varepsilon \) is differentiable one can rewrite \(H_{1,\varepsilon} \) and verify that it controls \(\tilde{h}_{1,\varepsilon} \),

\[H_{1,\varepsilon}(t) = \int_{-\infty}^t \int_{t-\varepsilon a}^t \Phi_\varepsilon(a, t) \frac{\rho_\varepsilon(a, t)}{\mu_\varepsilon(t)} \, da \]

\[\geq \frac{1}{\mu_{1,\min}} \int_{-\infty}^t \int_{t-\varepsilon a}^t \|h_\varepsilon\|_{L^\infty(t,T)} \frac{\rho_\varepsilon(a, t)}{\mu_\varepsilon(t)} \, da \]

\[= \frac{\varepsilon C}{\mu_\varepsilon(t)\mu_{1,\min}} \|h_\varepsilon\|_{L^\infty(t,T)} \geq \varepsilon \frac{1}{\mu_\varepsilon(t)} \|h_\varepsilon\| \geq \tilde{h}_{1,\varepsilon}(t) \]

a.e. on \(\mathbb{R}_+ \). For the difference of the second components we find that
\[
H_{2,\varepsilon} - \tilde{h}_{2,\varepsilon} = \int_{t/\varepsilon}^{\infty} U(t - \varepsilon a) \frac{\rho_{\varepsilon}(a, t)}{\mu_{\varepsilon}(t)} \, da - \int_{-\infty}^{0} \tilde{z}_{\varepsilon}(\tilde{a}) \frac{\rho_{\varepsilon}(\tilde{a}, t)}{\mu_{0,\varepsilon}(t)} \, d\tilde{a}.
\]

\[
= \int_{t/\varepsilon}^{\infty} \left(\varepsilon C + (t - \varepsilon a) \frac{\|h_{\varepsilon}\|_{L^\infty(0,T)}}{\mu_{1,\min}} - |\tilde{z}_{\varepsilon}(t - \varepsilon a)| \right) \frac{\rho_{\varepsilon}(\tilde{a}, t)}{\mu_{0,\varepsilon}(t)} \, d\tilde{a}
\]

\[
= \int_{0}^{\infty} \left(\varepsilon C + (-\varepsilon a) \frac{\|h_{\varepsilon}\|_{L^\infty(0,T)}}{\mu_{1,\min}} - |\tilde{z}_{\varepsilon}(\varepsilon a)| \right) \frac{\rho_{\varepsilon}(\varepsilon a + a, t)}{\mu_{\varepsilon}(t)} \, da
\]

\[
\geq \int_{0}^{\infty} \left(\varepsilon C - a \left(\frac{\|h_{\varepsilon}\|_{L^\infty(0,T)}}{\mu_{1,\min}} + L \right) \right) \frac{\rho_{\varepsilon}(\varepsilon a + a, t)}{\mu_{\varepsilon}(t)} \, da \geq 0,
\]

where \(L > 0\) is a Lipschitz constant for \(\tilde{z} = z_{\rho} - z_{0}\) on \(\mathbb{R}_{-}\) according to Assumption 1.3 and \(C\) has to be chosen such that

\[
\frac{\|h_{\varepsilon}\|_{L^\infty(0,T)}}{\mu_{1,\min}} + L \frac{1}{\int_{0}^{\infty} \rho_{\varepsilon}(\varepsilon a + a, t) \, da} \frac{f}{\mu_{1,\min}} \int_{0}^{\infty} \|h_{\varepsilon}\|_{L^\infty(\tilde{g},T)} \, d\tilde{t} \to 0 \quad \text{as } \varepsilon \to 0,
\]

due to Lemma 3.5, hence \(z_{\varepsilon} \to z_{0}\) in \(C^0((0, T))\). \(\square\)

4. A simple example

We give here a simple example illustrating the approximation performed when using system (2)–(1) in order to approximate system (5)–(3).

Lemma 4.1. We set both \(\zeta_{\varepsilon}\) and \(\beta_{\varepsilon}\) to fixed values independent of \(\varepsilon\), i.e.

\[
\zeta_{\varepsilon} = \zeta_0 = \zeta, \quad \beta_{\varepsilon} = \beta_0 = \beta.
\]

Moreover defining the initial condition at equilibrium:

\[
\rho_{1,\varepsilon} = \rho_0 = \frac{\beta}{\beta + \zeta} e^{-\zeta a}.
\]

We obtain \(\mu_{0,\varepsilon} = \mu_{0,0} = \beta/(\beta + \zeta)\), \(\mu_{1,\varepsilon} = \mu_{1,0} = \beta/(\zeta(\beta + \zeta))\) and \(\rho_0(a) = \mu_{0,0} \zeta e^{-\zeta a}\) and then one solves directly Eq. (1):

\[
z_{\varepsilon}(t) = \int_{0}^{t} f \, ds + \varepsilon \frac{f(t)}{\mu_{0,0}} + \frac{1}{\mu_{0,0}} \int_{0}^{\infty} z_{\rho}(-\varepsilon a) \rho_0 \, da,
\]

and hence
\[z_\varepsilon(t) - z_0(t) = \varepsilon \frac{f(t)}{\mu_{0,0}} - \int_{-\infty}^{0} z_\varepsilon'(s) \exp\left(\frac{\xi s}{\varepsilon}\right) ds \]

with \(z_0(t) = z_\rho(0) + \int_{0}^{t} f(s) ds / \mu_{1,0} \). Note that the last term is an \(\varepsilon \) order term according to Assumption 1.3, indeed it holds that

\[\left| \int_{-\infty}^{0} z_\varepsilon'(s) \exp\left(\frac{\xi s}{\varepsilon}\right) ds \right| \leq \frac{\varepsilon}{\xi} \|z_\rho\|_{W^{1,\infty}(\mathbb{R}_-)}. \]

Proof. In this case one can rephrase the equation for \(t \geq 0 \) as

\[z_\varepsilon(t) - \frac{\xi}{\varepsilon} \int_{0}^{t} z_\varepsilon(s) \exp\left(-\frac{\xi(t-s)}{\varepsilon}\right) ds = \varepsilon \frac{f(t)}{\mu_{0,0}} + \frac{\xi}{\varepsilon} \int_{-\infty}^{0} z_\varepsilon(s) \exp\left(-\frac{\xi(t-s)}{\varepsilon}\right) ds. \]

Due to the separation of variable made possible by this specific form of the kernel, one can rewrite this equation for all \(t \geq 0 \) as

\[q_\varepsilon(t) = z_\varepsilon(t) \exp\left(\frac{\xi t}{\varepsilon}\right), \quad t \geq 0. \]

Note that for \(t = 0^+ \) the integral equation provides the initial data

\[q_\varepsilon(0^+) = \varepsilon f(0) / \mu_{0,0} + \frac{\xi}{\varepsilon} \int_{-\infty}^{0} z_\varepsilon(s) \exp\left(\frac{\xi s}{\varepsilon}\right) ds. \]

Differentiating (30) for strictly positive times, one gets:

\[\dot{q}_\varepsilon(t) - \frac{\xi}{\varepsilon} q_\varepsilon(t) = \exp\left(\frac{\xi t}{\varepsilon}\right) \left(\varepsilon f(t) + \varepsilon f'(t) \right), \quad t > 0. \]

Solving this differential equation in \(]0, T[\) and using the initial data given above, one gets

\[q_\varepsilon(t) = \exp\left(\frac{\xi t}{\varepsilon}\right) \left(\varepsilon f(t) / \mu_{0,0} + \frac{\xi}{\varepsilon} \int_{-\infty}^{0} z_\varepsilon(s) \exp\left(\frac{\xi s}{\varepsilon}\right) ds + \int_{0}^{t} \frac{f}{\mu_{1,0}}(s) ds \right). \]

where we used that \(\mu_{1,0} = \mu_{0,0} / \xi \).

Acknowledgements

The first author was granted by Institut des Systemes Complexes.\(^1\) This study has been supported by the Wolfgang Pauli Institute (Vienna) and by the Vienna Science and Technology Fund (WWTF) through its projects MA04-039 and MA09-004.

\(^1\) http://www.ixxi.fr.
References

