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If A0[‖ · ‖0] is a C∗-normed algebra and τ a locally convex topology on A0 making its
multiplication separately continuous, then Ã0[τ ] (completion of A0[τ ]) is a locally convex
quasi ∗-algebra over A0, but it is not necessarily a locally convex quasi ∗-algebra over
the C∗-algebra Ã0[‖ · ‖0] (completion of A0[‖ · ‖0]). In this article, stimulated by physical
examples, we introduce the notion of a locally convex quasi C∗-normed algebra, aiming
at the investigation of Ã0[τ ]; in particular, we study its structure, ∗-representation theory
and functional calculus.
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1. Introduction

In the present paper we continue the study introduced in [7] and carried over in [13] and [8]. At this stage, it concerns
the investigation of the structure of the completion of a C∗-normed algebra A0[‖ · ‖0], under a locally convex topology τ
“compatible” to ‖ · ‖0, that makes the multiplication of A0 separately continuous. The case when A0[‖ · ‖0] is a C∗-algebra
and τ makes the multiplication jointly continuous was considered in [7,13], while the analogue case corresponding to sep-
arately continuous multiplication was discussed in [8], where the so-called locally convex quasi C∗-algebras were introduced.
In this work, prompted by examples that one meets in physics, we introduce the notion of locally convex quasi C∗-normed
algebras, which is wider than that of locally convex quasi C∗-algebras, starting with a C∗-normed algebra A0[‖ · ‖0] and a
locally convex topology τ , compatible with ‖ · ‖0, making the multiplication of A0 separately continuous. For example, let
M0 be a C∗-normed algebra of operators on a Hilbert space H, endowed with the operator norm ‖ ·‖0, D a dense subspace
of H such that M0 D ⊂ D and τs∗ the strong∗-topology on M0 defined by D. Then, the C∗-algebra M̃0[‖ · ‖0] does not
leave D invariant, in general, and so the multiplication ax of a ∈ M̃0[τs∗ ] and x ∈ M̃0[‖ · ‖0] is not necessarily well defined,
therefore M̃0[τs∗ ] is not a locally convex quasi C∗-algebra over the C∗-algebra M̃0[‖ · ‖0]. Hence, it is meaningful to study
not only locally convex quasi C∗-algebras, but also locally convex quasi C∗-normed algebras.

For locally convex quasi “C∗-normed algebras” we obtain analogous results to those in [8] for locally convex quasi “C∗-
algebras” despite of the lack of completion and of weakening the condition (T3) of [8].

In Section 3 we consider a C∗-algebra A0[‖ · ‖0] with a “regular” locally convex topology τ and show that every unital
pseudo-complete symmetric locally convex ∗-algebra A[τ ] such that A0[‖ · ‖0] ⊂ A[τ ] ⊂ Ã0[τ ] is a GB∗-algebra over the
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unit ball U (A0) of A0[‖ · ‖0]. The latter algebras have been defined by G.R. Allan [2] and P.G. Dixon [12] and play an
essential role in the unbounded ∗-representation theory. In Section 4 we define the notion of locally convex quasi C∗-
normed algebras and study their general theory, while in Section 5 we investigate the structure of commutative locally
convex quasi C∗-normed algebras. In the final Section 6 we present locally convex quasi C∗-normed algebras of operators
and then we study questions on the ∗-representation theory of locally convex quasi C∗-normed algebras and functional
calculus for the “commutatively quasi-positive” elements of Ã0[τ ].

Topological quasi ∗-algebras were introduced in 1981 by G. Lassner [15,16], for facing solutions of certain problems in
quantum statistics and quantum dynamics. But only later (see [17, p. 90]) the initial definition was reformulated in the right
way, having thus included many more interesting examples. Quasi ∗-algebras came in light in 1988 (see [19], as well as
[20,9,10]), serving as important examples of partial ∗-algebras initiated by J.-P. Antoine and W. Karwowski in [4,5]. A lot of
works have been done on this topic, which can be found in the treatise [3], where the reader will also find a relevant rich
literature. Partial ∗-algebras and quasi ∗-algebras keep a very prominent place in the study of unbounded operators, where
the latter are the foundation stones for mathematical physics and quantum field theory (see, for instance, [3,14,6,20]).

Our motivation for such studies comes, on the one hand, from the preceding discussion and the promising contribution
of the powerful tool that the C∗-property offers to such studies and, on the other hand, from the physical examples of
locally convex quasi C∗-normed algebras in “dynamics of the BCS–Bogolubov model” [16] that will be shortly discussed in
Section 7.

2. Preliminaries

Throughout the whole paper we consider complex algebras and we suppose that all topological spaces are Hausdorff. If
an algebra A has an identity element, this will be denoted by 1, and an algebra A with identity 1 will be called unital.

Let A0[‖ · ‖0] be a C∗-normed algebra. The symbol ‖ · ‖0 of the C∗-norm will also denote the corresponding topology. Let
τ be a topology on A0 such that A0[τ ] is a locally convex ∗-algebra. The topologies τ , ‖ · ‖0 on A0 are called compatible,
whenever for any Cauchy net {xα} in A0[‖ · ‖0] such that xα → 0 in τ , xα → 0 in ‖ · ‖0 [8]. The completion of A0 with
respect to τ will be denoted by Ã0[τ ]. In the sequel, we shall call a directed family of seminorms that defines a locally
convex topology τ , a defining family of seminorms.

A partial ∗-algebra is a vector space A equipped with a vector space involution ∗ : A → A : x �→ x∗ and a partial multi-
plication defined on a set Γ ⊂ A × A such that:

(i) (x, y) ∈ Γ implies (y∗, x∗) ∈ Γ ;
(ii) (x, y1), (x, y2) ∈ Γ and λ,μ ∈ C imply (x, λy1 + μy2) ∈ Γ ;

(iii) for every (x, y) ∈ Γ , a product xy ∈ A is defined, such that xy depends linearly on x and y and satisfies the equality
(xy)∗ = y∗x∗ .

Given a pair (x, y) ∈ Γ , we say that x is a left multiplier of y and y is a right multiplier of x.
Quasi ∗-algebras are essential examples of partial ∗-algebras. If A is a vector space and A0 a subspace of A, which is

also a ∗-algebra, then A is said to be a quasi ∗-algebra over A0 whenever:

(i)′ The multiplication of A0 is extended on A as follows: The correspondences

A × A0 → A : (a, x) �→ ax (left multiplication of x by a) and

A0 × A → A : (x,a) �→ xa (right multiplication of x by a)

are always defined and are bilinear;
(ii)′ x1(x2a) = (x1x2)a, (ax1)x2 = a(x1x2) and x1(ax2) = (x1a)x2, for all x1, x2 ∈ A0 and a ∈ A;

(iii)′ the involution ∗ of A0 is extended on A, denoted also by ∗, such that (ax)∗ = x∗a∗ and (xa)∗ = a∗x∗ , for all x ∈ A0
and a ∈ A.

For further information cf. [3]. If A0[τ ] is a locally convex ∗-algebra, with separately continuous multiplication, its
completion Ã0[τ ] is a quasi ∗-algebra over A0 with respect to the operations:

• ax := limα xαx (left multiplication), x ∈ A0, a ∈ Ã0[τ ],
• xa := limα xxα (right multiplication), x ∈ A0, a ∈ Ã0[τ ], where {xα}α∈Σ is a net in A0 such that a = τ - limα xα .
• An involution on Ã0[τ ] like in (iii)′ is the continuous extension of the involution on A0.

A ∗-invariant subspace A of Ã0[τ ] containing A0 is called a quasi ∗-subalgebra of Ã0[τ ] if ax, xa belong to A for any
x ∈ A0, a ∈ A. One easily shows that A is a quasi ∗-algebra over A0. Moreover, A[τ ] is a locally convex space that contains

A0 as a dense subspace and for every fixed x ∈ A0, the maps A[τ ] → A[τ ] with a �→ ax and a �→ xa are continuous. An
algebra of this kind is called locally convex quasi ∗-algebra over A0.
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We denote by L†(D, H) the set of all (closable) linear operators X such that D(X) = D, D(X*) ⊇ D. The set L†(D, H)

is a partial ∗-algebra with respect to the following operations: the usual sum X1 + X2, the scalar multiplication λX , the
involution X �→ X† = X* � D and the (weak) partial multiplication X1 � X2 = X1

†*X2, defined whenever X2 is a weak right
multiplier of X1 (we shall write X2 ∈ Rw(X1) or X1 ∈ Lw(X2)), that is, iff X2 D ⊂ D(X1

†*) and X1*D ⊂ D(X2*). L†(D, H) is
neither associative nor semiassociative.

Definition 2.1. Let D be a dense subspace of a Hilbert space H. A ∗-representation π of A[τ ] is a linear map from A into
L†(D, H) (see beginning of Section 4) with the following properties:

(i) π is a ∗-representation of A0;
(ii) π(a)† = π(a∗), ∀a ∈ A;

(iii) π(ax) = π(a) � π(x) and π(xa) = π(x) � π(a), ∀a ∈ A and x ∈ A0, where � is the (weak) partial multiplication of
L†(D, H) (ibid.) Having a ∗-representation π as before, we write D(π) in the place of D and Hπ in the place of H.
By a (τ , τs∗ )-continuous ∗-representation π of A[τ ], we clearly mean continuity of π , when L†(D(π), Hπ ) carries the
locally convex topology τs∗ (see Section 4).

In what follows, we shall need the concept of a GB∗-algebra introduced by G.R. Allan [2] (see also [12]), which we
remind here. Let A[τ ] be a locally convex ∗-algebra with identity 1 and let B∗ denote the collection of all closed, bounded,
absolutely convex subsets B of A[τ ] with the properties: 1 ∈ B , B∗ = B and B2 ⊂ B . For each B ∈ B∗ , the linear span A[B] of
B is a normed ∗-algebra under the Minkowski functional ‖ · ‖B of B . When A[B] is complete for each B ∈ B∗ , then A[τ ] is
called pseudo-complete. Every unital sequentially complete locally convex ∗-algebra is pseudo-complete [1, Proposition (2.6)].
A unital locally convex ∗-algebra A[τ ] is called symmetric (resp. algebraically symmetric) if for every x ∈ A the element
1 + x∗x has an Allan-bounded inverse in A [2, pp. 91, 93] (resp. if 1 + x∗x has an inverse in A). A unital symmetric pseudo-
complete locally convex ∗-algebra A[τ ], such that B∗ has a greatest member, say B0, is said to be a GB∗-algebra over B0. In
this case, A[B0] is a C∗-algebra.

3. C∗-normed algebras with regular locally convex topology

Let A0[‖ · ‖0] be a C∗-normed algebra and Ã0[‖ · ‖0] the C∗-algebra completion of A0[‖ · ‖0]. Consider a locally convex
topology τ on A0 with the following properties:

(T1) A0[τ ] is a locally convex ∗-algebra with separately continuous multiplication.
(T2) τ � ‖ · ‖0, with τ and ‖ · ‖0 being compatible.

Then, compatibility of τ , ‖ · ‖0 implies that:

• A0[‖ · ‖0] ↪→ Ã0[‖ · ‖0] ↪→ Ã0[τ ];
• Ã0[τ ] is a locally convex quasi ∗-algebra over the C∗-normed algebra A0[‖ · ‖0], but it is not necessarily a locally convex

quasi ∗-algebra over the C∗-algebra Ã0[‖ · ‖0], since Ã0[‖ · ‖0] is not a locally convex ∗-algebra under the topology τ .

Question. Under which conditions one could have a well defined multiplication of elements in Ã0[τ ] with elements
in Ã0[‖ · ‖0]?

We consider the case that the locally convex topology τ defined by a directed family of seminorms, say (pλ)λ∈Λ , satisfies
in addition the conditions (T1) and (T2), an extra “good” condition for the C∗-norm ‖ · ‖0, called regularity condition, denoted
by (R). That is,

(R) ∀λ ∈ Λ, ∃λ′ ∈ Λ and γλ > 0: pλ(xy) � γλ‖x‖0 pλ′(y), ∀x, y ∈ A0
[‖ · ‖0

]
.

In this regard, we have the following

Lemma 3.1. Suppose A0[‖ · ‖0] is a C∗-normed algebra and τ a locally convex topology on A0 satisfying the conditions (T1), (T2) and
the regularity condition (R) for ‖ · ‖0 . Let a be an arbitrary element in Ã0[τ ] and y an arbitrary element in Ã0[‖ · ‖0]. Then, the left
resp. right multiplication of a with y is defined by

a · y = τ - lim
α,n

xα yn resp. y · a = τ - lim
α,n

ynxα,

where {xα}α∈Σ is a net in A0[τ ] converging to a, {yn}n∈N is a sequence in A0[‖ · ‖0] converging to y and ∀λ ∈ Λ, ∃λ′ ∈ Λ and
γλ > 0:

pλ(a · y) � γλ‖y‖0 pλ′(a), pλ(y.a) � γλ‖y‖0 pλ′(a).

Under this multiplication Ã0[τ ] is a locally convex quasi ∗-algebra over the C∗-algebra Ã0[‖ · ‖0].
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The proof of Lemma 3.1 follows directly from the regularity condition (R). If A0[τ ] is a locally convex ∗-algebra with
jointly continuous multiplication and τ � ‖ · ‖0, then it satisfies the regular condition (R) for ‖ · ‖0.

Lemma 3.2. Let A0[‖ · ‖0] be a C∗-normed algebra and A0[τ ] an m∗-convex algebra satisfying conditions (T2) and (R). If (pλ)λ∈Λ

is a defining family of m∗-seminorms for τ (i.e., submultiplicative ∗-preserving seminorms) and there is λ0 ∈ Λ such that pλ0 is a
norm, then τ ∼ ‖ · ‖0 , where ∼ means equivalence of the respective topologies. In particular, if A0[‖ · ‖] is a normed ∗-algebra such
that ‖ · ‖ � ‖ · ‖0 and ‖ · ‖, ‖ · ‖0 are compatible, then ‖ · ‖ ∼ ‖ · ‖0 .

Proof. By (T2) and (R) we have Ã0[‖ · ‖0] ↪→ Ã0[τ ] ↪→ Ã0[pλ0 ], which by the basic theory of C∗-algebras (see e.g.,
[18, Proposition 5.3]) implies that ‖x‖0 � pλ0 (x), for all x ∈ A0. Hence, τ ∼ ‖ · ‖0. �

By Lemma 3.2 there does not exist any normed ∗-algebra containing the C∗-algebra Ã0[‖ · ‖0] properly and densely.

We now consider whether a GB∗-algebra over the unit ball U (Ã0[‖ · ‖0]) exists in Ã0[τ ]. If Ã0[τ ] has jointly continuous
multiplication and U (Ã0[‖ · ‖0]) is τ -closed in Ã0[τ ], then Ã0[τ ] is a GB∗-algebra over U (Ã0[‖ · ‖0]) (cf. [13, Theorem 2.1]).

Theorem 3.3. Let A0[‖ · ‖0] be a unital C∗-normed algebra and A0[τ ] a locally convex ∗-algebra such that τ satisfies the con-
ditions (T1), (T2), the regularity condition (R) for ‖ · ‖0 and makes the unit ball U (Ã0[‖ · ‖0]) τ -closed in Ã0[τ ]. Then every
algebraically symmetric locally convex ∗-algebra A[τ ] such that Ã0[‖ · ‖0] ⊂ A[τ ] ⊂ Ã0[τ ] is a GB∗-algebra over U (Ã0[‖ · ‖0]).

Proof. The proof can be done in a similar way to that of [7, Theorem 2.2]. Here we give a simpler proof. Without loss of
generality we may assume that A0[‖ · ‖0] is a C∗-algebra. Then we have (see, e.g., proof of [7, Lemma 2.1]):

(1) (1 + a∗a)−1 ∈ U (A0), ∀a ∈ A.
Moreover, we show that
(2) U (A0) is the largest member in B∗(A).
It is clear that U (A0) ∈ B∗(A). Suppose now that B is an arbitrary element in B∗(A) and take a = a∗ in B . Let C(a) be

the maximal commutative ∗-subalgebra of A containing a and

C1 ≡ (
U (A0) ∩ C(a)

) · (B ∩ C(a)
)
.

Then, clearly C∗
1 = C1; by the regular condition (R) C1 is τ -bounded in C(a), while by the commutativity of U (A0) ∩ C(a)

and B ∩ C(a) one has that C 2
1 ⊂ C1. It is now easily seen that C1

τ ∈ B∗(C(a)), where B∗(C(a)) = {B ∩ C(a): B ∈ B∗(A)}. Thus,
there is B1 ∈ B∗(A) such that C1

τ = B1 ∩ C(a).
Since C(a) is commutative and pseudo-complete, B∗(C(a)) is directed [1, Theorem (2.10)]. So for each B ∈ B∗(A) there

is B1 ∈ B∗(A) such that(
B ∪ U (A0)

) ∩ C(a) ⊂ B1 ∩ C(a).

Hence

A0 ∩ C(a) ⊂ A[B1] ∩ C(a),

where A0 ∩ C(a) is a C∗-algebra and A[B1] ∩ C(a) a normed ∗-algebra. An application of Lemma 3.2 gives

‖x‖0 = ‖x‖B1 , ∀x ∈ A0 ∩ C(a). (3.1)

Furthermore, it follows from (1) that x(1 + 1
n x∗x)−1 ∈ A0. Thus,

∥∥∥∥x

(
1 + 1

n
x∗x

)−1

− x

∥∥∥∥
B1

� 1

n

∥∥xx∗x
∥∥

B1
, ∀x ∈ A[B1] ∩ C(a), n ∈ N,

which implies that A0 ∩ C(a) is ‖ ·‖B1 -dense in A[B1]∩ C(a). Therefore, from (3.1) and the fact that A0 ∩ C(a) is a C∗-algebra
we get A0 ∩ C(a) = A[B1] ∩ C(a). It follows that B ∩ C(a) ⊂ B1 ∩ C(a) = U (A0) ∩ C(a), from which we conclude

a ∈ U (A0), ∀a ∈ B, with a∗ = a. (3.2)

Now taking an arbitrary a ∈ B we clearly have a∗a ∈ B , hence from (3.2) a∗a ∈ U (A0), which gives a ∈ U (A0). So, B ⊂ U (A0)

and the proof of (2) is complete. Now, since U (A0) is the greatest member in B∗(A), we have that A[U (A0)] coincides
with the C∗-algebra A0, therefore it is complete. So [1, Proposition 2.7] implies that A[τ ] is pseudo-complete, hence a
GB∗-algebra over U (A0). �
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4. Locally convex quasi C∗-normed algebras

Let A0[‖ · ‖0] be a C∗-normed algebra and τ a locally convex topology on A0 with {pλ}λ∈Λ a defining family of semi-
norms. Suppose that τ satisfies the properties (T1), (T2). The regularity condition (R), considered in the previous Section 2,
for ‖ · ‖0, is too strong (see Section 6). So in the present section we weaken this condition, and we use it together with
the conditions (T1), (T2), in order to investigate the locally convex quasi ∗-algebra Ã0[τ ]. The weakened condition (R) will be
denoted by (T3) and it will read as follows:

(T3) ∀λ ∈ Λ, ∃λ′ ∈ Λ and γλ > 0: pλ(xy) � γλ‖x‖0 pλ′ (y), for all x, y ∈ A0 with xy = yx.

Then, we first consider the question stated in Section 3, just before Lemma 3.1, concerning a well defined multiplication
between elements of Ã0[τ ] and Ã0[‖ · ‖0].

If A0[‖ · ‖0] is commutative and τ satisfies the conditions (T1)–(T3), then τ fulfills clearly the regularity condition (R)

for ‖ · ‖0, and so by Lemma 3.1, for arbitrary a ∈ Ã0[τ ] and y ∈ Ã0[‖ · ‖0] the left and right multiplications a · y and y · a
are defined, respectively, and Ã0[τ ] is a locally convex quasi ∗-algebra over the C∗-algebra Ã0[‖ · ‖0].

We consider now the afore-mentioned question in the noncommutative case; for this we set the following

Definition 4.1. Let a ∈ Ã0[τ ] and y ∈ Ã0[‖ · ‖0]. We shall say that y commutes strongly with a if there is a net {xα}α∈Σ in
Ã0[‖ · ‖0] such that xa

τ
−→ a and xα y = yxα , for every α ∈ Σ .

• In the rest of the paper, Ã0[‖ · ‖0]∼[τ ], denotes the completion of the C∗-algebra Ã0[‖ · ‖0] with respect to the locally
convex topology τ . As a set it clearly coincides with Ã0[τ ], but there are cases that we need to distinguish them (see
Remark 4.6).

Remark 4.2. Let a ∈ Ã0[τ ] and y ∈ Ã0[‖ · ‖0]. Whenever y ∈ A0, the multiplications ay and ya are always defined by

ay = lim
α

xα y and ya = lim
α

yxα,

where {xα}α∈Σ is a net in A0 converging to a with respect to τ . Hence, we may define the notion y commutes with a, as
usually, i.e., when ay = ya. But, even if y commutes with a, one has, in general, that y does not commute strongly with a. Thus,
the notion of strong commutativity is clearly stronger than that of commutativity.

Lemma 4.3. Let A0[‖ · ‖0] be a C∗-normed algebra and τ a locally convex topology on A0 that satisfies the properties (T1)–(T3). Let
a ∈ Ã0[τ ] and y ∈ Ã0[‖ · ‖0] be strongly commuting. Then the multiplications a · y resp. y · a are defined by

a · y = τ - lim
α

xα y resp. y · a = τ - lim
α

yxα and a · y = y · a,

where {xα}α∈Σ is a net in Ã0[‖ · ‖0], τ -converging to a and commutating with y. The preceding multiplications provide an extension
of the multiplication of A0 . Moreover, an analogous condition to (T3) holds for the elements a, y, i.e.,

(T′
3) ∀λ ∈ Λ, ∃λ′ ∈ Λ and γλ > 0: pλ(a · y) � γλ‖y‖0 pλ′ (a).

Proof. Existence of the τ - limα xα y in Ã0[τ ]:
Note that {xα y}α∈Σ is a τ -Cauchy net in Ã0[‖ · ‖0]. Indeed, from (T3), for every λ ∈ Λ, there are λ′ ∈ Λ and γλ > 0 such

that

pλ(xα y − xα′ y) = pλ

(
(xα − xα′)y

)
� γλ‖y‖0 pλ′(xα − xα′)

α,α′−−→ 0.

Hence, τ - limα xα y exists in Ã0[‖ · ‖0]∼[τ ], which, as already noticed, as a set clearly coincides with Ã0[τ ].
The existence of the τ - limα yxα in Ã0[‖ · ‖0]∼[τ ] is similarly shown and clearly τ - limα yxα = τ - limα xα y.
Independence of τ - limα xα y of the choice of the net {xα}α∈Σ :
Let {x′

β}β∈Σ ′ be another net in A0 such that x′
β

τ−→ a and x′
β y = yx′

β , for all β ∈ Σ ′ . Then,

xα − x′
β

τ−→ 0 with
(
xα − x′

β

)
y = y

(
xα − x′

β

)
, ∀(α,β) ∈ Σ × Σ ′.

Moreover, by (T3), for every λ ∈ Λ, there exist λ′ ∈ Λ and γλ > 0 such that

pλ

((
xα − x′

β

)
y
)
� γλ‖y‖0 pλ′

(
xα − x′

β

)
α,β
−−→ 0;

this completes the proof of our claim. Thus, we set

a · y := τ - lim xα y, resp. y · a := τ - lim yxα;
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this clearly implies a · y = y · a. Furthermore, using again (T3) we conclude that

∀λ ∈ Λ, ∃λ′ ∈ Λ and γλ > 0: pλ(a · y) � γλ‖y‖0 pλ′(a), ∀a ∈ Ã0[τ ] and y ∈ Ã0
[‖ · ‖0

]
,

and this proves (T′
3). �

Now, following [8] we define notions of positivity for the elements of Ã0[τ ].

Definition 4.4. Let a ∈ Ã0[τ ]. Consider the set

(A0)+ := {
x ∈ A0: x∗ = x and spA0(x) ⊆ [0,∞)

}
,

where spA0(x) means spectrum of x in A0. Clearly (A0)+ is contained in the positive cone of the C∗-algebra Ã0[‖ · ‖0]. The
element a is called quasi-positive if there is a net {xα}α∈Σ in (A0)+ such that xα

τ
−→ a. In particular, a is called commutatively

quasi-positive if there is a commuting net {xα}α∈Σ in (A0)+ such that xα
τ

−→ a.

Denote by Ã0[τ ]q+ the set of all quasi-positive elements of Ã0[τ ] and by Ã0[τ ]cq+ the set of all commutatively quasi-positive
elements of Ã0[τ ].

An easy consequence of Definition 4.4 is the following

Lemma 4.5.

(1)
(A0)+ ⊂ Ã0[τ ]cq+

∩ ∩
(A0)+‖·‖0 = Ã0

[‖ · ‖0
]
+ ⊂ Ã0[τ ]q+.

(2) Ã0[τ ]q+ is a positive wedge, but it is not necessarily a positive cone. Ã0[τ ]cq+ is not even a positive wedge, in general.

Remark 4.6. As we have mentioned before, the equality Ã0[‖ · ‖0]∼[τ ] = Ã0[τ ] holds set-theoretically. We consider the
following notation:

Ã0
[‖ · ‖0

]∼[τ ]q+ ≡ {
a ∈ Ã0[τ ]: ∃ a net {xα}α∈Σ in Ã0

[‖ · ‖0
]
+ : xα

τ
−→ a

}
,

Ã0
[‖ · ‖0

]∼[τ ]cq+ ≡ {
a ∈ Ã0[τ ]: ∃ a commuting net {xα}α∈Σ in Ã0

[‖ · ‖0
]
+ : xα

τ
−→ a

}
.

Then,

Ã0
[‖ · ‖0

]∼[τ ]q+ = Ã0[τ ]q+, but Ã0
[‖ · ‖0

]∼[τ ]cq+ � Ã0[τ ]cq+, in general. (4.1)

If A0 is commutative, then

Ã0[τ ]cq+ = Ã0
[‖ · ‖0

]∼[τ ]cq+ = Ã0
[‖ · ‖0

]∼[τ ]q+ = Ã0[τ ]q+.

The following Proposition 4.7 plays an important role in the present paper. It is a generalization of Proposition 3.2 in [8],
stated for locally convex quasi C∗-algebras, to the case of locally convex quasi C∗-normed algebras.

Proposition 4.7. Let A0[‖ · ‖0] be a unital C∗-normed algebra and τ a locally convex topology on A0 that fulfills the conditions
(T1)–(T3). Suppose that the next condition (T4) holds:

(T4) The set U (Ã0[‖ · ‖0])+ ≡ {x ∈ Ã0[‖ · ‖0]+: ‖x‖0 � 1} is τ -closed in Ã0[τ ] (or, equivalently, it is τ -complete).

Then, Ã0[τ ] is a locally convex quasi ∗-algebra over A0 with the properties:

(1) a ∈ Ã0[τ ]cq+ implies that 1 + a is invertible with (1 + a)−1 in U (Ã0[‖ · ‖0])+ .
(2) For a ∈ Ã0[τ ]cq+ and ε > 0, the element aε := a · (1 + εa)−1 is well defined, a − aε ∈ Ã0[‖ · ‖0]∼[τ ]cq+ and a = τ - limε↓0 aε .

(3) Ã0[τ ]cq+ ∩ (−Ã0[τ ]cq+) = {0}.
(4) Furthermore, suppose that the following condition

(T5) Ã0[τ ]q+ ∩ Ã0[‖ · ‖0] = Ã0[‖ · ‖0]+
is satisfied. Then, if a ∈ Ã0[τ ]cq+ and y ∈ Ã0[‖ · ‖0]+ with y − a ∈ Ã0[τ ]q+ , one has that a ∈ Ã0[‖ · ‖0]+ .
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Proof. (1) There exists a commuting net {xα}α∈Σ in (A0)+ with xα
τ

−→ a and xαxα′ = xα′ xα , for all α,α′ ∈ Σ . Using prop-

erties of the positive elements in a C∗-algebra, and condition (T3) we get that for every λ ∈ Λ there are λ′ ∈ Λ and γλ > 0
such that:

pλ

(
(1 + xα)−1 − (1 + xα′)−1) = pλ

(
(1 + xα)−1(xα′ − xα)(1 + xα′)−1)

� γλ

∥∥(1 + xα)−1
∥∥

0

∥∥(1 + xα′)−1
∥∥

0 pλ′(xα′ − xα) � γλpλ′(xα′ − xα)
α,α′−−→ 0.

Hence {(1 + xα)−1}α∈Σ is a Cauchy net in Ã0[τ ] consisting of elements of U (Ã0[‖ · ‖0])+ , the latter set being τ -closed
by (T4). Hence, there exists y ∈ U (Ã0[‖ · ‖0])+ such that

(1 + xα)−1
τ
−→ y. (4.2)

We shall show that (1 + a)−1 exists in U (Ã0[‖ · ‖0])+ and coincides with y. It is easily seen that, for each index α ∈ Σ ,
(1 + xα)−1 commutes strongly with (1 + a), so that (1 + a) · (1 + xα)−1 is well defined (Lemma 4.3). Similarly, (xα − a) ·
(1 + xα)−1 = 1 − (1 + a) · (1 + xα)−1 is well defined, therefore using (T′

3) of Lemma 4.3, we have that for all λ ∈ Λ there are
λ′ ∈ Λ and γλ > 0 with

pλ

(
1 − (1 + a) · (1 + xα)−1) = pλ

(
(xα − a) · (1 + xα)−1) � γλpλ′(xα − a)

α
−→ 0.

Thus, (1 + a) · (1 + xα)−1
τ

−→ 1. By the above,

1 + xα
τ
−→ 1 + a and (1 + xα)y = y(1 + xα), ∀α ∈ Σ.

Hence, y commutes strongly with 1 + a, therefore (1 + a) · y is well defined by Lemma 4.3. Now, since xα
τ

−→ a, we have
that

∀λ ∈ Λ and ∀ε > 0, ∃α0 ∈ Σ : pλ(xα′ − a) < ε, ∀α′ � α0. (4.3)

Using (T3), (T′
3) of Lemma 4.3, and relations (4.3), (4.2) we obtain

pλ

(
(1 + a) · (1 + xα)−1 − (1 + a) · y

)
� pλ

(
(1 + a) · (1 + xα)−1 − (1 + xα0)(1 + xα)−1)

+ pλ

(
(1 + xα0)(1 + xα)−1 − (1 + xα0)y

) + pλ

(
(1 + xα0)y − (1 + a)y

)
� γλpλ′(a − xα0) + γλ‖1 + xα0‖0 pλ′

(
(1 + xα)−1 − y

) + γλpλ′(xα0 − a)

< 2ε + γλ‖1 + xα0‖0 pλ′
(
(1 + xα)−1 − y

)
, ∀ε > 0.

Hence,

0 � lim
α

pλ

(
(1 + a) · (1 + xα)−1 − (1 + a) · y

)
� 2ε, ∀ε > 0,

which implies

lim
α

pλ

(
(1 + a) · (1 + xα)−1 − (1 + a) · y

) = 0.

Consequently,

(1 + a) · (1 + xα)−1
τ

−→ (1 + a) · y. (4.4)

Similarly, (1 + xα)−1 · (1 + a)
τ

−→ y · (1 + a). So from (4.3) and (4.4) we conclude that (1 + a) · y = y · (1 + a) = 1, therefore
y = (1 + a)−1.

(2) By (1), for every ε > 0, the element (1 + εa)−1 exists in U (Ã0[‖ · ‖0])+ , and commutes strongly with a. Hence (see
Lemma 4.3), aε := a · (1 + εa)−1 is well defined. Moreover, applying (T′

3) of Lemma 4.3, we have that for all λ ∈ Λ, there
exist λ′ ∈ Λ and γλ > 0 such that

pλ

(
1 − (1 + εa)−1) = εpλ

(
a · (1 + εa)−1) � εγλ

∥∥(1 + εa)−1
∥∥

0 pλ′(a) � εγλ pλ′(a).

Therefore,

τ - lim
ε↓0

(1 + εa)−1 = 1. (4.5)

On the other hand, since 1 − (1 + εa)−1 commutes strongly with a and aε = ε−1(1 − (1 + εa)−1), ε > 0, we have(
1 − (1 + εa)−1) · a = a · (1 − (1 + εa)−1) = a − aε ∈ Ã0

[‖ · ‖0
]∼[τ ]cq+. (4.6)

Using (4.5), (4.6) and the same arguments as in (4.4), we get that τ - limε↓0 aε = a.
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(3) Let a ∈ Ã0[τ ]cq+ ∩ (−Ã0[τ ]cq+) and ε > 0 be sufficiently small. By (2) (see also Remark 4.6), we have

Ã0
[‖ · ‖0

]∼[τ ]cq+ � a · (1 + εa)−1
τ

−→ a; in the same way − a · (1 − εa)−1
τ

−→ −a.

Now the element

xε ≡ a · (1 + εa)−1 − (−a) · (1 − εa)−1 = 2a · (1 + εa)−1(1 − εa)−1

belongs to Ã0[‖ · ‖0]+ by (1) and the functional calculus of commutative C∗-algebras. Similarly, −xε = 2(−a) · (1−εa)−1(1+
εa)−1 ∈ Ã0[‖ · ‖0]+ . Hence,

xε ∈ Ã0
[‖ · ‖0

]
+ ∩ (−Ã0

[‖ · ‖0
]
+
) = {0}, so that a · (1 + εa)−1 = −a · (1 − εa)−1.

Furthermore, by (2),

a = τ - lim
ε↓0

a · (1 + εa)−1 = τ - lim
ε↓0

(−a) · (1 − εa)−1 = −a, so a = 0.

(4) Note that y − aε = (y − a) + (a − aε) ∈ Ã0[τ ]q+ , since (by (4) and (2) resp.) the elements y − a, a − aε belong to
Ã0[τ ]q+ and the latter set is a positive wedge according to Lemma 4.5(2). On the other hand,

aε = a · (1 + εa)−1 = (1 + εa)−1 · a = ε−1(1 − (1 + εa)−1) ∈ Ã0
[‖ · ‖0

]
.

Thus, taking under consideration the assumption (T5) we conclude that

y − aε ∈ Ã0[τ ]q+ ∩ Ã0
[‖ · ‖0

] = Ã0
[‖ · ‖0

]
+,

which clearly gives ‖aε‖0 � ‖y‖0, for every ε > 0. Applying (T4), we show that a ∈ Ã0[‖ · ‖0]+ . �
Definition 4.8. Let A0[‖ · ‖0] be a unital C∗-normed algebra, τ a locally convex topology on A0 satisfying the conditions
(T1)–(T5) (for (T4), (T5) see the previous proposition). Then,

• a quasi ∗-subalgebra A of the locally convex quasi ∗-algebra Ã0[τ ] over A0 containing Ã0[‖ · ‖0] is said to be a locally
convex quasi C∗-normed algebra over A0.

• A locally convex quasi C∗-normed algebra A over A0 is said to be normal if a · y ∈ A whenever a ∈ A and y ∈ Ã0[‖ · ‖0]
commute strongly.

• A locally convex quasi C∗-normed algebra A over A0 is called a locally convex quasi C∗-algebra if A0[‖ · ‖0] is a
C∗-algebra.

Note that the condition (T3) in the present paper is weaker than the condition

(T3) ∀λ ∈ Λ, ∃λ′ ∈ Λ: pλ(xy) � ‖x‖0 pλ′ (y), ∀x, y ∈ A0 with xy = yx

in [8]. Nevertheless, results for locally convex quasi C∗-algebras in [8] are valid in the present paper for the wider class of
locally convex C∗-normed algebras. It follows, by the very definitions, that a locally convex quasi C∗-algebra is a normal locally
convex quasi C∗-normed algebra. A variety of examples of locally convex quasi C∗-algebras are given in [8, Sections 3 and 4].
Examples of locally convex quasi C∗-normed algebras are presented in Sections 6 and 7.

An easy consequence of Definition 4.8 and Lemma 4.3 is the following

Lemma 4.9. Let A0[‖ · ‖0] and τ be as in Definition 4.8. Then the following hold:

(1) Ã0[τ ] is a normal locally convex quasi C∗-normed algebra over A0 .
(2) Suppose A is a commutative locally convex quasi C∗-normed algebra over A0 . Then A · Ã0[‖ · ‖0] ≡ linear span of {a · y:

a ∈ A, y ∈ Ã0[‖ · ‖0]} is a commutative locally convex quasi C∗-algebra over Ã0[‖ · ‖0] under the multiplication a · y
(a ∈ A, y ∈ Ã0[‖ · ‖0]). In particular, if A is normal, then A is a commutative locally convex quasi C∗-algebra over Ã0[‖ · ‖0].

5. Commutative locally convex quasi C∗-normed algebras

In this section, we discuss briefly some results on the structure of a commutative locally convex quasi C∗-normed algebra
A[τ ] and on a functional calculus for its quasi-positive elements, that are similar to those in [8, Sections 5 and 6].

Let A[τ ] be a commutative locally convex quasi C∗-normed algebra over A0 (see Definition 4.8). Then,

A0
[‖ · ‖0

] ⊂ Ã0
[‖ · ‖0

] ⊂ A[τ ] ⊂ A[τ ] · Ã0
[‖ · ‖0

] ⊂ Ã0[τ ],
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where A0[‖ · ‖0] is a commutative unital C∗-normed algebra and A[τ ] · Ã0[‖ · ‖0] is a commutative locally convex quasi
C∗-algebra over the unital C∗-algebra Ã0[‖ · ‖0] according to Lemma 4.9(2). Thus, using some results of Sections 5, 6 in [8]
for the latter algebra we obtain information for the structure of A[τ ].

Let W be a compact Hausdorff space, C∗ = C ∪ {∞}, and let F(W )+ be a set of C∗-valued positive continuous functions
on W , which take the value ∞ on at most a nowhere dense subset W0 of W . The set

F(W ) ≡ {
f g0 + h0: f ∈ F(W )+ and g0,h0 ∈ C(W )

}
,

where C(W ) is the C∗-algebra of all continuous C-valued functions on W , is called the set of C∗-valued continuous functions
on W generated by the wedge F(W )+ and the C∗-algebra C(W ). Using [8, Definition 5.6] and F(W ) we get the following
theorem, which is an application of Theorem 5.8 of [8] for the commutative locally convex quasi C∗-algebra A[τ ] · Ã0[‖ · ‖0]
over the unital commutative C∗-algebra Ã0[‖ · ‖0], with A[τ ]q+ · Ã0[‖ · ‖0], in the place of M(A0, A[τ ]q+).

Theorem 5.1. There exists a map Φ from A[τ ]q+ · Ã0[‖ · ‖0] onto F(W ), where W is the compact Hausdorff space corresponding to
the Gel’fand space of the unital commutative C∗-algebra Ã0[‖ · ‖0], such that:

(i) Φ(A[τ ]q+) = F(W )+ and Φ(λa + b) = λΦ(a) + Φ(b), ∀a,b ∈ A[τ ]q+ , λ � 0;
(ii) Φ is an isometric ∗-isomorphism from Ã0[‖ · ‖0] onto C(W );

(iii) Φ(ax) = Φ(a)Φ(x), Φ((λa + b)x) = (λΦ(a) + Φ(b))Φ(x) and Φ(a(x1 + x2)) = Φ(a)(Φ(x1) + Φ(x2)), ∀a,b ∈ A[τ ]q+ ,
x, x1, x2 ∈ A0 and λ � 0.

• Further we consider a functional calculus for the quasi-positive elements of the commutative locally convex quasi
C∗-normed algebra A[τ ] over A0. For this, we must extend the multiplication of A[τ ].

Let a,b ∈ A[τ ]q+ . Then (see also [8, Definition 6.1]), a is called left multiplier of b if there are nets {xα}α∈Σ, {yβ}β∈Σ ′ in
(A0)+ such that xα

τ
−→ a, yβ

τ
−→ b and xα yβ

τ
−→ c, where the latter means that the double indexed net {xα yβ}(α,β)∈Σ×Σ ′

converges to c ∈ A[τ ]. Then, we set

a · b := c = τ - lim
α,β

xα yβ,

where the multiplication a ·b is well defined, in the sense that it is independent of the choice of the nets {xα}α∈Σ, {yβ}β∈Σ ′ ,
as follows from the proof of Lemma 6.2 in [8] applying arguments of the proof of Proposition 4.7. In the sequel, we simply
denote a · b by ab. In analogy to Definition 6.3 of [8], if x, y ∈ Ã0[‖ · ‖0] and a,b ∈ A[τ ]q+ with a left multiplier of b, we
may define the product of the elements ax and by as follows:

(ax)(by) := (ab)xy.

The spectrum of an element a ∈ A[τ ]q+ , denoted by σÃ0[‖·‖0](a), is defined as in Definition 6.4 of [8].
So using Theorem 5.1, it is shown (cf., for instance, Lemma 6.5 in [8]) that for every a ∈ A[τ ]q+ , one has that σÃ0[‖·‖0](a)

is a locally compact subset of C∗ and σÃ0[‖·‖0](a) ⊂ R+ ∪ {∞}.

According to the above, and taking into account the comments after Lemma 6.5 in [8] with Ã0[‖ · ‖0] in the place of A0,
the next Theorem 5.2 provides a generalization of [8, Theorem 6.6] in the setting of commutative locally convex quasi C∗-
normed algebras. In particular, Theorem 5.2 supplies us with a functional calculus for the quasi-positive elements of the
commutative locally convex quasi C∗-normed algebra A[τ ].

Theorem 5.2. Let a ∈ A[τ ]q+ . Let an be well defined for some n ∈ N. Then there is a unique ∗-isomorphism f → f (a) from⋃n
k=1 Ck(σÃ0[‖·‖0](a)) [8, p. 540, (6.3)] into A[τ ] · Ã0[‖ · ‖0] such that:

(i) If u0(λ) = 1, with u0 ∈ ⋃n
k=1 Ck(σÃ0[‖·‖0](a)) and λ ∈ σÃ0[‖·‖0](a), then u0(a) = 1.

(ii) If u1(λ) = λ with u1 ∈ ⋃n
k=1 Ck(σÃ0[‖·‖0](a)) and λ ∈ σÃ0[‖·‖0](a), then u1(a) = a.

(iii) (λ1 f1 + f2)(a) = λ1 f1(a) + f2(a), ∀ f1, f2 ∈ Ck(σÃ0[‖·‖0](a)) and λ1 ∈ C; ( f1 f2)(a) = f1(a) f2(a), ∀ f j ∈ Ck j (σÃ0[‖·‖0](a)),

j = 1,2, with k1 + k2 � n.
(iv) Denoting with Cb(σÃ0[‖·‖0](a)) the C∗-algebra of all bounded and continuous functions on σÃ0[‖·‖0](a), the map f → f (a) re-

stricted to the latter C∗-algebra is an isometric ∗-isomorphism, with values on on the closed ∗-subalgebra of Ã0[‖ · ‖0] generated
by 1 and (1 + a)−1 .

Applying Theorem 5.2 and Proposition 4.7 in the proof of [8, Corollary 6.7] we get the following

Corollary 5.3. Let a ∈ A[τ ]q+ and n ∈ N. Then, there exists unique b in A[τ ]q+ · Ã0[‖ · ‖0] such that a = bn. The unique element b is

called quasi nth-root of a and we write b = a
1
n .
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6. Structure of noncommutative locally convex quasi C∗-normed algebras

Using the notation of [8, Section 4] (see also [3]), let H be a Hilbert space, D a dense subspace of H and M0[‖ · ‖0] a
unital C∗-normed algebra on H, such that

M0 D ⊂ D, but M̃0
[‖ · ‖0

]
D �⊂ D.

Then, the restriction M0 � D of M0 to D is an O ∗-algebra on D, so that an element X of M0 may be regarded as an
element X � D of M0�D. Moreover, let

M0 ⊂ M ⊂ L†(D, H),

where M is an O ∗-vector space on D, that is, a ∗-invariant subspace of L†(D, H). Denote by B(M) the set of all bounded
subsets of D[tM] (tM is the graph topology on M; see [14, p. 9]) and by B f (D) the set of all finite subsets of D. Then
B f (D) ⊂ B(M) and both of them are admissible in the sense of [8, p. 522].

We recall the topologies τs∗ , τ u∗ (B), τ u∗ (M) defined in [8, pp. 522–523]. More precisely, for an arbitrary admissible
subset B of B(M), and any M ∈ B consider the following seminorm:

pM
† (X) := sup

ξ∈M

{‖Xξ‖ + ∥∥X†ξ
∥∥}

, X ∈ M.

We call the corresponding locally convex topology on M induced by the preceding family of seminorms, strongly∗ B-uniform
topology and denote it by τ u∗ (B). In particular, the strongly∗ B(M)-uniform topology will be simply called strongly∗

M-uniform topology and will be denoted by τ u∗ (M). In Schmüdgen’s book [17], this topology is called bounded topology.
The strongly∗ B f (D)-uniform topology is called strong∗-topology on M, denoted by τs∗ . All three topologies are related in
the following way:

τs∗ � τ u∗ (B) � τ u∗ (M).

Then, one gets that

M0
[‖ · ‖0

] ⊂ M̃0
[‖ · ‖0

] ⊂ M̃0
[
τ u∗

] ⊂ M̃0[τs∗ ] ⊂ L†(D, H). (6.1)

In this regard, we have now the following

Proposition 6.1. Let M0[‖ · ‖0], M be as before. Let B be any admissible subset of B(M). Then M̃0[τ u∗ (B)] is a locally convex quasi
C∗-normed algebra over M0 , which is contained in L†(D, H). In particular, M̃0[τs∗ ] is a locally convex quasi C∗-normed algebra
over M0 . Furthermore, if A ∈ M̃0[τ u∗ (B)] and Y ∈ M̃0[‖ · ‖0] commute strongly, then A � Y is well defined and

A � Y = A · Y = Y · A = Y � A.

Proof. It is easily checked that M̃0[τ u∗ (B)] and M̃0[τs∗ ] are locally convex quasi C∗-normed algebras over M0. Suppose
now that A ∈ M̃0[τ u∗ (B)] and Y ∈ M̃0[‖ · ‖0] commute strongly. Then, there is a net {Xα}α∈Σ in M0 such that XαY = Y Xα ,
for all α ∈ Σ and A = τ u∗ (B) − limα Xα . Since(

A†ξ
∣∣Yη

) = lim
α

(
X†

αξ
∣∣Yη

) = lim
α

(ξ |XαYη) = lim
α

(ξ |Y Xαη) = (ξ |Y Aη)

for all ξ,η ∈ D, it follows that A � Y is well defined and A � Y = Y A. Furthermore, since

A · Y = τ u∗ (B) − lim
α

XαY = τs∗ − lim
α

XαY ,

we have

(A · Y )ξ = lim
α

XαY ξ = lim
α

Y Xαξ = Y Aξ = (A � Y )ξ

for each ξ ∈ D. Hence, A · Y = A � Y . �
Proposition 6.2. L†(D, H)[τs∗ ] is a locally convex quasi C∗-normed algebra over L†(D)b ≡ {X ∈ L†(D): X ∈ B(H)}.

Proof. Indeed, as shown in [3, Section 2.5], L†(D)b , is a C∗-normed algebra which is τs∗ dense in L†(D, H). Hence,
L†(D, H) is a locally convex quasi C∗-normed algebra over L†(D)b . �
Remark 6.3. The following questions arise naturally:
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(1) What is exactly the C∗-algebra L†(D)∼b [‖ · ‖0]?
Under what conditions may one have the equality L†(D)∼b [‖ · ‖0] = B(H)?

(2) Is L†(D, H) a locally convex quasi C∗-algebra under the strong∗ uniform topology τ u∗ ?
More precisely, does the equality L†(D)∼b [τ u∗ ] = L†(D, H) hold?

We expect the answer to these questions to depend on the properties of the topology t† ≡ tL†(D,H) given on D and we
conjecture positive answers in the case where D ≡ D∞(T ), with T a positive self-adjoint operator in a Hilbert space H,
and ‖ · ‖0 the operator norm in B(H). We leave these questions open.

• In the rest of this section we consider conditions under which a locally convex quasi C∗-normed algebra is continuously
embedded in a locally convex quasi C∗-normed algebra of operators.

So let A[τ ] be a locally convex quasi C∗-normed algebra over A0 and D a dense subspace in a Hilbert space H. Let
π : A → L†(D, H) be a ∗-representation. Then we have the following

Lemma 6.4. Let A[τ ] be a locally convex quasi C∗-normed algebra over A0 and π : A → L†(D, H) a (τ , τ u∗ (B))-continuous
∗-representation of A. Then,

(1) π is a ∗-representation of the C∗-algebra Ã0[‖ · ‖0];
(2) π(A)[τ u∗ (B)] resp. π(A)[τs∗ ] are locally convex quasi C∗-normed algebras over π(A0).

Proof. (1) Since A0 ⊂ Ã0[‖ · ‖0] ⊂ A and π is a ∗-representation of A, it follows that

π(ay) = π(a) � π(y), ∀a ∈ Ã0
[‖ · ‖0

]
, ∀y ∈ A0. (6.2)

Now we show that

π(ab) = π(a) � π(b), ∀a,b ∈ Ã0
[‖ · ‖0

]
. (6.3)

Indeed, let a,b be arbitrary elements of Ã0[‖ · ‖0]. Then, there exists a sequence {yn} in A0 such that b = ‖ · ‖0 − limn→∞ yn .
Hence, ab = ‖ · ‖0 − limn→∞ ayn .

Moreover, it is easily seen that π is also (τ , τs∗ )-continuous and so, by (6.2),〈
π(b)ξ

∣∣π(
a∗)η〉 = lim

n→∞
〈
π(yn)ξ

∣∣π(
a∗)η〉 = lim

n→∞
〈
π(a) � π(yn)ξ

∣∣η〉
= lim

n→∞
〈
π(ayn)ξ

∣∣η〉 = 〈
π(ab)ξ

∣∣η〉
,

for every ξ,η ∈ D. Thus, (6.3) holds.
For any ξ ∈ D, we put

f (a) = 〈
π(a)ξ

∣∣ξ 〉
, a ∈ Ã0

[‖ · ‖0
]
.

Then, by (6.3), f is a positive linear functional on the unital C∗-algebra Ã0[‖ · ‖0]. Hence, we have∥∥π(a)ξ
∥∥2 = f (a∗a) � f (1)‖a‖2

0 = ‖ξ‖2‖a‖2
0

for all a ∈ Ã0[‖ · ‖0], which implies that π is bounded. This completes the proof of (1).

(2) π(A) is a quasi ∗-subalgebra of the locally convex quasi ∗-algebras π̃ (A)[τ u∗ (B)] and π̃ (A)[τs∗ ] over π(A0). Fur-
thermore, by (1), π(Ã0[‖ · ‖0]) is a C∗-algebra and

π̃ (A0)
[‖ · ‖0

] = π
(

Ã0
[‖ · ‖0

]) ⊂ π(A). �
Remark 6.5. Let A[τ ] be a locally convex quasi C∗-normed algebra over A0, and π a (τ , τ u∗ (B))-continuous ∗-representation
of A, where B is an admissible subset in B(π(A)). Let a ∈ A be strongly commuting with y ∈ Ã0[‖ · ‖0]. Then π(a)

commutes strongly with π(y). The converse does not necessarily hold. So even if A[τ ] is normal, the locally convex quasi
C∗-normed algebra π(A) over π(A0) is not necessarily normal.

We are going now to discuss the faithfulness of a (τ , τs∗ )-continuous ∗-representation of A. For this, we need some facts
on sesquilinear forms, for which the reader is referred to [8, p. 544]. We only recall that if

S(A0) := {τ -continuous positive invariant sesquilinear forms ϕ on A0 × A0},
we say that the set S(A0) is sufficient, whenever
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a ∈ A with ϕ̃(a,a) = 0, ∀ϕ ∈ S(A0), implies a = 0,

where ϕ̃ is the extension of ϕ to a τ -continuous positive invariant sesquilinear form on A × A.
From the next results, Theorem 6.6 and Corollary 6.7 can be regarded as generalizations of the analogues of the Gel’fand–

Naimark theorem, in the case of locally convex quasi C∗-algebras proved in [8, Section 7]. Theorem 6.6 is proved in the same
way as [8, Theorem 7.3].

Theorem 6.6. Let A[τ ] be a locally convex quasi C∗-normed algebra over a unital C∗-normed algebra A0 . The following statements
are equivalent:

(i) There exists a faithful (τ , τs∗ )-continuous ∗-representation of A.
(ii) The set S(A0) is sufficient.

Corollary 6.7. Suppose S(A0) is sufficient. Then, the locally convex quasi C∗-normed algebra A[τ ] over A0 is continuously embedded
in a locally convex quasi C∗-normed algebra of operators.

We end this section with the study of a functional calculus for the commutatively quasi-positive elements (see Defini-
tion 4.4) of A[τ ].

Let A[τ ] be a locally convex quasi C∗-normed algebra over a unital C∗-normed algebra A0[‖ · ‖0]. If a ∈ A[τ ]cq+ , then
by Proposition 4.7(1), the element (1 +a)−1 exists and belongs to U (Ã0[‖ · ‖0]). Denote by C∗(a) the maximal commutative
C∗-subalgebra of the C∗-algebra Ã0[‖ · ‖0] containing the elements 1 and (1 + a)−1.

Lemma 6.8. C̃∗(a)[τ ] is a commutative unital locally convex quasi C∗-algebra over C∗(a) and a ∈ C̃∗(a)[τ ]q+ .

Proof. Since C∗(a) is a unital C∗-algebra, we have only to check the properties (T1)–(T5). We show (T1); the rest of them,
as well as the fact that a ∈ C̃∗(a)[τ ]q+ are proved by the same way as in [8, Proposition 7.6 and Corollary 7.7]. From the
condition (T3) for A0[τ ], we have that for all λ ∈ Λ, there exist λ′ ∈ Λ and γλ > 0 such that

pλ(xy) � γλ‖x‖0 pλ′(y), ∀x, y ∈ C∗(a).

So, C∗(a)[τ ] is a locally convex ∗-algebra with separately continuous multiplication. �
By Lemma 6.8 and Theorem 5.2 we can now obtain a functional calculus for the commutatively quasi-positive elements

of the noncommutative locally convex quasi C∗-normed algebra A[τ ] (see also [8, Theorem 7.8, Corollary 7.9]).

Theorem 6.9. Let A[τ ] be an arbitrary locally convex quasi C∗-normed algebra over a unital C∗-normed algebra A0 and a ∈ A[τ ]cq+ .
Suppose that an is well defined for some n ∈ N. Then, there is a unique ∗-isomorphism f → f (a) from

⋃n
k=1 Ck(σC∗(a)(a)) into

A[τ ] · C∗(a) such that:

(i) If u0(λ) = 1, with u0 ∈ ⋃n
k=1 Ck(σC∗(a)(a)) and λ ∈ σC∗(a)(a), then u0(a) = 1.

(ii) If u1(λ) = λ with u1 ∈ ⋃n
k=1 Ck(σC∗(a)(a)) and λ ∈ σC∗(a)(a), then u1(a) = a.

(iii) (λ1 f1 + f2)(a) = λ1 f1(a) + f2(a), ∀ f1, f2 ∈ ⋃n
k=1 Ck(σC∗(a)(a)) and λ1 ∈ C;

( f1 f2)(a) = f1(a) f2(a), ∀ f j ∈ Ck j (σC∗(a)(a)), j = 1,2, with k1 + k2 � n.
(iv) The map f → f (a) restricted to Cb(σC∗(a)(a)) is an isometric ∗-isomorphism of the C∗-algebra Cb(σC∗(a)(a)) on the C∗-algebra

C∗(a).

Using Theorem 6.9 and applying Corollary 5.3 for the commutative unital locally convex quasi C∗-algebra C̃∗(a)[τ ], we
conclude the following

Corollary 6.10. Let A[τ ] and A0 be as in Theorem 6.9. If a ∈ A[τ ]cq+ and n ∈ N, there is a unique element b ∈ A[τ ]cq+ · C∗(a), such

that a = bn. The element b is called commutatively quasi nth-root of a and is denoted by a
1
n .

7. Applications

Locally convex quasi C∗-normed algebras arise, as we have discussed throughout this paper, as completions of a
C∗-normed algebra with respect to a locally convex topology which satisfies a series of requirements. Completions of this
sort actually occur in quantum statistics.

In statistical physics, in fact, one has to deal with systems consisting of a very large number of particles, so large
that one usually considers this number to be infinite. One begins by considering systems living in a local region V (V is,
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for instance, a bounded region of R3 for gases or liquids, or a finite subset of the lattice Z3 for crystals) and requires
that the set of local regions being directed, i.e., if V 1, V 2 are two local regions, then there exists a third local region V 3
containing both V 1 and V 2. The observables on a given bounded region V are supposed to constitute a C∗-algebra AV ,
where all AV ’s have the same norm, and so the ∗-algebra A0 of local observables, A0 = ⋃

V AV , is a C∗-normed algebra.
Its uniform completion is, obviously, a C∗-algebra (more precisely, a quasi-local C∗-algebra) that in the original algebraic
approach was taken as the observable algebra of the system. As a matter of fact, this C∗-algebraic formulation reveals
to be insufficient, since for many models there is no way of including in this framework the thermodynamical limit of
the local Heisenberg dynamics [6]. Then a possible procedure to follow in order to circumvent this difficulty is to define
in A0 a new locally convex topology, τ , called, for obvious reasons, physical topology, in such a way that the dynamics in
the thermodynamical limit belongs to the completion of A0 with respect to τ . For that purpose, a class of topologies for
the ∗-algebra A0 of local observables of a quantum system was proposed by Lassner in [15,16]. We will sketch in what
follows this construction. Let A0 be a C∗-normed algebra to be understood as the algebra of local observables described
above; thus we will suppose that A0 = ⋃

α∈Σ Aα , where {Aα}α∈Σ is a family of C∗-algebras labeled by a directed set of
indices Σ . Assume that, for every α ∈ Σ , πα is a ∗-representation of A0 on a dense subspace Dα of a Hilbert space Hα ,
i.e. each πα is a ∗-homomorphism of A0 into the partial O ∗-algebra L†(Dα, Hα) endowed, for instance, with the topology
τ u∗ (L†(Dα, Hα)). We shall assume that πα(x)Dα ⊂ Dα , for every α ∈ Σ and x ∈ A0. Since every Aα is a C∗-algebra, each
πα is a bounded and continuous ∗-representation, i.e. πα(x) ∈ B(Hα), ‖πα(x)‖ � ‖x‖0, for every x ∈ A0. So each πα can
be extended to the C∗-algebra Ã0[‖ · ‖0] (we denote the extension by the same symbol). The family is supposed to be
faithful, in the sense that if x ∈ Ã0[‖ · ‖0], x �= 0, then there exists α ∈ Σ such that πα(x) �= 0. Let us further suppose
that Dα = D∞(Mα) = ⋂

n∈N
D(Mn

α), where Mα is a self-adjoint operator. Without loss of generality we may assume that
Mα � Iα , with Iα the identity operator in B(Hα). Under these assumptions, a physical topology τ can be defined on A0 by
the family of seminorms

p f
α(x) = ∥∥πα(x) f (Mα)

∥∥ + ∥∥πα(x∗) f (Mα)
∥∥, x ∈ A0,

where α ∈ Σ and f runs over the set F of all positive, bounded and continuous functions f (t) on R+ such that

sup
t∈R+

tk f (t) < ∞, ∀k = 0,1,2, . . . .

Then, A0[τ ] is a locally convex ∗-algebra with separately continuous multiplication (i.e. (T1) holds). In order to prove that
Ã0[τ ] is a locally convex quasi C∗-normed algebra, we need to show that (T2)–(T5) also hold. For (T2), we have that, for
every α ∈ Σ ,

p f
α(x) = ∥∥πα(x) f (Mα)

∥∥ + ∥∥πα(x∗) f (Mα)
∥∥ � 2

∥∥ f (Mα)
∥∥∥∥πα(x)

∥∥ � 2
∥∥ f (Mα)

∥∥‖x‖0, x ∈ A0.

The compatibility of τ with ‖ · ‖0 follows easily from the closedness of the operators f (Mα)−1 and the faithfulness of
the family {πα}α∈Σ of *-representations.

The condition (R) does not hold, in general, but, on the other hand, if x, y ∈ A0 with xy = yx, we have

p f
α(xy) = ∥∥πα(xy) f (Mα)

∥∥ + ∥∥πα

(
(xy)∗

)
f (Mα)

∥∥
= ∥∥πα(xy) f (Mα)

∥∥ + ∥∥πα

(
x∗ y∗) f (Mα)

∥∥
�

∥∥πα(x)
∥∥(∥∥πα(y) f (Mα)

∥∥ + ∥∥πα

(
y∗) f (Mα)

∥∥)
= ∥∥πα(x)

∥∥p f
α(y) � ‖x‖0 p f

α(y).

Hence (T3) holds. As for (T4), we begin with noticing that for every α ∈ Σ , πα(A0) is an O ∗-algebra of bounded operators
in Dα . Hence, its closure in L†(Dα, Hα)[τ u∗ (L†(Dα, Hα))] is a locally convex C∗-normed algebra of operators, by Propo-
sition 6.1. Moreover, every πα can be extended by continuity to Ã0[‖ · ‖0]. The extension, that we denote by the same
symbol, takes values in L†(Dα, Hα)[τ u∗ (L†(Dα, Hα))], since this space is complete. Now, if {xλ} is a net in U (Ã0[‖ · ‖0])+
τ -converging to x ∈ Ã0[‖ · ‖0], then x = x∗ and πα(xλ) → πα(x) in L†(Dα, Hα)[τ u∗ (L†(Dα, Hα))], for every α ∈ Σ . Thus
πα(x) � 0 and ‖πα(x)‖ � 1, for every α ∈ Σ , since the same is true for every xλ . By constructing a faithful representation π
by the direct sum of πα ’s, one easily realizes that x � 0 and ‖x‖0 � 1. The inclusion Ã0[τ ]q+ ∩ Ã0[‖ · ‖0] ⊂ Ã0[‖ · ‖0]+ in
condition (T5) can be proved in similar fashion. The converse inclusion comes from Lemma 4.5. Thus, condition (T5) holds.

Then we conclude the following:

Statement 7.1. A ≡ Ã0[τ ] is a locally convex quasi C∗-normed algebra, which can be understood as the quasi ∗-algebra of
the observables of the physical system.

A more concrete realization of the situation discussed above is obtained for the so-called BCS model. Let V be a finite
region of a d-dimensional lattice Λ and |V | the number of points in V . The local C∗-algebra AV is generated by the Pauli
operators �σp = (σ 1

p , σ 2
p , σ 3

p ) and by the unit 2 × 2 matrix ep at every point p ∈ V . The �σp ’s are copies of the Pauli matrices
localized in p.
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If V ⊂ V ′ and AV ∈ AV , then AV → AV ′ = AV ⊗ (
⊗

p∈V ′\V ep) defines the natural imbedding of AV into AV ′ .

Let �n = (n1,n2,n3) be a unit vector in R3, and put (�σ · �n) = n1σ
1 +n2σ

2 +n3σ
3. Then, denoting as Sp(�σ · �n) the spectrum

of �σ · �n, we have Sp(�σ · �n) = {1,−1}. Let |�n〉 ∈ C2 be a unit eigenvector associated with 1.
Let now denote by n := {�np}p∈Λ an infinite sequence of unit vectors in R3 and |n〉 = ⊗

p |�np〉 the corresponding unit

vector in the infinite tensor product H∞ = ⊗
p C2

p . We put A0 = ⋃
V AV and D0

n = A0|n〉 and we denote the closure of D0
n

in H∞ by Hn . As we saw above, to any sequence n of three-vectors there corresponds a state |n〉 of the system. Such a
state defines a realization πn of A0 in the Hilbert space Hn . This representation is faithful, since the norm completion A S

of A0 is a simple C∗-algebra. A special basis for Hn is obtained from the ground state |n〉 by flipping a finite number of
spins using the following strategy:

Let �n be a unit vector in R3, as above, and |�n〉 the corresponding vector of C2. Let us choose two other unit vectors �n1, �n2

so that (�n, �n1, �n2) form an orthonormal basis of R3. We put �n± = 1
2 (�n1 ± i�n2) and define |m, �n〉 := (�σ · �n−)m|�n〉 (m = 0,1).

Then we have

(�σ · �n)|m, �n〉 = (−1)m|m, �n〉 (m = 0,1).

Thus, the set {|m,n〉 = ⊗
p |mp, �np〉; mp = 0,1,

∑
p mp < ∞} forms an orthonormal basis in Hn .

In this space we define the unbounded self-adjoint operator Mn by

Mn|m,n〉 =
(

1 +
∑

p

mp

)
|m,n〉. (7.1)

Mn counts the number of the flipped spins in |m,n〉 with respect to the ground state |n〉. Now we put

Dn =
⋂

k

D
(
Mk

n

)
.

The representation πn is defined on the basis vectors {|m,n〉} by

πn
(
σ i

p

)|m,n〉 = σ i
p|mp, �np〉 ⊗

( ∏
p′ �=p

⊗|mp′ , �np′ 〉
)

(i = 1,2,3).

This definition is then extended in obvious way to the whole space Hn . It turns out that πn is a bounded representation
of A0 in the Hilbert space Hn . For more details we refer to [20,11]. Hence, the procedure outlined above applies, showing
that a natural framework for discussing the BCS model is, indeed, provided by locally convex quasi C∗-normed algebras
considered in this paper. We argue that an analysis similar to that of [11] can be carried out also in the present context, so
that for suitable finite volume hamiltonians, the thermodynamical limit of the local dynamics can be appropriately defined
in Ã0[τ ].
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