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Let 4 denote the alternation limit algebra, studied by Hopenwasser and Power
and by Poon, which is the closed direct limit of upper triangular matrix algebra
determined by refinement embeddings of multiplicity r, and standard embeddings
of multiplicity s,. It is shown that the quotient of the isometric automorphism
group by the approximately inner automorphisms is the abelian group Z¢, where d
is the number of primes that are divisors of infinitely many terms of each of the
sequences (r,) and (s,). This group is also the group of automorphisms of the
fundamental relation of A. " 1993 Academic Press, Inc.

1. INTRODUCTION

In Hopenwasser and Power [HF] and in Poon [Po] the alternation
limit algebras described below were classified. In this note we determine the
quotient Out;,,,, A = Aut,,,, A/I(A) for these algebras where Aut,,,, 4 is
the group of isometric algebra automorphisms and 7(4) is the normal sub-
group of Aut A of approximately inner automorphisms. An automorphism
g is said to be approximately inner if there exists a sequence (b,) of
invertible elements such that a(a)=Ilim, b, ab, ' for all a in A.

Let (r,), (s¢) be sequences of positive intergers. Write T(r,, s, ) for the
Banach algebra limit of the system

C-7,-T7,,—T — e,

risin

where T, is the algebra of upper triangular » x n matrices and where the
embeddings are unital and are alternately of refinement type (p(a) = (a,1,),
with 1, the ¢ x 1 identity) and of standard type (o(a)=a@® --- @a, t times).

THEOREM 1. Outy, (T(ry, 5,)) = Z where d is the number of primes p
that are divisors of infinitely many terms of each of the sequences (r,) and
(s¢)- (If d= oo interpret Z* as the countably generated free abelian group.)

462

0022-1236/93 $5.00

Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.



OUTER AUTOMORPHISM GROUPS 463

The proof uses the methods of [HP]. A major step is to characterize the
automorphism group of the fundamental relation, or semigroupoid, which
is associated with an alternation algebra. This order-topological result is of
independent interest and is stated and proved separately below.

Let r and s be the generalised integers r,r,... and s,s, ..., respectively,
and suppose that p is a prime satisfying the condition in the statement of
the theorem. Then p™ divides r and s. Thus we can arrange new formal
products r=1t,t,.., s=uu,.., with t, =u, = p for all odd k. As noted in
[HP], because of the commutation of refinement and standard embed-
dings, we can easily display a commuting zig zag diagram to show that
T(ry, s,) and T(z,, u,) are isometrically isomorphic. However, with the
new formal product we can construct one of the generators of Out,,, A.
Consider the automorphism o determined by the following commuting
diagram, where the matrix algebras are omitted for notational enconomy:

\ / "'T(tk’uk)
/ e e T )

It will be shown that « provides a nonzero coset and that the totality of
such cosets provides a generating set for the isometric outer automorphism

group.

2. PROOF OF THEOREM 1

Let X, or X(r,, s,), be the Cantor space

o2

ﬁ {1, cos_i b x T1 {1, e},

k= — k=1

where we have fixed the sequences (r,) and (s,). Define the equivalence
relation R on X to consist of the pairs (x, y) of points x = (x,), ¥ = (¥s),
in X with x, =y, for all large enough and small enough k. R carries a
natural locally compact Hausdorff topology (giving it the structure of an
approximately finite groupoid). Write R, or R(r,, s.) for the antisymmetric
topologised subrelation of R consisting of pairs (x, ¥) in R for which x
preceeds y in the lexicographic order. Thus (x, y)e R if and only if
(x, ¥)€ R and either x = y, or for the smallest k for which x, # y, we have
X< Vi

An automorphism of R(r,,s,) is a binary relation isomorphism

580/113/2-15
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(implemented by a bijection « of the underlying space X) which is a
homeomorphism for the (relative groupoid) topology of R(ry, s.).
Necessarily « is a homeomorphism of X.

THEOREM 2. The group of automorphisms of the topological binary
relation R(r,,s,) is Z9 where d is the number of primes which divide
infinitely many terms of each of the sequences (r,) and {(s,).

Proof. Let O(x) denote the closure of the R-orbit of the point x in X.
Here ¢(x)={y:(y, x)e R}. Recall from [HP] that the pair of points
x, x* is called a gap pair if x* ¢ €(x) and

C(xT)y=C0C(x)u {x}.

Furthermore x, x* is a gap pair if and only if

(1) there exists n such that x,,=1 for all m<n,
(2) there exists p such that x,=r_ for all g= p.

Also if p is the smallest integer for which (2) holds (with r,=s_,if pis
negative), then x™ is given by

X, if j<p-—1
(xT)=<x, +1 if j=p—1
1 if jzp

The usefulness of this for our purpose is that an automorphism o« of R
necessarily maps gap pairs to gap pairs and so the coordinate description
of these pairs leads ultimately to a coordinate description of «.

Let o be an automorphism of R. Consider the (left) gap points
x,=(. 11, 1,7, r,, ..) where 1 indicates the coordinate position for s,.
Then x(x,) is necessarily a (left) gap point; thus

ax )=0C Lz 12 e 2o (5P by )

for some positive integer 1. We have

Ox )={x=0(.,1, 1, x,, x5, ) X <y forall k),

Cn(a(k‘;':)): {y= ( 1, W', YisVesrs )}’

where y, <r, for all k >t and where w’ is any word of length 27 — 2 which
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precedes (or is equal to} the word w=z_,, ,,z_,,..,z,_, in the
lexicographic order. Restating this, we have natural homeomorphisms

O(x,)x n {1, )

L”(a(x ))~ X H "k;,

k=t

where »n is the number of words w’. Moreover, these identifying
homeomorphisms induce isomorphisms between the restrictions R|{(x,)
and R{((x(x,)) and the unilateral relations R, and R,, respectively, where
R, = R(r,, uy), with u, =1 for all k&, and R, = R(r}, u, ), with u, as before,
ri=n, and ry,=r,,, - for £=2,3, ... Since z induces an isomorphism
between the restrictions, we obtain an induced isomorphism f between R,
and R,. It is well known that this means that r=r" where r=r,r,... and
r'=riry... are generalised integers. (See [P2] for example). Thus we
obtain the necessary condition that the integer » is a divisor of the
generalised integer r.

We now improve on this necessary condition.

The isomorphism between R|{(x,) and R{C(a(x,)) is given explicitly
by

(L x,x )= (e Lwl v, Yer s ),
where

Wil —1
n

+Z(h+k‘l l)mr—lzzd . (1)

RLUTY S k=1 Mg

where |w’|| is the cardinality of the set of points in the order interval from
the (2¢—2)-tuple (1, 1, .., 1) to w', and where m, =r,r,...r fork=1,2...
The identity (1) follows from the fact that there are unique canonical
R-invariant probability measures on ¢(x,) and on ¢(a(x,)) and the quan-
tities in (1) are the measures of the subsets ¢(x(x)) and O(x), respectively.
To verify these facts one must recall how the topology of a topological
binary relation is defined. In the case of R, = R|¢(x,) fix two words

(x,, X5, 0y X)) < (X, X5, ., X))
in lexicographic order. Then the set E of pairs

(X105 X2y oeos Xps Zy 10 Z 2 o)y (XT3 X5y s X7y 2y 15 Zig 2y o))

is, by definition, a basic open and closed subset of the topology. Note that
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for this set, the left and right coordinate projection maps, n,: E— ('(x,,),
7, := O(x,) are injective. In the language of groupoids, E is a G-set. If 1
is a Borel measure such that A(n,(E)) = A(n,(E)) for all closed and open
G-sets E, then 1 is said to be R-invariant. It is easy to see that this require-
ment forces 41 to be the product measure A, xA4,x.., where 2, is the
uniformly distributed probability measure on {1, ..., r, }. (One can also bear
in mind that R-invariant measures are also R-invariant, where R is the
topologlcal equivalence relation (i.e., groupoid) generated by R, and that
the R-invariant measures correspond to traces on the C*-algebra of R. In
our context C*(R) is UHF, and the R-invariant measure corresponds to
the unique trace.)

Let v(x) denote the right hand quantity of (1). Then the coordinates for
a(x) are calculated from the identity (1), bearing in mind that the
ambiguity arising from the equality v(x)=v(x*), for a gap pair x, x*, is
resolved by the known correspondence of left and right gap points.

Note that if x is in €(x,), and a(x)=y=(yp,), and |w']=1 (so that
Y o1s1s V_y4 s ¥, are equal to 1), then , by (1),

—1 _ nv(x)

- Yi—1 - Vitk |
Walen= Y Ll .
kl\::l my kzl L m,

We have obtained the identity v(a(x))=cv(x), with ¢=n/m,_,, for
all points x in €(x,) «) for which v(x) is small. In fact, because of the
R-invariance of the measures on ¢(x,) and ¢'(«(x,)), which we call 4, and
4,, respectively, it follows that v(x(x))=cv(x) for all points x for which
af{x)e O(x,). To be more precise about this, consider the left gap points

g=(.L1L 1, . 1Lr,,.),
x=(.1, 1, w, FraFig i)

’

x'=(C.LLwr—=1r,.,.)

where w is some word w,, w,, .., w,_,. Note that the set
E={((.LLwr,zio 20 (e L1 L2 0 200, ) 2, <y}

has 7,(E) = C(x)\O(x") and = (E)={(g), and so v(g)}=v(x)—v(x'). Since
o preserves orbits and G-sets we also deduce that

va(g)) = 4 (0(x(g))) = A (n,((a x 2)(E)))
= Ai(m (e x 2 )(E))) = 4, (C(a(x)N\O(afx")))
= v(a(x)) — v(2(x")).
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Thus, if we choose / large, so that we know that v(x(g)} = cv(g), we deduce
that

v(a(x)) — vla(x')) = v{alg)) = cv(g) = c(v(x) — v(x)),

from which it follows that v(x(x))=c(v(x)) for general points x with a(x)
in &(x').
We can similarly extend this identity to points in the set
Xo={(yi)e X: 3k, such that y, =1 for all k <k,}

and the extension of v given by

Pl

k=1 My

viy)= Z (Vo x—1)soS o8 + Z
k=1

for y in X,, where s,=1. The range of v on the gap points of X, is the
additive cone of rationals of the form //m, for some k=1, 2, .. and some
natural number /. The identity v(a(x))=cv(x) for x in X, shows that
multiplication by ¢ is a bijection of the cone. From this we obtain the
necessary condition that ¢ has the form
c=pl...p7

where a,€ Z, | €i<d, and where p,, ... p, are primes which divide infinitely
many terms of the sequence (r,).

We now improve further on this condition by considering the fact that
« is a homeomorphism of X and is determined by its restriction to X.

Suppose, by way of contradiction, that @, # 0 and that p, does not divide
infinitely many terms of the sequence (s,). We may assume that a, > 0. (¢
depends only on a and so we may replace a by «~ ' if a, <0.) By relabelling
we may also assume that p, divides no terms of the sequence. Without loss
of generality assume that s, > 1 and consider the proper clopen subset E of
points y= (1) in X with y , = 1. We show that «(E) is dense, which is the
desired contradiction. Observe that the range of v on En X, is the union
of the intervals [ks,, ks, +1] for k=0, 1, 2,... Pick x in X, arbitrarily,
pick j large, and consider the countable set

F(x)={x'eX,:x'=(x})and x, =x, forall k> —j}.

The range of v on F;(x) is an arithmetic progression of period 5,5, ...5;. In
view of the identity v(a(y))=cv(y), the range of v on a(E)n X, is the
union of the intervals [cks,, cks, + ¢], which is an arithmetic progression
of intervals of period cs,. It follows from our hypothesis on p, that one of
these intervals contains a point in v(F;(x)), and so a(E) meets F,(x). Since
the intersection of the sets F,(x), F,(x), ... is the singleton x, it follows that
x lies in the closure of a(E). Since X, is dense it follows that a(E) is dense
as desired.
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We have now shown that if o is an automorphism of R = R(r,, s,), then
v(z(x))=cv(x) for all x in X, where ¢ has the form ¢= p{'p} ... p% where
a,, .., a,y are integers and where p,, ... p, are primes which divide infinitely
many terms of (r;) and of (s,). It is also clear from the above that for each
such ¢ there is at most one automorphism « satisfying the identity
v(a(x))=ev(x). It follows that the map

ox—+(a,..ay)

is an injective group homomorphism from Aut R to Z“. (d may be infinite.)
It remains to show that this map is surjective. One way to do this is to start
with ¢ of the required form above and to show that the bijection of X,
induced by multiplication by ¢ (that is, the bijection o satisfying
v(a(x)) =cv(x)) does extend to an order preserving homeomorphism of X
which defines an automorphism of R. Another way, which we now follow,
is to make the connection between R(r., s,) and 7(r,, s;), and to deter-
mine generators of Aut R in terms of commuting diagrams, as we indicated
after the statement of Theorem 1.
Consider the diagram

Pry a5y

C » M, Ms‘®M,l—p—'3-—> MA.‘®M,X®M,2L>

B
I Pry I ag I Pry I a5y l

C » T — T —— T —

r Sy

The vertical maps are inclusions, where T, ,,, for example, is realised in
terms of the lexicographic order on the indices (i, j, k) of the minimal
projections e¢;®¢;®e,, in M, @M, & M,,. (For more detail concerning
this discussion, read the introduction of [HP].) The maximal ideal space
of the diagonal C*-algebra 4 n A* is naturally identified with the space X.
Indeed, x = (x,) in X corresponds to the point in the intersection of the
Gelfand supports of the projections

e(x, Ny=e, , . ®..Q®e, L ®e ® - Qe

for N=1, 2, ... Furthermore, (x, y) belongs to R= R(r,, s,) if and only if
for all large N there is a matrix unit in the appropriate upper triangular
matrix algebra with initial projection e( y, N) and final projection e(x, N).
(In fact R is the fundamental relation of the limit algebra A.)

Suppose now that r,=s, = p for all odd k and let « be the isometric
automorphism of T{(r,, s,) determined by the diagram given in the intro-
duction. Let « also denote the induced automorphism of R. We prove that
v(a(x)) = p~'v(x), completing the proof of the theorem.

Let us calculate a(e(x, N)), where N is even, x=(..,1,1,2,1,..), and
where we abuse notation somewhat and write e(x, N) for the image of
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e(x, N) in the limit algebra. Let d(N)=sy...5,r ... 75, and let e(x, N)
occupy position a(N) in the lexicographic ordering of the d(N) matrix
units. Consider the following part of the diagram defining a:

T — = 4

SN FN 4|

Then
P

pp(e(x’ N))= Z e(X, N)®ekk'

k=1

On the other hand g ,(e(x, N)) is the summation of the diagonal matrix
units in positions a(N), a(N)+d(N),..,a(N)+(p—1)d(N) in the
lexicographic order. Let these projections correspond to the matrix unit
tensors with subscripts z'" = (2", .., z¥, |) for 1 <i< p, and denote the
projections themselves by f, ..., f,,, respectively. It follows (from the partial
diagram above) that the homeomorphism a: X — X maps the support of
e(x, N) onto the union of the supports of f,, ..., f,. Denote these supports
by E(x, N), F,, ..., F, respectively. Since X, is invariant for a,

a(E(x, Nyn Xo) = O F,.nX,.

k=1

Note that x is the unique point in E(x, N)~ X, with the property that if
yveE(x, N)n X, and (x, y)e R then (x, y)e R. The point in the union of
FynX,, .., F,n X, with this minimum property is the point

1 1
u=(.11z" .29, , L1, .)

and so «(x)=wu. Finally, one can verify that v(x)=p~' and v(u)=p~2, as

desired. |

Recall that the fundamental relation R(A4) of a canonical triangular
subalgebra 4 of an AF C*-aigebra B is the topological binary relation
on the Gelfand space M(A N A*) induced by the partial isometries of 4
which normalise 4~ A* (See [P4].) In [HP] we identified R(A), for
A=T(r,, s;), with R(r,, s,). (This identification is also effected in the proof
above by virtue of the fact that a matrix unit system determines R(A4).) Let
B be an isometric automorphism of A. Then f§ induces an automorphism of
R(A) (because f(A N A*)=A N A* and § maps the normalizer onto itself).
Thus f determines an automorphism of R(r,,s;) and so by the last
theorem there is an isometric automorphism « of A such that y=«~'-f
induces the trivial automorphism of R(r,, s,). This means that y is an
isometric automorphism with v equal to the identity map on A n A*.
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LEMMA. Let y be an automorphism of T(r,, s,) which is the identity on
the diagonal subalgebra (and which is not necessarily isometric). Then 7 is
approximately inner.

Proof. Let A=T(r,,s,) and let A, > A, — ... be the direct system
defining A. The hypothesis is that y(c)=c for all ¢ in C=A4n A*. This
ensures that 7(4,) = 4, where 4, is the subalgebra generated by 4, and C.
To see this, recall from Lemma 1.2 of [P1] that there are contractive maps
P,: A— 4, which are defined in terms of limits of sums of compressions by
projections in C, and so, for a in 4,, y(a) = y(P,(a)) = P.(y(a)). The
restriction automorphism 7| 4, is necessarily inner. Indeed identify 4, with
T,® D, for appropriate r, where D is an abelian approximately finite
C*-algebra and let ;e D, 1 <i<<r—1, be the invertible elements such that
y(e o) =61 @u;. Also set uy=1. Then it follows that y(a)=u ‘au,
where

r

u= Z e, Quoly...u,_,.
i=1
Furthermore, since y(e,,)=¢,,®uou,...u, _, it follows that |ull <|y|.
Similarly |« '|| < ||y '|. The inner automorphisms Adu ', for varying n,
thus form a uniformly bounded sequence which converge pointwise on
each A,, and so determine an approximately inner automorphism. J

It follows from the lemma and the preceding discussion that

AUt A/I(A) = Aut R(4)=Z"

Remark 1. Suppose that 6 € Aut 4. Then J determines a scaled group
homomorphism d,: Ko(A) = Ky(A) which preserves the algebraic order on
the scale 2(A4) of Ky(A4). Thus, by [P3, Theorem 3.27, there is an isometric
algebra automorphism of A, ¢ say, with ¢, =4,. In particular y =¢ ' 4
has y trivial. This means that if P: A — 4 n A* is the diagonal expectation,
then P(y(e)) = e for each projection e in 4 n A* Thus to show that
Aut A/I(A)=Z¢ it remains only to show that such automorphisms { are
approximately inner.

Remark 2. There are approximately inner automorphisms of alterna-
tion algebras which are not inner. To see this, consider the standard limit
algebra A =1im(7>, ¢). Let 4 be a unimodular complex number and let
d,=he,  +A%,,+ -+ + A€y . Then d,ad;'=d, ad,' if ae T, and
m>n, from which it follows that «(a)=lim,(d,ad; ') is an isometric
approximately inner automorphism.

Suppose now that « is inner, and x(a)= gah ' for some invertible g in
A. Since a(c)=c for all ¢ in the massa C it follows that g e C. In particular
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=Bl <3 for some inner automorphism f of the form B(a)= hah '
where, for some large enough #, A€ Ton (T,.)*. However, in T, for large
m, the diagonal element A has matrix entries which are periodic with period
2”. One can now verify that if 4 is chosen so that no power of order 2% is
unity then for large enough m there exist matrix units ¢e T,~ such that
| ie — heh || > . In this case then « fails to be inner.

Remark 3. Let (x, y) be a point in R(C*(T(r,, 5,))) with x= (.., x ,,
X (s Xis X35 )y P={eos ¥_25 ¥_ 15 ¥1s V2, .. ). Then, although v(x) and v(y)
may be infinite, we may define d(x, y) as the sum

o

=
Yo(yok—x W) SseSiSe ot Y
=1 k:lrlrz...rk

Vi — X
k

because only finitely many terms are nonzero. Since d(x, y)=d(x,z)+
d(z, y), and {x, y)e R(r., s,) if and only if d(x, y)=0, it follows that
d(x, y) is a continuous real valued cocycle determining A(r,, s,) as an
analytic subalgebra of C*(A(r,, s,)). See [ V], where some special cases are
discussed as well as some general aspects of analyticity.

Note added in proof. Unfortunately the proof of the classification of alternation algebras
given in [HP] and [P4] appears to be incomplete. (It is not clear, in {P4], whether ¢ can
be chosen with the desired properties.) However, the present paper is independent of [HP]
and the arithmetic progression argument above can be adapted, in the case of an isomorphism
« between two alternation algebras, to show that the supernatural numbers for the standard
multiplicities are finitely equivalent.
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