# Steiner Quadruple Systems All of Whose Derived Steiner Triple Systems Are Nonisomorphic 

Charles C. Lindner*<br>Mathematics Department, Aubum University, Aubum, Alabama 36830

AND
Alexander Rosa ${ }^{\dagger}$

Department of Mathematics, McMaster Universily, Hamilton, Ontario, Canada L8S 4K1
Communicated by Marshall Hall, Jr.
Received March 7, 1975

## 1. Introduction

A Steiner quadruple system (or more simply a quadruple system) is a pair $(Q, \mathscr{B})$ where $Q$ is a finite set and $\mathscr{B}$ is a collection of 4 -subsets of $Q$ (called blocks) such that any 3 -subset of $Q$ belongs to exactly one block of $\mathscr{B}$. The number $|Q|$ is called the order of the quadruple system $(Q, \mathscr{B})$. It has been proved by Hanani in 1960 [4] that the spectrum for quadruple systems consists of all positive integers $n=2$ or $4(\bmod 6)$. If $(Q, G)$ is a quadruple system and $x$ is any element in $Q$ we will denote by $Q_{a}$ the set $Q\{x\}$ and the set of all triples $\{a, b, c\}$ such that $\{x, a, b, c\} \in \mathscr{B}$ by $\mathscr{B}(x)$. It is a routine matter to see that $\left(Q_{x}, \mathscr{B}(x)\right)$ is a Steiner triple system called a derived triple system (DTS) of the quadruple system ( $Q, \mathscr{O}$ ).

A very interesting problem is the determination of the number of nonisomorphic DTSs of a given quadruple system. It has heen shown in [9] that there are exactly four nonisomorphic quadruple systems of order 14. Two of these quadruple systems have all 14 DTSs isomorphic while the other two have 2 nonisomorphic DTSs (the maximum number possible for ordew 14 since there are exactly two nonisomorphic triple systems of order 13). In [6], the results in [9] and the ordinary direct product have been used to construct an infinte class of quadruple systems having at

[^0]least two nonisomorphic DTSs. Subsequently in [7] a different construction for quadruple systems was given which produced for any positive integer $t$ a quadruple system having at least $t$ nonisomorphic DTSs. Unfortunately, the size of the quadruple system compared to $t$ is quite large: For example, if $t=8$ then the quadruple system is of order 400 [7].
In this paper (i) we give a construction for quadruple systems in which the number of nonisomorphic DTSs can be rapidly computed (provided, of course, the quadruple system is not too large); (ii) we use this construction to obtain a quadruple system of order 20 having all 20 of its derived triple systems pairwise nonisomorphic (the first known example of a quadruple system with the property that all of its DTSs are pairwise nonisomorphic: a quadruple system with this property will henceforth be called heterogeneous); and finally (iii) we use this result coupled with a recursive construction to obtain an infinite class of heterogeneous quadruple systems.

## 2. Computation of tile Number of Nonisomorphic DTSs

Let $(X, \mathscr{B})$ and $(Y, \mathscr{C})$ be any two quadruple systems of order $n$ where $X \cap Y=\varnothing$. Let $\mathscr{F}=\left\{F_{1}, F_{2}, \ldots, F_{n-1}\right\}$ and $\mathscr{G}=\left\{G_{1}, G_{2}, \ldots, G_{n-1}\right\}$ be any two 1 -factorizations of $K_{n}$ (the complete $n$-graph) based on $X$ and $Y$ respectively, and let $\alpha$ be any permutation on the set $\{1,2, \ldots, n-1\}$. Define a collection of blocks $\mathscr{A}$ on $Q=X \cup Y$ as follows:
(1) Any block belonging to $\mathscr{B}$ or $\mathscr{C}$ belongs to $\mathscr{A}$, and
(2) If $x_{1}, x_{2} \in X$ and $y_{1}, y_{2} \in Y$ then $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \in \mathscr{A}$ if and only if $\left[x_{1}, x_{2}\right] \in F_{i},\left[y_{1}, y_{2}\right] \in G_{j}$ and $i \alpha=j$.

It is a routine matter to see that $(Q, \mathscr{A})$ is a quadruple system. It is important to note that there need be no relationship between $(X, \mathscr{B})$ and $(Y, \mathscr{C})$, that $\mathscr{F}$ and $\mathscr{G}$ can be any 1 -factorizations, and that $\alpha$ can be any permutation. We denote this quadruple system by $[X \cup Y](\mathscr{B}, \mathscr{C}, \mathscr{F}, \mathscr{G}, \alpha)$.

If $x$ is any element in $X$ the $\operatorname{DTS}\left(X_{x}, \mathscr{B}(x)\right)$ of $(X, \mathscr{B})$ is a subsystem of the $\operatorname{DTS}\left(Q_{x}, \mathscr{A}(x)\right)$. (A similar statement holds if $x \in Y$.) If the quadruple system $(Q, \mathscr{A})$ has the property that for every $x \in Q$, the only subsystem of $\left(Q_{x}, \mathscr{A}(x)\right)$ of order $n-1$ is $\left(X_{x}, \mathscr{B}(x)\right)$ or $\left(Y_{x}, \mathscr{C}(x)\right)$ as the case may be, then we will say that ( $Q, \mathscr{A}$ ) is component-simple. For example, if we take $|X|=|Y|=10$ then $(Q, \mathscr{A})$ is component-simple as a conscquence of the fact that a triple system of order 19 can have at most one subsystem of order 9 .

Now let $(X, \mathscr{B})$ and $(Y, \mathscr{C})$ be disjoint quadruple systems of order $n$
and $\mathscr{F}=\left\{F_{1}, F_{2}, \ldots, F_{n-1}\right\}$ and $\mathscr{G}=\left\{G_{1}, G_{2}, \ldots, G_{n-1}\right\}$ any two nonisomorphic automorphism-free 1 -factorizations of $K_{n}$ on $X$ and $Y$ respectively [8]. Let $\alpha$ be any permutation on $\{1,2, \ldots, n-1\}$ and for each $x \in X$ denote by $x f_{i}$ the unique element in $X$ such that $\left[x, x f_{i}\right] \in F_{i}$. Similarly, for each $y \in Y$, denote by $\nu g_{i}$ the unique element in $Y$ such that $\left[y, y g_{i}\right] \in G_{i}$. If $x$ and $y$ are any two elements in $X$, define the mapping $\beta_{x y}: X_{x} \rightarrow X_{y}$ by $\beta_{x y}\left(x f_{i}\right)=y f_{i}$. If $x$ and $y$ belong to $Y$ define the mapping $\gamma_{x y}: Y_{x} \rightarrow Y_{y}$ by $\gamma_{x y}\left(x g_{i}\right)=y g_{i}$ 。

Theorem 1. Let $(X, \mathscr{B}),(Y, \mathscr{C}), \mathscr{F}, \mathscr{G}$, and $\alpha$ be as above, and let the quadruple system $(Q, \mathscr{A})=[X \cup Y](\mathscr{B}, \mathscr{B}, \mathscr{F}, \mathscr{G}, \alpha)$ be component-simple. If $x, y \in X$ then $\left(Q_{x}, \mathscr{A}(X)\right)$ and $\left(Q_{y}, \mathscr{A}(y)\right)$ are isomorphic if and only if $\beta_{x y}$ is an isomorphism. If $x, y \in Y$, then $\left(Q_{\infty}, \mathscr{A}(x)\right)$ and $\left(Q_{y}, A(y)\right)$ are isomorphic if and only if $\gamma_{x y}$ is an isomorphism. Finally, if $x \in X$ and $y \in Y$ then $\left(Q_{x}, \mathscr{A}(x)\right)$ and $\left(Q_{y}, A(y)\right)$ are nonisomorphic.

Proof. Let $x$ and $y$ belong to $X$ and assume $\lambda$ to be an isomorphism of $\left(Q_{x}, \mathscr{A}(x)\right)$ onto $\left(Q_{y}, \mathscr{A}(y)\right)$. Sinze $(Q, \mathscr{A})$ is component-simple the only subsystem of $\left(Q_{x}, \mathscr{A}(x)\right)$ of order $n-1$ is $\left(X_{x}, \mathscr{B}(x)\right)$ and the only subsystem of $\left(Q_{y}, \mathscr{A}(y)\right)$ of order $n-1$ is $\left(X_{y}, \mathscr{B}(y)\right)$. Therefore, $\lambda$ must map $X_{x}$ onto $X_{y}$ and therefore $Y$ onto $Y$. Hence, $\lambda$ induces an automorphism of $\mathscr{G}$, and since $\mathscr{G}$ is automorphism-free $\lambda$ must be the identify mapping on $Y$. Hence, if $i \alpha=j$ then $\lambda$ must map each triple of the form $\left\{x f_{i}, c, d\right\},[c, d] \in G_{j}$ onto a triple of the form $\{t, c, d\} \in \mathscr{A}(y)$. But if this is so then $t=y f_{i}$ by construction. Therefore, $\lambda$ reduces to $\beta_{x y}$ on $X_{x}$ so that $\beta_{x y}$ must be an isomorphism from $X_{x}$ onto $X_{y}$. A similar argument shows that if $x, y \in Y$ then $\left(Q_{x}, \mathscr{A}(x)\right)$ and $\left(Q_{y}, \mathscr{A}(y)\right)$ are isomorphic if and only if $\gamma_{x y}$ is an isomorphism of $Y_{x}$ onto $Y_{y}$.

Finally, suppose $x \in X$ and $y \in Y$, and let $\lambda$ be an isomorphism of $\left(Q_{x}, \mathscr{A}(x)\right)$ onto $\left(Q_{y}, \mathscr{A}(y)\right)$. Since $(Q, \mathscr{A})$ is component-simple, $\lambda$ must map $X_{x}$ onto $X_{y}$ and therefore $X$ onto $Y$. This induces an isomorphism of the 1 -factorization $\mathscr{F}$ onto the 1 -factorization $\mathscr{G}$. Since $\mathscr{F}$ and $\mathscr{G}$ are nonisomorphic by assumption we have a contradiction. Hence $\left(Q_{x}, \mathscr{A}(x)\right)$ and $\left(Q_{y:}: \mathscr{A}(y)\right.$ ) are nonisomorphic. This completes the proof of the theorem.

## 3. A Heterogeneous Quadruple System or Order 20

Lct $X=\{1,2, \ldots, 10\}, Y=\left\{1^{\prime}, 2^{\prime}, \ldots, 10^{\prime}\right\}$, and let $(X, \mathscr{B})$ and $(Y, \mathscr{B})$ be the quadruple systems of order 10 given as follows: $\mathscr{B}$ consists of the 30 quadruples $\{i, i+1, i+3, i+4\},\{i, i+1, i+2, i+6\},\{i, i+2$ $i+4, i+7\}(\bmod 10):$

| 1 | 2 | 4 | 5 | 1 | 2 | 3 | 7 |  | 1 | 3 | 5 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 3 | 5 | 6 | 2 | 3 | 4 | 8 | 2 | 4 | 6 | 9 |
| 3 | 4 | 6 | 7 | 3 | 4 | 5 | 9 | 3 | 5 | 7 | 10 |
| 4 | 5 | 7 | 8 | 4 | 5 | 6 | 10 | 1 | 4 | 6 | 8 |
| 5 | 6 | 8 | 9 | 1 | 5 | 6 | 7 | 2 | 5 | 7 | 9 |
| 6 | 7 | 9 | 10 | 2 | 6 | 7 | 8 | 3 | 6 | 8 | 10 |
| 1 | 7 | 8 | 10 | 3 | 7 | 8 | 9 | 1 | 4 | 7 | 9 |
| 1 | 2 | 8 | 9 | 4 | 8 | 9 | 10 | 2 | 5 | 8 | 10 |
| 2 | 3 | 9 | 10 | 1 | 5 | 9 | 10 | 1 | 3 | 6 | 9 |
| 1 | 3 | 4 | 10 | 1 | 2 | 6 | 10 | 2 | 4 | 7 | 10 |

$\mathscr{C}$ is obtained from $\mathscr{B}$ by replacing each symbol $i$ by $i^{\prime}$. Further, let $\mathscr{F}$ and $\mathscr{G}$ be the following two nonisomorphic automorphism-free 1factorizations of $K_{10}$ [3]:


$\mathscr{G :}$| $G_{1}$ | $G_{2}$ | $G_{3}$ | $G_{4}$ | $G_{5}$ | $G_{6}$ | $G_{7}$ | $G_{8}$ | $G_{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1^{\prime} 2^{\prime}$ | $1^{\prime} 3^{\prime}$ | $1^{\prime} 4^{\prime}$ | $1^{\prime} 5^{\prime}$ | $1^{\prime} 6^{\prime}$ | $1^{\prime} 7^{\prime}$ | $1^{\prime} 8^{\prime}$ | $1^{\prime} 9^{\prime}$ | $1^{\prime} 10^{\prime}$ |
| $3^{\prime} 4^{\prime}$ | $2^{\prime} 4^{\prime}$ | $2^{\prime} 3^{\prime}$ | $2^{\prime} 6^{\prime}$ | $2^{\prime} 7^{\prime}$ | $2^{\prime} 8^{\prime}$ | $2^{\prime} 5^{\prime}$ | $2^{\prime} 10^{\prime}$ | $2^{\prime} 9^{\prime}$ |
| $5^{\prime} 6^{\prime}$ | $5^{\prime} 7^{\prime}$ | $5^{\prime} 8^{\prime}$ | $3^{\prime} 7^{\prime}$ | $3^{\prime} 9^{\prime}$ | $3^{\prime} 10^{\prime}$ | $3^{\prime} 6^{\prime}$ | $3^{\prime} 5^{\prime}$ | $3^{\prime} 8^{\prime}$ |
| $7^{\prime} 8^{\prime}$ | $6^{\prime} 9^{\prime}$ | $6^{\prime} 10^{\prime}$ | $4^{\prime} 10^{\prime}$ | $4^{\prime} 8^{\prime}$ | $4^{\prime} 6^{\prime}$ | $4^{\prime} 9^{\prime}$ | $4^{\prime} 7^{\prime}$ | $4^{\prime} 5^{\prime}$ |
| $9^{\prime} 10^{\prime}$ | $8^{\prime} 10^{\prime}$ | $7^{\prime} 9^{\prime}$ | $8^{\prime} 9^{\prime}$ | $5^{\prime} 10^{\prime}$ | $5,9^{\prime}$ | $7^{\prime} 10^{\prime}$ | $6^{\prime} 8^{\prime}$ | $6^{\prime} 7^{\prime}$ |

Take $\alpha$ to be the identity mapping on $\{1,2, \ldots, 9\}$, and form the quadruple $\operatorname{system}(Q, \mathscr{A})=[X \cup Y](\mathscr{B}, \mathscr{C}, \mathscr{F}, \mathscr{G}, \alpha)$.

Claim. $(Q, \mathscr{A})$ is a heterogeneous quadruple system. To verify this, we need only check to see that none of the mappings $\beta_{x y}$ or $\gamma_{x y}$ is an isomorphism from $\left(X_{x}, \mathscr{B}(x)\right)$ onto $\left(X_{y}, \mathscr{B}(y)\right)$ or from $\left(Y_{x}, \mathscr{B}(x)\right)$ onto ( $Y_{y}, \mathscr{C}(y)$ ), as the case may be. In Tables I-III we list all 10 DTSs of $(X, \mathscr{B})$ and $(Y, \mathscr{C})$, respectively, and all mappings $\beta_{x y}$ and $\gamma_{x y}$. The derived triple systems of $(Y, \mathscr{C})$ are obtained from the derived triple systems of $(X, \mathscr{B})$ by replacing each symbol $i$ by $i^{\prime}$.

TABLE I
Mappings $\beta_{i j}$ (Choose the Two Rows Headed $i$ and $j$ )

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1 | 4 | 3 | 6 | 7 | 8 | 5 | 10 | 9 |
| 3 | 4 | 1 | 2 | 7 | 9 | 10 | 6 | 5 | 8 |
| 4 | 3 | 2 | 1 | 10 | 8 | 6 | 9 | 7 | 5 |
| 5 | 6 | 7 | 8 | 1 | 10 | 9 | 2 | 3 | 4 |
| 6 | 5 | 9 | 10 | 2 | 1 | 4 | 3 | 8 | 7 |
| 7 | 8 | 5 | 9 | 3 | 2 | 1 | 10 | 4 | 6 |
| 8 | 7 | 10 | 5 | 9 | 4 | 2 | 1 | 6 | 3 |
| 9 | 10 | 6 | 7 | 8 | 3 | 5 | 4 | 1 | 2 |
| 10 | 9 | 8 | 6 | 4 | 5 | 3 | 7 | 2 | 1 |

TABLE II
Mappings $\gamma_{i j}$ (Choose the Two Rows Headed $i^{\prime}$ and $j^{\prime}$ )

| $1^{\prime}$ | $2^{\prime}$ | $3^{\prime}$ | $4^{\prime}$ | $5^{\prime}$ | $6^{\prime}$ | $7^{\prime}$ | $8^{\prime}$ | $9^{\prime}$ | $10^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2^{\prime}$ | $1^{\prime}$ | $4^{\prime}$ | $3^{\prime}$ | $6^{\prime}$ | $7^{\prime}$ | $5^{\prime}$ | $10^{\prime}$ | $8^{\prime}$ | $9^{\prime}$ |
| $3^{\prime}$ | $4^{\prime}$ | $1^{\prime}$ | $2^{\prime}$ | $7^{\prime}$ | $9^{\prime}$ | $10^{\prime}$ | $6^{\prime}$ | $5^{\prime}$ | $8^{\prime}$ |
| $4^{\prime}$ | $3^{\prime}$ | $2^{\prime}$ | $1^{\prime}$ | $10^{\prime}$ | $8^{\prime}$ | $9^{\prime}$ | $7^{\prime}$ | $6^{\prime}$ | $5^{\prime}$ |
| $5^{\prime}$ | $6^{\prime}$ | $7^{\prime}$ | $8^{\prime}$ | $1^{\prime}$ | $10^{\prime}$ | $2^{\prime}$ | $9^{\prime}$ | $3^{\prime}$ | $4^{\prime}$ |
| $6^{\prime}$ | $5^{\prime}$ | $9^{\prime}$ | $10^{\prime}$ | $2^{\prime}$ | $1^{\prime}$ | $8^{\prime}$ | $3^{\prime}$ | $4^{\prime}$ | $7^{\prime}$ |
| $7^{\prime}$ | $8^{\prime}$ | $5^{\prime}$ | $9^{\prime}$ | $3^{\prime}$ | $2^{\prime}$ | $1^{\prime}$ | $4^{\prime}$ | $10^{\prime}$ | $6^{\prime}$ |
| $8^{\prime}$ | $7^{\prime}$ | $10^{\prime}$ | $5^{\prime}$ | $9^{\prime}$ | $4^{\prime}$ | $6^{\prime}$ | $1^{\prime}$ | $2^{\prime}$ | $3^{\prime}$ |
| $9^{\prime}$ | $10^{\prime}$ | $6^{\prime}$ | $7^{\prime}$ | $8^{\prime}$ | $3^{\prime}$ | $4^{\prime}$ | $5^{\prime}$ | $1^{\prime}$ | $2^{\prime}$ |
| $10^{\prime}$ | $9^{\prime}$ | $8^{\prime}$ | $6^{\prime}$ | $4^{\prime}$ | $5^{\prime}$ | $3^{\prime}$ | $2^{\prime}$ | $7^{\prime}$ | $1^{\prime}$ |

TABLE IIL
Derived Triple Systems of $(X, \mathscr{B})$


3
4

| 1 | 2 | 7 | 4 | 5 | 9 | 6 | 8 | 10 | 1 | 2 | 5 | 3 | 6 | 7 | 8 | 9 | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 5 | 8 | 4 | 6 | 7 | 2 | 9 | 10 | 1 | 3 | 10 | 5 | 7 | 8 | 2 | 6 | 9 |
| 1 | 4 | 10 | 2 | 5 | 6 | 7 | 8 | 9 | 1 | 6 | 8 | 2 | 7 | 10 | 3 | 5 | 9 |
| 1 | 6 | 9 | 2 | 4 | 8 | 5 | 7 | 10 | 1 | 7 | 9 | 2 | 3 | 8 | 5 | 6 | 10 |


| 1 | 4 | 6 | 8 | 9 | 3 | 7 | 10 | 1 | 5 | 7 | 2 | 4 |  | 9 | 3 | 8 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7 | 3 | 4 | 9 | 2 | 8 | 10 | 1 | 2 | 10 | 3 | 4 |  | 7 | 5 | 8 |  |
| 1 | 10 | 2 | 3 | 6 | 4 | 7 | 8 | 1 | 4 | 8 | 2 | 3 |  | 5 | 7 | 9 | 10 |
| 1 | 8 | 4 | 6 | 10 | 2 | 7 | 9 | 1 | 3 | 9 | 4 | 5 |  | 10 | 2 | 7 |  |


| 1 | 2 | 3 | 4 | 5 | 8 | 6 | 9 | 10 | 1 | 7 | 10 | 5 | 6 | 9 | 2 | 3 | 4 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 8 | 10 | 3 | 4 | 6 | 2 | 5 | 9 | 1 | 2 | 9 | 4 | 5 | 7 | 3 | 6 | 10 |
| 1 | 5 | 6 | 3 | 8 | 9 | 2 | 4 | 10 | 1 | 3 | 5 | 2 | 6 | 7 | 4 | 9 | 10 |
| 1 | 4 | 9 | 2 | 6 | 8 | 3 | 5 | 10 | 1 | 4 | 6 | 2 | 5 | 10 | 3 | 7 | 9 |

9 10

| 1 | 2 | 8 | 6 | 7 | 10 | 3 | 4 | 5 | 1 | 3 | 4 | 6 | 7 | 9 | 2 | 5 | 8 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 5 | 10 | 3 | 7 | 8 | 2 | 4 | 6 | 1 | 7 | 8 | 2 | 3 | 9 | 4 | 5 | 6 |
| 1 | 4 | 7 | 5 | 6 | 8 | 2 | 3 | 10 | 1 | 5 | 9 | 3 | 6 | 8 | 2 | 4 | 7 |
| 1 | 3 | 6 | 4 | 8 | 10 | 2 | 5 | 7 | 1 | 2 | 6 | 4 | 8 | 9 | 3 | 5 | 7 |

The reader can now easily check that none of the 90 mappings $\beta_{x y}, \gamma_{x y}$ are isomorphisms. For example, to check that $\left(Q_{4}, \mathscr{A}(4)\right)$ and $\left(Q_{9}, \alpha /(9)\right)$ are nonisomorphic it suffices to show that $\beta_{49}$ is not an isomorphism from $\left(X_{4}, \mathscr{Z}(4)\right)$ onto $\left(X_{9}, \mathscr{B}(9)\right)$ :

From Table I for $\beta_{x y}$ we have

$$
\beta_{49}=\left(\begin{array}{rrrrrrrrr}
3 & 2 & 1 & 10 & 5 & 6 & 9 & 7 & 5 \\
10 & 6 & 7 & 8 & 3 & 5 & 4 & 1 & 2
\end{array}\right) .
$$

From the table of DTSs of $(X, \mathscr{B}),\{1,2,5\} \in \mathscr{B}(4)$. Since the image of this triple under $\beta_{49}$ is $\{2,6,7\} \notin \mathscr{B}(9)$, the mapping $\beta_{49}$ is not an isomorphism of $\left(X_{4}, \mathscr{B}(4)\right)$ onto $\left(X_{9}, \mathscr{B}(9)\right)$ and so the DTSs $\left(Q_{4}, \mathscr{A}(4)\right)$ and $\left(Q_{9}, \mathscr{A}(9)\right)$ are nonisomorphic. The check for the remaining 89 mappings gocs just as quickly as this example. Since none of the mappings $\beta_{x y}, \gamma_{x y}$ are isomorphisms it follows that ( $Q, \mathscr{A}$ ) has all of its DTSs pairwise nonisomorphic and thus is a heterogeneous quadruple system.

## 4. An Infinite Class of Heterogeneous Quadruple Systems

For unexplained notions and results on 1-factorizations of the complete graph we refer the reader to [8].

Lemma 2. Let $n \equiv 1$ or $2(\bmod 3), n \geqslant 5$. Then there exists fwn nonisomorphic 1 -factorizations of $K_{2 n}$ neither of which contains a sub1. factorization of index 2 .

Proof. The well-known type of l-factorizations of $K_{2 n}$ discovered and studied by many authors (see, e.g., [1,5]) and denoted sometimes by $G F\left(K_{2 n}\right)$ has no sub-1-factorization of index 2 for $n \geqslant 3$ (cf. [8]). On the other hand, a result in [2] states that there exists a Steiner triple system of every order $v$ having no nontrivial subsystems (i.e., no subsystems other than those of order 1, 3, and $v$ ). The corresponding Steiner 1-factorization of $K_{w ; 3}$ corresponding to such a Steiner triple system of order $v$ clearly has no sub-l-factorization of index 2 whenever $v \geqslant 9$. Observing that for $\beta_{7}=-2$, the 1 factorization $G F\left(K_{9_{n}}\right)$ is never a Stener 1 -factorization completes the proof.

Thborem 3. If there exists a heterogeneous quadruple system of order $n$ then there exists a heterogeneous quadruple system or order $2 n$.

Proof. Let $(Q, \mathscr{Y})$ be a heterogeneous quadruple system of order $n$. Since there are no heterogeneous quadruple systems of order $n \leqslant 14$
we may assume $n \geqslant 16$. Let $\left(Q_{1}, \mathscr{B}_{1}\right),\left(Q_{2}, \mathscr{B}_{2}\right)$ be two disjoint copies of $(Q, \mathscr{B})$, i.e., $Q_{1} \cap Q_{2}=\mathscr{\varnothing}$. Let $\mathscr{F}=\left\{F_{1}, F_{2}, \ldots, F_{n-1}\right\}$ and $\mathscr{G}=\left\{G_{1}, G_{2}, \ldots, G_{n-1}\right\}$ be two nonisomorphic 1-factorizations of $K_{2 n}$ based on $Q_{1}$ and $Q_{2}$, respectively, with neither $\mathscr{F}$ nor $\mathscr{G}$ containing a sub-1-factorization of index 2 (Lemma 2 guarantees existence of such 1 -factorizations $\mathscr{F}$ and $\mathscr{G}$ ). Construct, as in section 2 , the quadruple system $\left(Q^{*}, \mathscr{B}^{*}\right)=\left[Q_{1} \cup Q_{2}\right]\left(\mathscr{B}_{1}, \mathscr{B}_{2}, \mathscr{F}, \mathscr{G}, \alpha\right)$ where $\alpha$ is any permutation on $\{1,2, \ldots, n-1\}$. We claim that $\left(Q^{*}, \mathscr{B}^{*}\right)$ is a heterogeneous quadruple system. To verify this we observe first that $\left(Q^{*}, \mathscr{B}^{*}\right)$ is component-simple as both 1 -factorizations $\mathscr{F}$ and $\mathscr{G}$ were assumed not to contain sub1 -factorizations of index 2 (cf. [8]).

Let now $r, s$ be any two distinct elements of $Q^{*}$, and let $\left(Q_{r}{ }^{*}, \mathscr{B} *(r)\right)$, $\left(Q_{s}^{*}, \mathscr{B} *(s)\right)$ be the corresponding derived triple systems. Assume $\lambda$ to be an isomorphism mapping $\left(Q_{r}{ }^{*}, \mathscr{B}^{*}(r)\right)$ onto $\left(Q_{s}^{*}, \mathscr{B}^{*}(s)\right.$ ). Consider two cases:

Case 1. Both $r, s$ belong to the same set $Q_{i}$ for $i \in\{1,2\}$, say, to $Q_{1}$. Then the unique subsystem $\left(Q_{1 r}, \mathscr{B}_{1}(r)\right)$ of order $n-1$ of $\left(Q_{r}{ }^{*}, \mathscr{B}^{*}(r)\right)$ is a derived triple system of $\left(Q_{1}, \mathscr{B}_{1}\right)$, and a similar statement holds for $s$. Then $\lambda$ must map $\left(Q_{1 r}, \mathscr{B}_{1}(r)\right)$ onto $\left(Q_{1 s}, \mathscr{P}_{1}(s)\right)$ which contradicts the fact that $\left(Q_{1}, \mathscr{B}_{1}\right)$, is a heterogencous quadruple system.

Case 2. $r, s$ belong to different sets $Q_{i}$, say, $r \in Q_{1}, s \in Q_{2}$. Then $\lambda$ must map again ( $Q_{1 r}, \mathscr{B}_{1}(r)$ ) onto ( $Q_{2 s}, \mathscr{B}_{2}(s)$ ), and consequently, $\lambda$ must map $\mathscr{G}$ onto $\mathscr{F}$ which contradicts our assumption that $\mathscr{F}$ and $\mathscr{G}$ are nonisomorphic 1-factorizations.

This completes the proof of the theorem.
Corollary 4. A heterogeneous quadruple system exists for every order $n=10 \cdot 2^{k}$ where $k$ is a positive integer.

Clcarly, there is no heterogeneous quadruple system of order $n \leqslant 14$, and its existence for order 16 is in doubt. However, we conjecture that a heterogeneous quadruple system exists for every admissible order $n \geqslant 20$.

## References

1. B. A. Anderson, Finite topologies and Hamiltonian paths, J. Combinatorial Theory, Ser. A 14 (1973), 87-93.
2. J. Doyen, Sur la structure de certains systèmes triples de Steiner, Math. Zeitschr. 111 (1969), 289-300.
3. E. N. Gelling, "On 1-Factorizations of the Complete Graph and the Relationship to Round Robin Schedules," M.A. thesis, University of Victoria 1973.
4. H. Hanani, On quadruple systems, Canad. J. Math. 12 (1960), 145-157.
5. F. Harary, "Graph Theory," Addison-Wesley, Reading, Mass., 1969.
6. C. C. Lindner, Some remarks on the Steiner triple systems associated with Steiner quadruple systems, Colloq. Math. XXXII (1975), 301-306.
7. C. C. Indmer, Construction of Steiner quadruple systems having large numbers of nonisomorphic associated Steiner triple systems, Proc, Amer. Math. Soc. 49 (1975), 256-260.
8. C. C. Lindnir, E. Mendelsoin, and A. Rosa, On the number of 1 -factorizations of the complete graph, J. Combinatorial Theory, Ser. B 20 (1976), 265-282.
9. N. S. Mendelsohn and S. H. Y. Hung, On the Steiner systems $S(3,4,14)$ and $S(4,5,15)$, Utilitas Math. 1 (1972), 5-95.

[^0]:    * The paper was writen white the athor was visiting McMaster University.
    † Research supported by NRC Grant No. A7268.

