-

-
View metadata, citation and similar papers at core.ac.uk broughttoyouby .. CORE

provided by Elsevier - Publisher Connector

JOURNAL OF COMBINATORIAL THEGRY {(A) 21, 35-43 (1976)

Steiner Quadruple Systems All of Whose Derived Steiner
Triple Systems Are Nonisomorphic

CHARrLES C. LINDNER*
Mathematics Department, Auburn University, Auburn, Alabama 36830
AND

ALEXANDER ROSAT

Department of Mathematics, McMaster University, Hainilton, Ontario, Canada L8S 4K1
Commnumicated by Marshall Hall, Jr,
Received March 7, 1975

1. INTRODUCTION

A Steiner quadruple system (or more simply a quadruple system) is a
pair (O, #) where Q is a finite set and & is a collection of 4-subsets of O
{called blocks) such that any 3-subset of O belongs to exactly one block of
#. The number | Q| is called the order of the quadruple system (Q, %).
It has been proved by Hanani in 1960 [4] that the spectrum for quadruple
systems consists of all positive integers n = 2 or 4 (mod 6). If (0, %)
is a quadruple system and x is any element in O we will denote by Q,, the
set Q\{x} and the set of all triples {a, b, ¢} such that {x, a, b,c} € # by
#(x). 1tis a routine matter to see that (Q, , #(x)) is a Steiner triple system
called a derived triple system (D'TS) of the quadruple system (Q, %).

A very interesting problem is the determination of the number of
nonisomorphic DTSs of a given quadruple system. It has been shown in 9]
that there are exactly four nonisomorphic quadruple systems of order 14.
Two of these quadruple systems have all 14 DTSs isomerphic while the
other two have 2 nonisomorphic DT8Ss (the maximum number possible
for order 14 since there are exactly two nonisomorphic triple systems of
order 13). In [6], the results in [9] and the ordinary direct product have
been used to construct an infinite class of quadruple systems having at
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least two nonisomorphic DTSs. Subsequently in [7] a different con-
struction for quadruple systems was given which produced for any
positive integer ¢ a quadruple system having at least ¢ nonisomorphic
DTSs. Unfortunately, the size of the quadruple system compared to £ is
quite large: For example, if' 7 = 8 then the quadruple system is of order 400
[7].

In this paper (i) we give a construction for quadruple systems in which
the number of nonisomorphic DTSs can be rapidly computed (provided,
of course, the quadruple system is not too large); (ii) we use this con-
struction to obtain a quadruple system of order 20 having all 20 of its
derived triple systems pairwise nonisomerphic (the first known example
of a quadruple system with the property that all of its DTSs are pairwise
nonisomorphic: a quadruple system with this property will henceforth
be called Aeterogeneous); and finally (iii) we use this result coupled with a
recursive construction to obtain an infinite class of heterogeneous
quadruple systems.

2. COMPUTATION OF THE NUMBER OF NONISOMORPHIC DTSs

Let (X, #) and (Y, €) be any two quadruple systems of order n where
INY=g. LletF ={F,,F,.,F,_4 and 4 = {G,, G, ,..., G,4} be
any two 1-factorizations of K, (the complete n-graph) based on X and ¥
respectively, and let « be any permutation on the set{l, 2,..., n — 1}. Define
a collection of blocks &7 on Q = X U Y as follows:

(1) Any block belonging to % or € belongs to .7, and

2) If x;,x,eX and y;,y,€Y then {x;, %, ), Vo €7 if and
only if [x;, x,] € F;, [ y1, y.] € Gy and i = j.

It is a routine matter to see that (Q, =7) is a quadruple system, It is
important to note that there need be no relationship between (X, %) and
(Y, %), that & and ¢ can be any I-factorizations, and that « can be any
permutation. We denote this quadruple system by [X v YI(%, %, %, ¥, «).

If x is any element in X the DTS(X,, , #(x)) of (X, #) is a subsystem of
the DTS(Q, , #(x)). (A similar statement holds if x € Y.} If the quadruple
system (Q, /) has the property that for every x € O, the only subsystem
of (O, , #(x)) of order n — 1 is (X,,, #(x)) or (Y,,, ¥(x)) as the case may
be, then we will say that (Q, &) is component-simple. For example, if
we take | X | = | Y| = 10 then (Q, /) is component-simple as a conse-
quence of the fact that a triple system of order 19 can have at most one
subsystem of order 9.

Now let (X, #) and (Y, %) be disjoint quadruple systems of order n
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and F = {F,F,,.,.F,4} and ¢ = {G,, G,,..., G,_} any two non-
isomorphic automorphism-free 1-factorizations of K, on X and ¥V
respectively [8]. Let o be any permutation on {1, 2,...,n — 1} and for
each x € X denote by xf; the unique element in X such that [x, xf;1e F; .
Similarly, for each y € ¥, denote by g, the unique element in Y such that
{y,vg,1eG,. If x and y are any two elements in X, define the mapping
Byt Xi —> X, by Bo(xfy) = »f; . I x and y belong to Y define the mapping
Vor: Yo —> Yy bY vulxg) = yg; .

TreoreM 1. Let (X, %), (Y, €), F, 9, and « be as above, and let the
guadruple system (Q, &) = [X U YR, €, F, G, &) be component-simple.
Ifx,ye Xthen(Q, , (X)) and (Q, , () are isomorphic if and only if B,
is an isomorphism. If x,ve Y, then (Q,, A(x)) and (Q,, A(y)) are
isomorphic if and only if v, is an isomorphism. Finally, if xe X and ve Y
then (Q, , </(x)) and (Q, , A(»)) are nonisomorphic.

Proof. Let x and y belong to X and assume A to be an isomorphism
of (9, Z(x)) onto (Q,, #(y)). Sinze (Q, ) is component-simple the
only subsystem of (@, , #/(x)) of order n — 1 is (X, #(x)) and the only
subsystem of (@, , 2Z()) of order n — 1 is (X, , #(¥)). Therefore, A must
map X, onto X, and therefore ¥ onto Y. Hence, A induces an
automorphism of ¥, and since ¢ is automorphism-free A must be the
identify mapping on Y. Hence, if ix = j then A must map each triple of
the form {xf7, ¢, d}, [c, d] € G, onto a triple of the form {z, ¢, d} € ().
But if this is so then 7 = yf; by construction. Therefore, A reduces to B,
on X, so that f8,, must be an isomorphism from X, onto X, . A similar
argument shows that if x, ye Y then (@, , #(x)) and (Q,, #(y)) are
isomorphic if and only if y,, is an isomorphism of ¥, onto ¥, .

Finally, suppose xe X and ye Y, and let A be an isomorphism of
(0., H(x)) onto (@, , #(y)). Since (0, o7) is component-simple, A must
map X, onto Y, and therefore X onto Y. This induces an isomorphism
of the 1-factorization & onto the 1-factorization %. Since % and ¥ are
nopisomorphic by assumption we have a contradiction. Hence (0, , /(X))
and (0, ..%(»)) are nonisomorphic. This completes the proof of the
theorem.

3. A HeTEROGENEOUS (QUADRUPLE SYSTEM OF ORDER 20

Let X = {1,2,.,10}, ¥ = {1",2,..., 10}, and let (X, &) and (Y, %)
be the quadruple systems of order 10 given as follows: & consists of the
30 quadruples {f, i+ 1,1+ 3,71 +4}, (,i+-1,i+2,i+6}, {(,i+2
i-+4,i+ 7} (mod 10):
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% is obtained from Z# by replacing each symbol i by i’. Further, let %
and ¢ be the following two nonisomorphic automorphism-free 1-
factorizations of K, [3]:
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Take « to be the identity mapping on {1, 2,..., 9}, and form the quadruple
system (Q, ) = [XU Y4, €, %, %, x).

Claim. (Q, #) is a heterogencous quadruple system. To verify this,
we need only check to see that none of the mappings B, or y,, is an
isomorphism from (X, , %#(x)) onto (X, , #(y)) or from (Y, , €(x)) onto
(Y, ,%(»)), as the case may be. In Tables I-III we list all 10 DTSs of
(X, %) and (Y, %), respectively, and all mappings B, and y,,. The
derived triple systems of (¥, %) are obtained from the derived triple
systems of (X, %) by replacing each symbol i by i’.
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TABLE 1

Mappings B;; {Choose the Two Rows Headed 7 and )

i . 2 3 4 5 6 7 8 9 10
*‘;"”’ 1 4 3 N 6 “’7_“’*}#‘—;“ 10 9
s 4| 1] 2 7] 9ol 6| 5| 8

sl 3l 2] 1w ]| sl el o 7] s
sl 7 8| 10| 9| 2] 3 a
7~7 5 9 10 2 1 4 3 8 7

7 8 5 9 3 2 1 10 4 6

8 A 7 10 5 9 4 B 2 1 6 T

9 10 6 7 4 8 SM 5 T‘ 1 2

10 “ 9 8 6 4 5 3 7 2 1

TABLE 11
Mappings y; (Choose the Two Rows Headed i’ and j)

v 2 3 4’ 5 6 7’ 8 9’ 10/
—”2’ 1’ 4’ | #_3_; 6 7’> i 5 10“,—““ 8’ 9’
—"3',‘—“‘4/ ¥ 2:‘7_ _;’ 9 10 6 - 5 8"-
' 4 3 47 1 I()’ 8 9’ 7’ﬁ [ 5
s e |7 s | vl 2|y v |
el s |y | 2 | v |y | a7
BRI 2 B2 T NV U RO ATV I
el | vl e e e vy
o lw | e | 7| s |y | 45 || 2
o o |y | e | e | s |y |2 | v
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TABLE 1I

Derived Triple Systems of (X, %)
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56 10
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The reader can now easily check that none of the 90 mappings B, , Vau
are isomorphisms. For example, to check that (@, , #/(4)) and (@, , =7(9))
are nonisomorphic it suffices to show that 5, is not an isomorphism from
(X, , B4) onto (X, , B(9):

From Table I for 3, we have

O

2 10 5 6 7 5)

6 8 3 5 1 2/

From the table of DTSs of (X, #), {1, 2, 5} € #(4). Since the image of this
triple under 4 is {2, 6, 7} ¢ #(9), the mapping 8, is not an isomorphism
of (X, #(4)) onto (X, , #(9)) and so the DTSs (Q, , +7(4)) and (@, , -#(9))
are nonisomorphic. The check for the remaining 89 mappings goes just
as quickly as this example. Since none of the mappings fB,,, v, ate
isomorphisms it follows that (Q, &) has all of its DTSs pairwise non-
isomorphic and thus is a heterogeneous quadruple system.

649 = (lg }/

N

4. AN INFINITE CrAsS OF HETEROGENEOUS QUADRUPLE SYSTEMS

For unexplained notions and results on 1-factorizations of the complete
graph we refer the reader to [8].

LemMa 2. Let n==1 or 2 (mod3), n =2 5. Then there exists two

nonisomorphic I-factorizations of K,, neither of which contains a sub-
L-factorization of index 2.

Proof. 'The well-known type of [-factorizations of K,, discovered and
studied by many authors (see, e.g., {1, 5]) and denoted sometimes by
GF(K;,) has no sub-1-factorization of index 2 for n = 3 (cf. [8]). On the
other hand, a result in [2] states that there exists a Steiner triple system of
every order v having no nontrivial subsystems (i.e., no subsystems other
than those of order 1, 3, and v}. The corresponding Steiner 1-factorization
of K, ., corresponding to such a Steiner triple system of order v clearly
has no sub-1-factorization of index 2 whenever v 2= 9. Observing that for
> 2, the 1-factorization GF(K,,) is never a Sieiner |-factorization
conapletes the proof.

TraeorEM 3. {fthere exists a heterogeneous quadruple system of order u
then there exists a heterogeneous quadruple system or order 2n.

Proof. Let (@, #) be a heterogeneous quadruple system of order 7,
Since there are no heterogeneous guadruple systems of order n < 14
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we may assume n > 16. Let (Q,, %), (Q,,%, be two disjoint
copies of (Q, %), ie, O, N Qy, = &. Let F ={F, F,,..., F,y} and
4 = {Gy, Gy ..., Gn_1} be two nonisomorphic 1-factorizations of K,
based on Q; and Q,, respectively, with neither & nor % containing a
sub-1-factorization of index 2 (Lemma 2 guarantees existence of such
1-factorizations & and %). Construct, as in section 2, the quadruple system
(Q*, #*) = [0, Y O,(#, , B, F, ¥, «) where « is any permutation on
{1, 2,...,n — 1}. We claim that (Q*, #*) is a heterogeneous quadruple
system. To verify this we observe first that (Q*, #*) is component-simple
as both I-factorizations # and ¢ were assumed not to contain sub-
1-factorizations of index 2 (cf. [8]).

Let now r, 5 be any two distinct elements of 0%, and let (Q,*, Z*(r)),
(Q,*, B*(s)) be the corresponding derived triple systems. Assume A to be
an isomorphism mapping (Q,*, Z*(r)) onto (Q,*, £*(s)). Consider
two cases:

Case 1. Both r, s belong to the same set @, for i {1, 2}, say, to Q; .
Then the unique subsystem (Qy, , #,(r)) of order n — 1 of (Q,*, B*(r))
is a derived triple system of (Q; , #;), and a similar statement holds for s,
Then A must map (Q,, , #(r)) onto (Qy,, #,(s)) which contradicts the
fact that (Q, , %)), is a heterogeneous quadruple system.

Case 2. r, s belong to different sets Q;, say, re Q;, s€ Q,. Then A
must map again (Q,, , #,(r)) onto (Q,,, #,(s)), and consequently, A must
map % onto % which contradicts our assumption that # and ¥ are
nonisomorphic 1-factorizations.

This completes the proof of the theorem.

COROLLARY 4. A heterogeneous quadruple system exists for every order
n = 10 - 2% where k is a positive integer.

Clearly, there is no heterogeneous quadruple system of order n < 14,
and its existence for order 16 is in doubt. However, we conjecture that a
heterogeneous quadruple system exists for every admissible order n = 20.
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