Note

On Packing Unequal Rectangles in the Unit Square

DEREK JENNINGS

Department of Mathematics, University of Southampton,
Southampton, Hampshire, SO9 5NH, England

Communicated by the Managing Editors

Received February 2, 1993

This paper improves a previous bound, due to Meir and Moser in [J. Combin. Theory 5 (1968), 126–134] concerning the smallest square into which all of the rectangles of size $1/n \times 1/(n + 1)$, $n = 1, 2, 3, \ldots$ can be packed. © 1994 Academic Press, Inc.

Leo Moser noted that $\sum_{n=1}^{\infty} 1/n(n + 1) = 1$ and asked if the rectangles $1/n \times 1/(n + 1)$, $n = 1, 2, 3, \ldots$ can be packed into the unit square [1–4]. Meir and Moser showed that they can be packed into a square of side $31/30$ [1]. This result is improved by showing that they can be packed into a square of side $133/132$. The problem of finding the smallest $\varepsilon \geq 0$ such that all the rectangles can be packed into a square of side $1 + \varepsilon$ is still unsolved. Whether $\varepsilon > 0$ or $\varepsilon = 0$ is an open question.

THEOREM. All the rectangles of size $1/n \times 1/(n + 1)$, $n = 1, 2, 3, \ldots$ can be packed into a square of side $133/132$.

Proof. Let the rectangle of size $1/n \times 1/(n + 1)$ be represented by Q_n. Figure 1 shows how the inequality

$$\frac{1}{2n} + \frac{1}{2n + 1} < \frac{1}{n} \quad (1)$$

is used to pack the rectangles

$$\{Q_{n-1}\}, \{Q_{2n-1}, Q_{2n}\}, \{Q_{4n-1}, Q_{4n}, Q_{4n+1}, Q_{4n+2}\},$$

$$\{Q_{8n-1}, Q_{8n}, \ldots, Q_{8n+6}\}, \ldots$$
Figure 1

into a rectangle of size

$$\frac{1}{n} \times \left\{ \frac{1}{n - 1} + \frac{1}{2n - 1} + \frac{1}{4n - 1} + \frac{1}{8n - 1} + \cdots \right\}, \quad (2)$$

which is itself contained in the rectangle R_{n-1}, of size $1/n \times 2/(n - 1)$.

Similarly, we can pack the rectangles

$$\{Q_n\}, \{Q_{2n+1}, Q_{2n+2}\}, \{Q_{4n+3}, Q_{4n+4}, Q_{4n+5}, Q_{4n+6}\},$$
$$\{Q_{8n+7}, Q_{8n+8}, \cdots, Q_{8n+14}\}, \cdots$$

into the rectangle R_n, of size $1/(n + 1) \times 2/n$, and the rectangles

$$\{Q_{n+1}\}, \{Q_{2n+3}, Q_{2n+4}\}, \{Q_{4n+7}, Q_{4n+8}, Q_{4n+9}, Q_{4n+10}\},$$
$$\{Q_{8n+15}, Q_{8n+16}, \cdots, Q_{8n+22}\}, \cdots$$

into the rectangle R_{n+1}. Continuing in this manner, we can pack the rectangles

$$\{Q_{2n-2}\}, \{Q_{4n-3}, Q_{4n-2}\}, \{Q_{8n-5}, Q_{8n-4}, Q_{8n-3}, Q_{8n-2}\}, \cdots$$

into the rectangle R_{2n-2}. Hence we have shown that all the rectangles Q_i, $i = n - 1, n, n + 1 \ldots$ can be packed into the n rectangles $\{R_{n-1}, R_n, \ldots, R_{2n-2}\}$. Therefore, if we can pack

$$\{Q_1, Q_2, \ldots, Q_{n-2}, R_{n-1}, R_n, \ldots, R_{2n-2}\}$$

into a square of side x, we can certainly pack Q_i, $i = 1, 2, 3, \ldots$ into the same square. Letting $n := n + 1$, the problem is now one of packing the
$2n$ rectangles

$$\{Q_1, Q_2, \ldots, Q_{n-1}, R_n, R_{n+1}, \ldots, R_{2n}\}$$

into as small a square as possible. Note that the total area of these $2n$ rectangles is given by

$$\sum_{r=1}^{n-1} \frac{1}{r(r+1)} + 2 \sum_{r=n}^{2n} \frac{1}{r(r+1)} = 1 + \frac{1}{n(2n+1)},$$

which is still fairly close to 1 for moderately small values of n. So we have included an area of only $1/n(2n + 1)$ of unused space in the argument so far.

Taking $n = 15$, Figure 2 completes the proof of the theorem by showing how $\{Q_1, Q_2, \ldots, Q_{14}, R_{15}, R_{16}, \ldots, R_{30}\}$ can be packed into a square of side $133/132$ (Q_1 is aligned below Q_2, Q_3, and Q_4). The dimensions of the enclosing rectangle are vertically (measured to C),

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{11} + \frac{1}{12} = 1 + \frac{1}{132},$$

and horizontally (measured to B),

$$\frac{1}{14} + \frac{1}{25} + \frac{1}{13} + \frac{1}{26} + \frac{1}{5} + \frac{1}{7} + \frac{1}{10} + \frac{1}{19} + \frac{1}{27} + \frac{1}{30} + \frac{1}{22} + \frac{1}{14} + \frac{1}{21} + \frac{1}{20}
< 1 + \frac{1}{139}.$$

![Figure 2](image-url)
The vertical dimensions at the other edges (D, E, F, and G) significantly overlapping the top of the unit square are given by

\[
\begin{align*}
\text{(D)} & \quad \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{16}, \\
\text{(E)} & \quad \frac{1}{2} + \frac{1}{5} + \frac{1}{9} + \frac{1}{18} + \frac{2}{29} + \frac{2}{28}, \\
\text{(F)} & \quad \frac{1}{2} + \frac{1}{5} + \frac{1}{9} + \frac{1}{18} + \frac{1}{24} + \frac{1}{15} + \frac{1}{31}, \\
\text{(G)} & \quad \frac{1}{2} + \frac{1}{5} + \frac{1}{7} + \frac{1}{17} + \frac{2}{19},
\end{align*}
\]

each of which is less than 133/132. The horizontal dimension measured to edge A is less than 140/139.

Improvements on this result may be possible by taking a larger value of \(n\). Also, note that the length of the rectangle \(R_{n-1}\) can be successively shortened from \(2/(n-1)\) to

\[
\frac{(4n-3)/(n-1)(2n-1)},
\]
\[
\frac{(16n^2 - 17n + 4)/(n-1)(2n-1)(4n-1)}{\ldots}
\]

by truncating (with remainder) the sequence of (2).

This method of packing can of course be applied to other problems of a similar nature. For example, the question is asked in [4] if the squares of sides \(1/2, 1/3, 1/4, \ldots\) can be packed into some rectangle of area \((\pi^2/6) - 1\). If we let the square of side \(1/n\) be represented by \(S_n\) and the rectangle of size \(1/n \times 2/n\) be represented by \(T_n\) then a similar packing argument, using inequality (1), shows that we can pack all the \(S_i, i = 2, 3, 4, \ldots\) into \(\{S_2, S_3, \ldots, S_n, T_{n+1}, T_{n+2}, \ldots, T_{2n+1}\}\). So if we can pack \(\{S_2, S_3, \ldots, S_n, T_{n+1}, T_{n+2}, \ldots, T_{2n+1}\}\) into a rectangle of size \(a \times b\), then we can pack all the \(S_i, i = 2, 3, 4, \ldots\) into the same rectangle. Now the total area of \(\{S_2, S_3, \ldots, S_n, T_{n+1}, T_{n+2}, \ldots, T_{2n+1}\}\) is given by

\[
\sum_{r=2}^n \frac{1}{r^2} + 2 \sum_{r=n+1}^{2n+1} \frac{1}{r^2} < \left(\frac{\pi^2}{6} - 1\right) + \frac{1}{2n(n+1)}.
\]

Therefore the surplus area included in the argument so far is \(< 1/2n(n+1)\). Hence, by this method, it should be possible to find a packing of \(S_i, i = 2, 3, 4, \ldots\) into some rectangle of area close to \((\pi^2/6) - 1\), for moderately small values of \(n\). Indeed, taking \(n = 15\) Fig. 3 illustrates the theorem.

Theorem. All the squares of sides \(1/n, n = 2, 3, 4\ldots\) can be packed into a rectangle of area 47/72.
Note that
\[
\frac{47}{72} < \left(\frac{\pi^2}{6} - 1 \right) + \frac{1}{127},
\]
and that the dimensions of the enclosing are $5/6 \times 47/60$, given by
\[
\left(\frac{1}{2} + \frac{1}{3} \right) \times \left(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} \right).
\]
The width to point A is
\[
\frac{1}{2} + \frac{1}{7} + \frac{1}{14} + \frac{2}{29} = \left(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} \right) - \frac{1}{12180}.
\]

REFERENCES