conduction，the later was feilt to be anthythmogenic，and radiofrequency（Ri） cathetar ablation was proposed．Extensive multipolar catheter mapping using an enciresting techniqua during tixed N．RA pacing revealed electrical propa－ gation through the suture line at the level of the RA apperdage（ $n=2$ ）or the low lateral RA $(n=1), 4,3$ and 1 Rif pulses were delivered at the site of shortest conduction time between the pacing site and the ablation catheter when positionned across the suture line．Local electrogram morphology was double spikes（ $n=2$ ）or fragmented potential（ $n=1$ ）．

Resutts：Complete abolition of atrioatrial conduction was obtained in the 3 cases with a mean procedure duration of 4 hours and a mean fluoroscopy time of 27 min．No tachycandia was observed during a mean tollow up of 3 monhhs（range 5－15）．A total disappearance of premature atrial contractions was seen at control 24 hours Holter recordings．
Condusion：Although unfrequent，abnormal atrioatrial conduction may be seen atter orthotopic heart transplantation and may result in clinically relevant G．RA arhythmias．Ff catheter ablation at the level of impulse propagation across the suture line may provide a definite cure of arrthythmias in this selected group of patients．

928－27 Thermometry－Guided Ablation Using Commercial Systems

Scolt Smith，Deeptankar Demazumder，Savalore F．Mannino，Stephen M．Dillon，Francis E．Marchlinski，David Schwartman．Philadelphia Heart Institute，Philadelphia，PA
Utilizing 3 commercial thermometry ablation systems（1．EP Technotogies， II．Medironic／Cardiorhythm，III．Cordis／Webster），we compared myocardial temperature profiles and lesion volumes during radiofrequency powar（ (P) ） application adjusted to achieve and maintain an electrode temperature of $55^{\circ} \mathrm{C}$ for 120 seconds．Each electrode（ $8 \mathrm{~F}, 4 \mathrm{~mm}$ ）was placed into contact （ $\mathbf{1 0}$ gram force）with bovine myocardium mounted in a tank circulating a saline－dexirose solution whose physical properties were equivalent to blood． Two electrode orientations were evaluated：1．perpendicular and 2．parallel to the myocardial surface．Three solution flow velocilies（F，measured at the electrode－lissue interface）were evaluated： $0,0.2$ and $0.4 \mathrm{~m} / \mathrm{sec}$ ．Mea－ surement ol electrode（ T_{E} ）and myocardial temperature at $1\left(T_{1}\right)$ and $3\left(T_{3}\right)$ mm directly beneath the alectrode－tissue interface was performed．Lesion volumes（ $V, \mathrm{~mm}^{3}$ ）were measured．Results：（hable：mean $\pm \mathrm{SD} ; \mathrm{P} \times 0.05$ vs $F=0$ ）：

$\begin{aligned} & \text { Sys- } \\ & \text { tem } \end{aligned}$	F	Perpendicular				Parallel			
		P	T_{1}	T_{3}	V	P	T_{1}	$1 / 3$	V
1	0	9 ± 3	40 ± 3	46 ± 4	3 ± 3	4 ± 1	43 ± 3	44土3	3 ± 8
1	0.2	812	53 ± 4	52	43 ± 24	17 ± 5	63 ± 8	62＋6	309 ± 101
1	0.4	31 ± 7	61 ± 11	63 ± 9	762．195	40 ± 5	82 ± 9	80×11	465 ± 95
11	0	4 ± 1	$44 \geq 1$	47 ± 3	0	3 ± 1	46 ± 3	46．t2	0
11	0.2	12士4	5645	63 ± 3	99：27	14 ± 4	59.2	63.24	128 ± 30
11	0.4	27 ± 6	677 6	79 ± 5	408 ± 135	28 ± 5	71	－1t5	339 ± 48
111	0	4 ± 1	45： 4	41 ± 3	0	3 ± 1	48土2	46ı4	0
III	0.2	12土	59 ± 5	56t5	76 ± 42	11 ± 2	67ix	67ะ6	122＋61
III	0.4	19土5	61 ± 5	64土 6	254t97	14 ± 3	74：9	76 ± 7	163＋70

Each system acted similarly．At $F=0, T_{E}$ was greater than T_{1} and T_{3} ，and V was small or absent．As Fwas increased，the Prequirement also increased， resulting in progressive increases in T_{1}, T_{3} and V ．At $F=0.2$ ，both T_{1} and T_{3} were greater than the 55° targel for parallel but not perpendicular orientations： at $F=0.4$ ，this was true for both orientations．

928－28 Electrode Siza and Temperature Effects on Lesion Volume During Temperature－Controlled RF Ablation in Vivo

Ian D．Mcfury，James G．Whayne，Mark Mitchen，David E．Haines， University of Viginia，Charlottesville，VA

The correlation between electrode（elec）size or temperature（temp）with lesion siza during radiafrequency（RF）ablation is good in vitro，but the effect of new elec geometries on this correlation using temp feedback power controlled RF delivery in vivo has not been tested．
Methods：Seven mongrel dogs were anesthetized and the femoral artery and vein were cannulated．Four catheters were used with 6 Fr． $4 \mathrm{~mm}, 8$ Fr． 4 $\mathrm{mm}, 8 \mathrm{Fr} .8 \mathrm{~mm}$ ，or an 8 Fr ． 10 mm elec tip（EPP Technologies）．Serial lesions were made in the RV and LV with temp feedback power control（up to 150 W，EPT at target temps of 65，80，and 90° C．The animals were sacriticed and the lesions stained for gross examination．
Pesults： 60 lesions were identitied．Mean power for all temps were $11.2 \pm$ $6.2,17.4 \pm 12.9,47.3 \pm 33.7(p=0.0001)$ ，and $60.4 \pm 32.4 \mathrm{~W}$ with increasing elac size．Lesion size increased with both elec size and temp（graph）．With the 8 and 10 mm elees char was noted in 5 and popping in 3 of 39 lesions． there was 1 case of impedance rise．All but one event occurred at temp $=$ $90^{\circ} \mathrm{C}$ ．

Conclusion：Using temp feedback power control in vivo，lesion size may be predictably increased with higher preset temps and large elec tip sizes． Temps of sop C may have excess popping and charring．

929 Arrhythmia Nechanisms

Monday，March 25，1996，3：00 p．m．－5：00 p．m． Orange County Convention Center，Hall E Presentation Hour：3：00 p．m．－4：00 p．m．

929－54 Oscillations in Human Ventricular Repolarization After Abrupt Pate Acceleration and Beta－Adrenergic Stimulation

Philip T．Sager，Steve W．Koh．West Los Angeles VAMCNCLA，Las Angeles，CA

Oscillations in ventricular repolarization and refractoriness may play an im－ portant role in the genesis of spontaneous clinical VTNF but osciliations of human ventricular action potentials have not been sturdied．We examined the beat to beat APDso during steady state FV pacing at a cycle length（CL） of 450 ms and following acute acceleration to a CL of 330 ms in 18 pts ． To determine the effects of beta－adrenergie stimutation，the measurements were reperated during steady state isoproterenol（ISOP； $35 \mathrm{ng} /(\mathrm{kg} \cdot \mathrm{min})$ ）．Os－ cillations were analyzed by examining the mean standard deviation of Ap D_{90} for Avery 10 beats．
Oscillations ranged from $2-21 \mathrm{~ms}$ ，variability was greatest（ $\mathrm{p}<0.05$ ） immediately after rate acceleration，and were increased compared to pra acceleration in the baseline group．Quasi－periodic APD ascillations were obsenved．After the first 10 beats of rate acceleration，ISOP reduced APD oscillations（ $\mathrm{p}<0.01$ ）．

Thus，APD oscillations following abrupt increases in heart rate occur in humans，variability is enhanced acutely after rate acceleration，and are re－ duced during ISOP in this study．Oscillations may be important in arthythmia initiation and termination．

929－55 Mechanisms of Ventricular Tachycardia Termination in the Human Heart

Steven M．Pogwizd，Mina K．Chung ${ }^{1}$ ，Michaek E．Cain．Washington Unív．， St．Louis，MO；${ }^{1}$ Tha Cleveland Clinic，Cleveland，OH
To define the electrophysiologic mechanismis）by which ventricular tachy－ canctia（VT）teminates，three－dimertsional candiac mapping was performed in 8 patients with healed myocardial infarction undergoing sumgery for VT． Data from 43 nonsustained（3 to 39 beats）VTs（NSVT）and 6 sustained VTs （SuVT）were analyzed．The total activation times（ $140 \pm 6 \mathrm{~ms}$ ）and coupling imfervals（ $312 \pm 12 \mathrm{~ms}$ ）for the teminal beats of NSVT were simitar to those measured from beats curing SuVT（162 14 and 278 地 $29 \mathrm{~ms}, p=0.16$ and 0.28 ，respectively）．Temmination of VT was due to either：1）activation from multiple subenodocardial or subepicardial sites that were discordant from the sites initiating SuVT（45\％）；2）repetitive firing of sites discordant from those initiating SuVT，which were at times preceded by ascillation in tatalac－ tivation time or coupling interval（ 24% ）；or 3）repetitive accivation from sites concondant with those initiating SuVT which either failed to shit to initiation sites required ior maintenance of SuVT or which stoppred suddenty（ 31% ） Electrode density was suficient to define the machanism for 57 beats of

