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The Neuronal Ceroid Lipofuscinoses (NCLs, Batten disease) are a group of inherited neurodegenerative disorders
that have been traditionally grouped together on the basis of certain shared clinical and pathological features. How-
ever, as the number of genes that appear to cause new forms of NCL continues to grow, it is timely to reassess our
understanding of the pathogenesis of these disorders and what groups them together. The various NCL subtypes
do indeed share features of a build-up of autofluorescent storage material, progressive neuron loss and activation
of the innate immune system. The characterisation of animal models has highlighted the selective nature of neuron
loss and its intimate relationshipwith glial activation, rather than the generalised build-up of storagematerial. More
recent data provide evidence for the pathway-dependent nature of pathology, the contribution of glial dysfunction,
and the involvement of new brain regions previously thought to be unaffected, and it is becoming apparent that pa-
thology extends beyond the brain. These data have important implications, not just for therapy, but also for our un-
derstanding of these disorders. However, looking beneath these broadly similar pathological themes evidence
emerges for marked differences in the nature and extent of these events in different forms of NCL. Indeed, given
thewidely different nature of themutated geneproducts it is perhapsmore surprising that these disorders resemble
each other as much as they do. Such data raise the question whether we should rethink the collective grouping of
these gene deficiencies together, or whether it would be better to consider them as separate entities. This article
is part of a Special Issue entitled: Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease).

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

As detailed elsewhere in this special issue [62], considerable prog-
ress has been made in identifying the genes that are mutated in the se-
ries of inherited neurodegenerative disorders collectively called the
Neuronal Ceroid Lipofuscinoses (NCLs, or BattenDisease). This grouping
together is largely on the apparent similarities in their clinical presenta-
tion [81] and brain pathology [1,77,98], despite their widely disparate
ages of onset and rates of disease progression. Perhaps the characteristic
defining pathological feature of these disorders is the intralysosomal ac-
cumulation of a complex mixture of proteins, lipids and metals, which
have characteristic autofluorescent properties [70,71]. Previously, the
ultrastuctural appearance of this storedmaterial was used diagnostical-
ly, in combination with the clinical presentation. However, more re-
cently the availability of enzymatic assays and the identification of
many new disease-causing mutations have enabled more rapid and re-
liable diagnoses of the different disease subtypes [106]. Indeed, in re-
cent years, the availability and affordability of modern genomic
methodology have seen the identification of a plethora of new disease
esearch on the Neuronal Ceroid
forms [2,8,66,85,87,88,92], which display a similar clinical presentation
and autofluorescent storage material accumulation. The hypothesised
number of disease subtypes has expanded rapidly and currently stands
at fourteen different forms of NCL [62,85].

Recently, a new classification of these disorders has emerged, which
combines the mutated gene and age of onset [105]. Nevertheless, de-
spite knowing the genetic basis of these disorders [62,102], progress to-
wards understanding how these mutations exert their devastating
effects has been frustratingly slow. With relatively little known about
thenormal function ofmost of the geneproducts [12,45], it has been dif-
ficult to determine how this may be disrupted in each disease subtype,
and many fundamental questions remain unanswered. For example,
which of the many phenotypes that have been reported represent pri-
mary consequences of mutation, and which are more secondary or fur-
ther downstream parts of a disease cascade that progressively becomes
ever more wide reaching? These are key issues that have direct rele-
vance for devising therapeutic strategies.

The existence of an uptake mechanism for soluble enzyme deficient
forms of NCL [53,89,99], means that a detailed knowledge of the normal
function of these gene products and the consequences of their disrup-
tion may be less crucial for moving towards an effective therapy [107].
While this informationwould still be valuable to have, as reviewed else-
where in this special issue [65], therapeutic efforts can instead concen-
trate on the considerable technical challenges of how to deliver these

https://core.ac.uk/display/81945612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbadis.2015.05.014&domain=pdf
http://dx.doi.org/10.1016/j.bbadis.2015.05.014
mailto:jon.cooper@kcl.ac.uk
http://dx.doi.org/10.1016/j.bbadis.2015.05.014
http://www.sciencedirect.com/science/journal/09254439


2257J.D. Cooper et al. / Biochimica et Biophysica Acta 1852 (2015) 2256–2261
missingproteins,whether bydirect enzyme replacement [e.g. [13,37,54,
58,59,101], gene therapy [31,32,56,74,90,91], or via neural stem cell
transplantation [93]].

In contrast, distinguishingwhich are the key events that happen fol-
lowing gene mutation is of critical importance in the transmembrane
protein deficient forms of NCL. With a lack of mechanism-based thera-
pies, we run the risk of cataloguing a series of different events, and
then try to block them and determine if this affords any benefit [e.g.
47,48,83]. Instead a more basic understanding of which of the different
cell types within the NCL brain are affected, and how their interactions
are compromised is needed. This should not, however, be limited to the
interactions between neurons, or how the timing of disease pathology
may track along different pathways. Rather, it should also encompass
those functionally crucial interactions between neurons and different
classes of glia, between these glial cell types, and the potential influence
of the adaptive immune system.

Much information has emerged from, and continues to be uncovered
in, a series of different disease models [6,23], which range from simple
cellular organisms, to small vertebrate, mouse and large animal models
of NCL. Perhaps more overlooked is the invaluable resource of human
autopsy specimens and what they can reveal [1,77,98], bearing in
mind their scarcity and that they can only inform about disease end-
stage.

This review article will look at some of the main pathological features
that have been reported across the different forms of NCL, and consider
how these have informed our understanding of these disorders.

2. Obtaining a new perspective of NCL pathogenesis via animal
models

In addition to aiding diagnosis, one of the major benefits of identify-
ing disease causing genes has been the subsequent ability to generate
animal models in which these genes have been mutated or to identify
spontaneous mutants that carry similar gene defects [e.g. 20,21,29,35,
44,46,60,79,86]. Each of these species has its benefits and drawbacks
as disease models, but the most widely utilised models are genetically
engineered mutant mice [84], with models now existing for the vast
majority of disease sub-forms [23]. Particularly relevant for addressing
the issues of how to deliver therapies, several different larger animal
models of disease have also been identified [22], the most commonly
used being dogs and sheep [e.g. 3,4,10,27,38,57,72,94]. As technology
advances, it is now possible to generate models in species such as pigs
[24,25], which are likely to prove especially valuable because of the per-
ceived closeness of porcine and human physiology.

A significant advance was crossing the different mouse models of
NCL onto a common strain background, which made it possible to
make comparisons between these models and address key issues
about the relative staging of disease progression [15,17,71,84]. Ulti-
mately the disease end point is a brain that is atrophied, and contains
many fewer neurons, all of which contain large amounts of storage ma-
terial [77,98]. This is invariably accompanied by profound astrocytosis
andmicroglial activation, and theremay also be a relatively low level in-
filtration of lymphocytes into the NCL brain [33,52].While these general
pathological themes hold true across most, if not all forms of NCL, their
relative severity and timing (or even whether they occur at all) can dif-
fer markedly between mouse models.

While themouse models of earlier onset forms of NCL generally dis-
play more pronounced phenotypes, there are certain anomalies such as
the relative severity of Tpp1/Cln2 deficientmice compared to Ppt1/Cln1
deficient mice [35,86]. These may be due to technical issues encoun-
tered in generating this mouse model of Cln2 disease, but may also re-
flect an as yet unidentified species-specific consequence of Tpp1
deficiency in mice. It is also apparent that the extent of brain pathology
is much less pronounced in mouse models, than in a larger animal
model of the same form of NCL, or in the human condition itself [e.g.
63,68,69,98]. This may be due to the fact that mice do not live long
enough to develop the full range of human pathology. However, in gen-
eral, it seems to be that the larger and more complicated a brain is, the
more severely affected it will be by this disease.

3. New lessons frommouse models of NCL

Despite such apparent limitations, much valuable information has
been gained from mouse models of NCL [reviewed in 6,23,84], not just
about pathogenesis [17,61,71], but also in testing experimental thera-
pies [reviewed in 65]. Indeed, analysing thesemice has given us a series
of novel perspectives about the relationship between the events that
occur during disease progression. These include the extent to which
specific brain regions, pathways and cell types are affected, and how
this may vary between forms of NCL. This is not necessarily surprising
given the widely different nature, and probable intracellular location,
of the geneproducts that are deficient in these disorders [12,45]. Indeed,
perhaps more surprising is that these disorders resemble each other as
much as they do. Another key concept to emerge from studying these
mouse models is that several long-standing theories about the patho-
genesis of the NCLs may not hold true upon closer examination [15].

4. Selective neuron loss in the NCL brain

Perhaps the first of these novel insights was the discovery that al-
though the brain is indeed severely impacted by the time of death, albeit
to different extents in disease subtypes, as reviewed in this article, the
nature of neuron loss is actually rather selective in the earlier stages of
disease. The initial observations of such selective vulnerability focused
upon populations of hippocampal and cortical interneurons [e.g. 5,16,
63,69,75,76], but were subsequently extended to the cerebellum [55,
104], and thalamocortical system (see below), and it is likely that
other examples will be found. However, just taking the first example,
comparing interneuron loss acrossmousemodels reveals a bewildering
array of specific effects upon interneurons that express different calci-
um binding proteins or neuropeptides, or those that are located in dif-
ferent hippocampal subfields or cortical regions [5,49,63,69,75,76,
103]. Despite any mechanistic evidence for why these subpopulations
of neurons are specifically affected, such marked differences highlight
that while a pathological featuremay be broadly shared across NCL sub-
types, it is too simplistic to assume that these events occur in the same
fashion.

Another surprising observation made in mouse models was the
pathological targeting of the thalamus relatively early in disease pro-
gression. This phenotype so far holds true across nearly all forms of
NCL [e.g. 39,49,63,73,76], with the loss of thalamic relay neurons pre-
ceding neurodegeneration in the corresponding region of the cortex to
which it projects. Certainly, within any given mouse model the death
of neurons that relay different modalities of information to the cortex
does not occur at the same time, but is staged at different points of dis-
ease progression [e.g. 39]. Nevertheless, the relative timing of these
events within the thalamocortical system also varies between forms of
NCL [reviewed in 71], and while these may at first glance appear to be
relatively minor variations, they reveal further evidence for different
consequences of mutations in these genes at a cellular level. A starker
example of the contrasting effects of gene mutations comes from Cln5
deficient mice in which the sequence of neuron loss is reversed [100],
and apparently occurs in the cortex before the thalamus, a feature that
is so far unique amongst mouse models.

5. Pathway dependent pathology and synaptopathy

The progressive staging of pathological events in the thalamocortical
system highlighted the possible importance of connectivity in deter-
mining the order in which neuron populations are lost in the NCL
brain. The concept of neurodegeneration spreading along pathways in
either an anterograde or retrograde direction is not a new one, but has
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gained certain tractability in other disorders [7,26,78,109]. Various the-
ories can be proposed about how such pathway-specific events may
occur, and thesemay range from the involvement of target-derived tro-
phic support to the transport of prion like particles. While there is cur-
rently no substantive evidence for any of these possibilities in the
NCLs, an emerging theme is the vulnerability of synaptic terminals in
many different neurodegenerative disorders [30]. The NCLs are no ex-
ception, with synapse rearrangement appearing to predate synaptic
loss, which in turn occurs before neuron loss. The evidence for these
events is best established in Cathepsin D deficient mice, representing
the earliest onset congenital form of NCL, in which ultrastructural evi-
dence for altered vesicle density and docking, plus accompanying elec-
trophysiological effects have been reported [43,73]. Although such
phenotypes have not been systematically characterised across all
forms of NCL, it is apparent that synaptic pathology occurs in multiple
forms of NCL [e.g. 40,42], but that its precise nature may (like many
other phenotypes) differ between disease subtypes.

6. New sites of brain pathology

The discovery of staged pathology along the interconnected path-
ways of the thalamocortical system raised the obvious question of
whether the brainstem nuclei that project to the thalamus would be af-
fected at an earlier stage of disease progression, or indeed at an even
earlier stage within the spinal cord. Preliminary data does not seem to
support this hypothesis, but it is now becoming evident that relatively
severe pathology may exist in brain regions not expected to be affected
in theNCLs [64]. It seems likely that the extent and timing of this pathol-
ogy may differ between forms of NCL, and it will be important to sys-
tematically characterise these events in those brain regions that are
newly revealed as being pathologically targeted in these disorders. Al-
though the functional consequences of such pathology are unclear, or
whether these effects extend into the peripheral nervous system,
there are obvious implications for the delivery of therapies. Indeed, fail-
ing to target this pathology may be a serious oversight.

7. What is the influence of storage material accumulation?

The earliest attempts to explain the cause of neuron loss in the NCLs
focussed upon storagematerial accumulation as themost obvious path-
ological hallmark of these disorders. Indeed, perhaps because it is so
simple to detect by shining UV or fluorescent light upon unstained tis-
sue sections, much importance was placed upon storage material accu-
mulation, with the suggestion that this material may itself be toxic.
However, more recent evidence reveals no direct relationship between
where and when storage material accumulation occurs and the distri-
bution of neuron loss [reviewed in 15,17,71]. Indeed, with the few sur-
viving neurons at disease end stage being hugely distended with
autofluorescent storage material [98], a counterargument could be pro-
vocatively made that the presence of storage material is actually neuro-
protective. Such a conclusion is almost certainly wrong, but rhetorically
highlights the dangers of making inferences from a set of phenotypes in
the absence of a mechanistic explanation.

Nevertheless, the level of storage burden continues to be used as a
valuable readout of therapeutic efficacy [19], and approaches that di-
rectly aim to deplete the levels of storage material continue to be
assessed, especially in CLN1 disease. Building upon previous reports of
phosphocysteamine reducing storage burden in fibroblasts from CLN1
disease patients [110], a pilot study has reported beneficial effects of
combined oral cysteamine bitartrate and N-acetylcysteine in this dis-
ease including the delay of isoelectric EEG, depletion of storage in lym-
phocytes, but did not prevent the progression of brain atrophy [51]. The
same group have more recently proposed the use of a hydroxylamine
derivative, N-(tert-Butyl) hydroxylamine (NtBuHA) to mediate lyso-
somal ceroid depletion [80]. This compound not only reduces the levels
of lysosomal storage in patient derived fibroblasts, but also has similar
effects in Ppt1 deficient mice apparently slowing neurological deterio-
ration and moderately extending life span [80]. It remains to be seen
whether such compounds will by themselves be able to afford thera-
peutic benefit, but they may act together with other approaches such
as gene therapy [111] to provide synergistic effects.

8. Glial involvement in NCL pathogenesis

One of the biggest shifts in thinking regarding the NCLs is that they
are very likely not simply diseases of neurons. Certainly the health of
neurons is severely compromised in these disorders, but it is becoming
apparent that the biology of other cell types within the brain and in the
rest of the body is also disrupted. The first hints at a non-neuronal in-
volvement in NCL pathogenesis arose when considering the spatial
and temporal relationship between glial activation and neuron loss.
Characteristically described in sheep [68], but substantiated in multiple
mousemodels of NCL [39,49,63,73,75,76,82,96,100], it became apparent
that the distribution of glial activation accurately predicted the subse-
quent distribution of neuron loss in these disorders. While variable in
nature and extent, the concept that glial activation of one formor anoth-
er always precedes neuron loss is now widely accepted. Indeed, pre-
sented with a new mouse model, it is now routine practice to survey
glial activation as a tool to reveal where neurodegenerative changes
will occur.

Nevertheless, this broad similarity masks some markedly different
types of glial response. Although astrocytosis and microglial activation
both occur long before significant neuron loss can be detected in Cln3
deficientmice [75,76], the activation of these cell types is apparently at-
tenuated with a failure to fully transform morphologically. Such obser-
vations have lead to the suggestion that glia may themselves be
dysfunctional in Cln3 disease [18]. Compelling in vitro evidence exists
and continues to emerge for Cln3 deficient microglia and astrocytes
displaying a range of altered properties and responses to stimulation
[11,18,108]. These phenotypes have obvious implications for neuronal
health, and it will be important to determine how such negative effects
may bemediated. Despite such evidence, it seems improbable that Cln3
disease is solely down to glial dysfunction, with the consequences of
Cln3 mutation also likely to impact neurons in a variety of ways. The
most likely scenario is that dysfunction of both glial and neurons con-
tributing to an on-going pathological cascade that worsenswith disease
progression. The advent of cell-type specific Cln3 mice would be espe-
cially informative in addressing these issues.

It will also be important to investigate whether such effects extend
to other forms of NCL. Certainly, the NCL genes are largely expressed
in both neurons and glia, and the potential exists for glia to be important
players in the events following their mutation and subsequent deficien-
cy. Emerging preliminary data from astrocyte and microglial monocul-
tures suggests that this may be the case in both Cln1 and Cln2
diseases [18,50], but that the nature of these glial defects varies between
forms of NCL. Indeed, it appears that the timing of glial activation may
be atypical in some forms of NCL [9], despite cumulating in pronounced
glial activation towards disease end stage. Such novel information about
NCL pathogenesis is also informing therapeutic efforts [41,95], some-
thing that is especially important in Cln3 disease. If glia contribute neg-
atively to disease progression, then different strategies to block specific
pathways, or even generalised anti-inflammatory approaches may
prove to be beneficial, and the results of such studies are eagerly
anticipated.

It is not just cells of the innate immune system that can be detected
in NCL brains. The neuroimmune response in Cln3 disease does not ap-
pear to be confined to cells of the innate immune system [14,52], and
thebeneficial effects of immunosuppressionwithmycophenolatemofe-
til prove this to be the case [83]. Lymphocyte infiltration into the CNS
may be relatively late in Cln3 disease [52], but appears to happen
much earlier in Cln1 disease progression [33]. Although this remains
at a relatively low-level, genetic blockade of these events leads to a
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slowing of disease progression and promising beneficial effects upon
lifespan and visual function [33,34]. Although blocking either innate or
adaptive immune responses either genetically or pharmaceutically
does not directly address the underlying gene defect, such approaches
may be of value in combination with other therapeutic strategies and
offer some hope in the transmembrane protein deficient forms of NCL
where a mechanistic-based therapy remains a distant prospect.

9. Moving outside the CNS

Recent evidence suggests that the accepted name of these disorders
as ‘neuronal’may be a misnomer, since it is emerging that the effects of
disease are certainly not confined to neurons, or even within the brain.
As therapeutic strategies prove able to prolong lifespan, it is probable
that other disease related phenotypes might appear elsewhere within
the body. Such phenotypes are likely to bemasked by the profound im-
pact of disease upon the brain, but may be revealed if these events can
be slowed down. In this respect targeting the body as well as the brain
is likely to afford further beneficial effects. Certainly it is apparent that
the heart is also affected in some forms of NCL, with the most robust
data available for Cln3 disease [36,67,97], and emerging evidence for
other forms of NCL [28]. Whether these phenotypes are intrinsic to
the heart or are related to events within the brain must be addressed,
as well as defining the contribution of the peripheral and autonomic
nervous system.

10. Concluding comments

The main goal of researchers studying the NCLs is to devise effective
therapies that can alleviate the burden of these fatal disorders. As
reviewed elsewhere in this special issue, advances have recently been
made towards achieving this goal for some NCL subtypes [65]. Never-
theless, the final form these therapies may take, and how they will be
delivered, remains unclear. However, gaining a better understanding
of which brain regions are affected, the sequence in which this occurs
and how each of the different cell types contributes to these events
will be crucial. This information about disease pathogenesis can certain-
ly guide the delivery of therapies towhere they can bemaximally effec-
tive, but it can perhaps have amore central role to play in those forms of
NCL where the precise therapeutic target, or what form the therapeutic
agent will take, is still uncertain. It is very likely that combination ther-
apies that target different parts of the disease cascade, different regions
of the brain, or organs of the body, will be required.

Fromapathological perspective, the net result of themany studies in
animal models is a range of broadly similar phenotypes across the dif-
ferent forms of NCL. These involve the progressive loss of different neu-
ron populations, and its spatial and temporal relationship to glial
activation and storage material accumulation. At a relatively superficial
level this series of similar events may be taken as evidence to reinforce
the notion of theNCLs as a defined family of disorders. However, amore
systematic and in depth consideration of these data revealsmore funda-
mental differences in the nature, extent and timing of these events
[reviewed in this article and [15]]. As such, while broadly similar patho-
logical themes have emerged, a case can also bemade thatmarkedly dif-
ferent features have also been highlighted. Indeed, it cannot be assumed
that the existence of apparently common pathological endpoints is the
result of anything like a similar disease mechanism in each subtype.

This already muddled situation has been further complicated by the
recent addition of multiple disorders that are now labelled as novel
forms of NCL [85]. However, it is not always apparent that the patholog-
ical evidence is sufficiently strong to warrant the assignment of a new
CLN gene name. The end result is large grouping of disorders that may
not share as many similarities as was first apparent. The criteria for de-
fining these ‘new forms of NCL’ need careful deliberation, as the pres-
ence of autofluorescent storage material, with an ultrastructural
appearance resembling that seen in NCLs, plus a clinical presentation
that involves seizures and/or visual impairment cannot necessarily be
taken as conclusive proof of a new disease subtype.

Indeed, it may be time to reconsider the traditional grouping of the
NCLs altogether, and whether this has hampered our progress towards
understanding these mechanisms properly. Perhaps we have been
fooled into thinking of the NCLs as a group of disorders, when it may
be more productive to focus more upon characterising what is the
mechanistic basis of each individual gene defect.
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