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Retroviruses have evolved effective strategies to evade the host immune response, such as high variability
and latent infection. In addition, primate lentiviruses, such as HIV-1, have acquired several ‘‘accessory’’
genes that antagonize antiviral host restriction factors and facilitate viral immune evasion, thereby allowing
continuous and efficient viral replication despite apparently strong innate and acquired immune responses.
Here, I summarize some of our current knowledge on the acquisition and function of the viral vif, vpr, vpu, and
nef genes, with a particular focus on the evolution and specific properties of pandemic HIV-1 strains that may
contribute to their efficient spread and high virulence.
Introduction
Since their introduction into the human population by a single

transmission event from a chimpanzee infected with a simian

immunodefiency virus (SIVcpz) to a human early in the last

century (Korber et al., 2000; Worobey et al., 2008), pandemic

HIV-1 group M (major) strains have infected about 60 million

people. Despite this rapid spread, the efficiency of sexual virus

transmission that accounts for more than 80% of all HIV-1 infec-

tions is usually surprisingly poor (�1 per 1000 sexual contacts)

and most often results from a single ‘‘founder’’ virus (Keele

et al., 2008). It is not well understood why most genital exposures

to HIV-1 do not lead to a spreading infection. Possible explana-

tions are protective effects of the mucosal layer, limited target

cell availability, or elimination of HIV-1 by innate immunity factors

(reviewed in Haase, 2010). Once an infection is established,

however, HIV-1 spreads very rapidly and eliminates most

memory CCR5+CD4+ helper T cells in lymphoid tissues within

a few weeks (reviewed in Brenchley and Douek, 2008). Although

apparently vigorous innate and virus-specific adaptive immune

responses are induced, HIV-1 is capable of replicating continu-

ously and efficiently in the infected host. One reason for this

lack of immunological control is that the virus has evolved

multiple properties to evade or counteract the host defense

mechanisms (Table 1). Some features helping HIV-1 to evade

the immune system are (1) Hiding/latency: the retroviral genome

is integrated into that of its host cell. Many HIV-1-infected cells

are minimally activated or dormant and cannot be recognized

and eliminated by the immune system as long as they do not

express viral antigens. Some latently infected cells survive for

many years, thus precluding virus eradication. (2) Variation/

escape: the reverse transcriptase makes about one error per

10,000 nucleotides, and HIV-1 is highly recombinogenic.

Because billions of viruses are produced each day and the viral

generation time is short, the potential for variation is enormous.

Thus, HIV-1 evolves in fast motion, resulting in the rapid selection

of viral quasi-species that have a growth advantage because

they are not recognized by the antibodies or cytotoxic T lympho-

cytes (CTLs) in the respective host. (3) Camouflage: most

antibodies react very poorly with the native oligomeric envelope

proteins present on HIV-1 particles. Reasons for this are that
about half of the mass of the Env glycoprotein consists of

variable carbohydrates and that conserved functional domains

are masked by variable loops and only transiently exposed

during viral entry (reviewed in Johnson and Desrosiers, 2002).

Thus, broadly neutralizing antibodies are extremely rare. (4)

Cell tropism: helper CD4+ T cells sense viral infections by

T cell receptor (TCR)-mediated interactions with foreign peptides

on MHC and release cytokines and chemokines to promote

antibody and CTL responses. However, activated CD4+ T cells

are also the ideal viral targets. Usually, the virus infects and

eliminates most of them during acute infection and leaves the

infected host with little CD4 help. Only a small minority of virally

infected individuals maintain strong HIV-specific CD4 prolifera-

tive capacity and can achieve long-term immunological control

of viral replication. (5) Cell-to-cell spread: HIV-1 can spread

directly from infected to uninfected cells via virological syn-

apses. This may protect the virus sterically and kinetically from

immune effector mechanisms (reviewed in Sattentau, 2008).

Another reason for the lack of immunological control of HIV-1 is

that the adaptive immune response takes time to develop and can

only become effective in response to an infection that is already

ongoing. Thus, by the time CTLs emerge, the virus has already

spread efficiently in the host, damaged the immune system,

and established latent reservoirs. The innate immune response

occurs more rapidly but is also largely dependent on the response

to ongoing viral replication, e.g., virus-triggered signaling, to

induce the interferon (IFN) response. However, in addition to

conventional innate and acquired immune responses, humans

and other mammals have also evolved specific antiviral factors.

These ‘‘intrinsic immunity’’ or ‘‘host restriction’’ factors are

constitutively expressed in some cell types and are induced by

interferons as part of the innate immune response in others.

They have the advantage that they do not have to ‘‘learn’’ to

combat viruses but are already active at the first virus-cell interac-

tion (reviewed in Malim and Emerman, 2008; Neil and Bieniasz,

2009). Three major classes of retroviral restriction factors have

been identified. APOBEC3G (apolipoprotein B mRNA-editing

enzyme, catalytic polypeptide-like 3G) was the first host gene

identified as an inhibitor of HIV-1 infection (Sheehy et al., 2002).

APOBEC3G is a cytidine deaminase that suppresses reverse
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Table 1. Host Defenses and Mechanisms of Primate Lentiviral Evasion or Antagonism

Immune

Response Host Defense Antiviral Effect

Viral Evasion or

Antagonistic Mechanism

Viral Factor(s) or

Properties

Innate NK cells lysis of infected cells selective downmodulation

of HLA-A and -B,

but not HLA-C and -E

Nef

Intrinsic ABOBEC 3G lethal hypermutations polyubiquitination

and degradation

Vif

TRIM5a untimely uncoating variation in capsid high variability

tetherin blocks virion release sequestration from the site

of virion budding

Vpu, Nef, Env

Acquired cytotoxic CD8+ T cells lysis of infected cells,

inhibitory cytokines

MHC-I downmodulation, escape

mutations, latent infection

Nef, high variability

CD4+ helper T cells helper function to

promote antibody

and CTL responses

destruction by infection

or bystander apoptosis;

downmodulation of CD4,

CD3, CD28, and CXCR4

Nef, Vpu, viral cytopathicity

B cells, antibodies neutralization antigenic variation,

glycosylation, shielding of

functional epitopes, inhibition

of IgG2, and IgA switching

high variability, N-linked

glycosylation sites,

Env structure, Nef

antigen-presenting cells viral antigen presentation,

helper T cell activation

upmodulation of Ii surface

expression

Nef
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transcription and introduces G-to-A substitutions in the HIV-1

genome, which are detrimental to viral replication. TRIM5a

(tripartite motif 5-a) proteins were originally discovered as

important determinants of the resistance of monkey cells to

HIV-1 infection (Stremlau et al., 2004). TRIM5a binds incoming

viral capsids in the cytoplasm and seems to mediate rapid

uncoating. The most recently identified restriction factor, tetherin

(BST-2, CD317, or HM1.24), inhibits viral release by ‘‘tethering’’

mature virions to the cell surface (Neil et al., 2008; Van Damme

et al., 2008). However, it is obvious from the high levels of viremia

during acute infection that this front line of antiviral defense fails to

protect humans against the spread of HIV-1. The reason for this is

that HIV-1 and other primate lentiviruses have evolved specific

‘‘tools’’ to antagonize these host restriction factors. These viral

factors were named ‘‘accessory’’ because they are not absolutely

required for viral replication in cell lines. However, they allow

HIV-1 to replicate continuously at high levels in the presence of

strong innate, intrinsic, and adaptive virus-specific immune

responses and thus play important roles for viral persistence,

pathogenesis, and transmission in vivo. The mechanisms under-

lying the function of the HIV-1 accessory Vif, Vpr, Vpu, and Nef

proteins have been the topic of several recent in-depth reviews

(Ariën and Verhasselt, 2008; Chiu and Greene, 2009; Kirchhoff

et al., 2008; Malim and Emerman, 2008; Malim, 2009; Neil and

Bieniasz, 2009; Planelles and Benichou, 2009). Here, I describe

the acquisition of these factors, summarize (some of) their func-

tions, highlight specific features of pandemic HIV-1 M strains,

and mention future questions and challenges. The main objective

is to give an impression of the multitudes of strategies evolved by

primate lentiviruses to evade or counteract the host defenses.

Acquisition of Accessory Genes by HIV-1
HIV-1 belongs to the genus of lentiviruses. These viruses are

characterized by their ability to infect nondividing cells and to
56 Cell Host & Microbe 8, July 22, 2010 ª2010 Elsevier Inc.
cause diseases with long incubation periods. Lentiviruses have

been divided into five groups, each restricted to a single mam-

malian family, i.e., ovines-caprines, bovines, felines, equines,

and primates. Until recently, only exogenous lentiviruses were

known, and their evolutionary analysis suggested that they

emerged relatively recently. However, though the extremely

high rates of evolution of infectious primate lentiviruses facilitate

the reconstruction of recent evolutionary events, such as the

emergence of HIV-1, they preclude the reliable analysis of their

distant evolutionary history and origin. The recent discovery

and analysis of distinct endogenous lentiviruses has provided

important information on the origin and evolution of current lenti-

viruses and indicates a considerably more ancient origin than

previously anticipated (Gifford et al., 2008; Katzourakis et al.,

2007; Keckesova et al., 2009). For example, the presence of an

endogenous lentivirus in a lemur from Madagascar (named

gray mouse lemur prosimian immunodeficiency virus, pSIVgml)

suggests that lentiviruses have been infecting primates for

more than 10 million years (Gifford et al., 2008).

In addition to the gag, pol, and env genes, which encode struc-

tural and enzymatic proteins and are present in the genomes of

all retroviruses, the most primitive known lentivirus (i.e., rabbit

endogenous lentivirus type K, RELIK) contains just the tat and

rev genes encoding essential regulatory proteins (Figure 1).

The discovery of a RELIK ortholog in the genome of European

hares revealed that these lagomorph lentiviruses are at least

12 million years old (Keckesova et al., 2009). In comparison,

the genomes of present day primate lentiviruses, found in about

40 African nonhuman primate species (reviewed in Hahn et al.,

2000; Pandrea et al., 2008), contain at least three additional

genes (vif, vpr, and nef). Vif is also present in the genomes of

the ovine-caprine, bovine, and feline (but not in the equine)

groups of lentiviruses and was thus acquired early during lentivi-

ral evolution. In contrast, vpr and nef genes are characteristic for
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Figure 1. Genomic Organization of Lentiviruses
The organization of the consensus endogenous RELIK and pSIVgml proviral
genomes is shown in comparison to that of other infectious lentiviruses.
RELIK, rabbit endogenous lentivirus type K; FIV, feline immunodeficiency
virus; OMVV, ovine maedi-visna virus; pSIVgml, gray mouse lemur prosimian
immunodeficiency virus. Question marks indicate the possible presence of
short, spliced Rev and Tat exons.
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primate lentiviruses. Notably, the ‘‘prosimian’’ lentivirus pSIVgml

that evaded the host genome several million years ago contains

a dUTPase, which is otherwise only found in nonprimate lentivi-

ruses (Gifford et al., 2008). In addition to vif, vpr, and nef, SIVs

infecting the Papionini tribe of monkeys (mangabeys, drills,

and mandrills) and HIV-2 contain a vpx gene. Vpx may have

arisen from a duplication of the vpr open reading frame (Tristem

et al., 1990) or by the acquisition of a heterologous vpr gene

(Sharp et al., 1996). Finally, another gene (vpu) was most likely

acquired by a common ancestor of SIVs nowadays found in

Cercopithecus monkeys (Bailes et al., 2003). To our current

knowledge, this vpu containing SIV was transmitted to chimpan-

zees and formed a hybrid with the ancestor of an SIV found in

red-capped mangabeys (Cercocebus torquatus) (Bailes et al.,

2003). Chimpanzees prey on these monkeys, and their ranges

in west and central Africa overlap. Most likely, one chimpanzee

became coinfected by both simian viruses. They recombined,

and the vpu-containing hybrid virus (SIVcpz) then spread in

chimpanzees and was later transmitted to humans and gorillas

to become HIV-1 and SIVgor. Thus, Vpu distinguishes HIV-1

and its SIV counterparts in chimpanzees, gorillas, and some

Cercopithecus monkeys from most other primate lentiviruses

that do not encode a homolog to Vpu.
Accessory HIV-1 Proteins Antagonizing Host Restriction
Factors
Compared to the most primitive retroviruses, HIV-1 is equipped

with six additional genes. Two of them encode essential regula-

tory proteins (Tat and Rev) and four small accessory factors

(Vif, Vpr, Vpu, and Nef) that are dispensable for viral replication

in some cell types. Accumulating evidence suggests that the

main function of three of the latter, i.e., Vif, Vpu, and (most likely)

Vpr, is to counteract intracellular proteins that humans and other

mammals have evolved primarily or exclusively as a defense

against viral pathogens (reviewed in Malim and Emerman,

2008). The necessity of such antiviral factors and the enormity

of encounters with invading retroviruses over millions of years

are evident from the fact that about 8% of our genome consists

of the defective remnants of once infectious retroviruses

(reviewed in Bannert and Kurth, 2004). This is a larger proportion

of our genetic material than that encoding proteins. Thus, retro-

viruses have not only left their imprints, but have also driven our

evolution and shaped our genetic repertoire. Similarly to highly

active antiretroviral therapy (HAART), antiviral ‘‘host restriction’’

factors interfere with different stages of the viral life cycle:

APOBEC3G induces lethal hypermutations of the retroviral

genome; TRIM5a proteins restrict the incoming retroviral capsid;

and tetherin inhibits the release of viral particles (reviewed in

Huthoff and Towers, 2008; Malim and Emerman, 2008; Neil

and Bieniasz, 2009) (Figure 2). Its high variability allows HIV-1

to evade the adaptive immune response. In comparison, it is

more difficult for the virus to avoid factors targeting viral compo-

nents in a less-specific manner because it cannot easily become

resistant by escape mutations. TRIM5a proteins inhibit viruses

with limited homology and thus seem to target viral capsids

with a relatively relaxed specificity. However, escape by capsid

mutations is clearly possible, as retroviruses from a given

species are not restricted by the TRIM5a variants found in the

same species (reviewed in Song, 2009). Of interest, binding of

the HIV-1 capsid protein to cyclophilin A increases its suscepti-

bility to simian TRIM5a and may thus reduce its potential for

cross-species transmission (Keckesova et al., 2006). Incorpora-

tion of APOBEC3G proteins into budding virions and inhibition of

virus release by tetherin are both relatively unspecific processes

(reviewed in Bieniasz, 2004; Malim and Emerman, 2008). Thus,

HIV-1 is unable to avoid them by escape mutations but has taken

the highly demanding step of acquiring new tools to antagonize

these intrinsic immunity factors. Of note, the functional charac-

terization of the viral antagonists was frequently instrumental in

identifying the host restriction factors. As outlined in a recent

review (Malim and Emerman, 2008), Vif, Vpu, and Vpr all seem

to target antiviral factors for ubiquitin-dependent proteasomal

degradation to render the intracellular environment more condu-

cive to viral replication. In comparison, the multifunctional HIV-1

Nef protein interacts with numerous cellular factors and evolved

to facilitate viral immune evasion from adaptive immune

responses and to directly promote viral spread.

Virion infectivity factor (Vif) is a basic protein of 23 kDa that

is essential for viral replication in primary T cells and in vivo

(reviewed in Malim, 2009; Chiu and Greene, 2009). Its cellular

target, APOBEC3G, was initially discovered by the Malim labora-

tory by comparing the mRNA expression profiles of cells that do

or do not support efficient replication of vif-defective HIV-1
Cell Host & Microbe 8, July 22, 2010 ª2010 Elsevier Inc. 57
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Figure 2. Host Restriction Factors and Their Viral Antagonists
As schematically indicated, TRIM5a (T5a) interacts with incoming HIV-1 capsids and may induce accelerated uncoating by proteasomal degradation. Vif binds to
a cullin 5-based ubiquitin ligase complex and to APOBEC3G (3G) to induce the degradation of the restriction factor in proteasomes. Without Vif, APOBEC3G is
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mature viral particles from the cell surface and is antagonized by the Vpu protein. The exact mechanism remains to be defined but most likely involves direct
interaction and b-TrCP2-dependent degradation of tetherin, leading to its sequestration from budding virions.
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(Sheehy et al., 2002). In the absence of Vif, APOBEC3G is incor-

porated into HIV-1 virions (Sheehy et al., 2003; Stopak et al.,

2003; Mariani et al., 2003), inhibits viral DNA synthesis during

reverse transcription (Holmes et al., 2007; Miyagi et al., 2007;

Bishop et al., 2008), and catalyzes deamination of cytidine to

uridine during negative-strand DNA synthesis (Conticello et al.,

2005). These changes lead to the degradation of the viral DNA

and/or become fixed as guanosin-to-adenosin transitions in

the proviral sequences (known as G-to-A hypermutations).

APOBEC3G is particularly effective in inactivating the virus

because it preferentially targets GG dinucleotides, thereby

changing TGG (W) to TAA (stop) codons. Such mutations seem

to be responsible for the inactivation of some ancient retroviral

sequences (Esnault et al., 2005; Jern et al., 2007). Vif serves as

an adaptor molecule to link a cullin 5-based E3 ubiquitin ligase

complex to APOBEC3G and induces its polyubiquitination and

subsequent proteasomal degradation, thereby preventing its

packaging into budding virions (Figure 2). It has been reported

that ABOBEC3G exists in an enzymatically active low-molecular

mass form that restricts HIV-1 in quiescent T cells but is recruited

into high-molecular mass RNA-protein complexes upon T cell

activation (Chiu et al., 2005). Of interest, the latter also contain

Alu/hY retroelements and may reduce their transposition (re-

viewed in Chiu and Greene, 2009). Some recent studies,

however, did not confirm the role of low-molecular mass

ABOBEC3G complexes in the HIV-1-restrictive phenotype of

quiescent T cells (Kamata et al., 2009; Santoni de Sio and Trono,

2009). Thus, further investigation is required to fully understand

the regulation and antiviral properties of APOBEC3G. Of note,

APOBEC3G is only one of seven related cytidine deaminases
58 Cell Host & Microbe 8, July 22, 2010 ª2010 Elsevier Inc.
found in humans. Vif also mediates the degradation of

APOBEC3F, which is another potent inhibitor of HIV-1 (Mehle

et al., 2004; Yu et al., 2003). Furthermore, the expression of trun-

cated or misfolded viral proteins due to APOBEC3G editing

enhances the recognition of HIV-1-infected T cells by CTLs

and thus links the innate and adaptive immune response (Casar-

telli et al., 2010a). Low levels of APOBEC3G-mediated muta-

tions, however, may actually be beneficial for the virus because

they may help HIV-1 to diversify rapidly and to escape from

adaptive immunity (Simon et al., 2005; Sadler et al., 2010).

HIV-1 viral protein R (Vpr) is a virion-associated factor of about

14 kDa. Multiple activities of Vpr, including activation of proviral

transcription, cell-cycle arrest in the G2 phase, induction of cell

death, and enhancement of the fidelity of reverse transcription,

have been reported (reviewed in Malim and Emerman, 2008;

Planelles and Benichou, 2009). Of note, an intact vpr gene is

not required for efficient viral replication and progression to

AIDS in the SIVmac/macaque model (Gibbs et al., 1995),

although its conservation between all primate lentiviruses

suggests a relevant role in natural SIV and recent HIV infections.

The ability of Vpr to cause a G2 cell-cycle arrest is preserved

between HIV and SIV (Fletcher et al., 1996). Several recent

studies suggest that it involves the interaction of Vpr with the

cullin 4A-DDB1 complex via DCAF-1 (initially named VprBP)

(reviewed in Malim and Emerman, 2008; Planelles and Benichou,

2009). It is currently unclear whether Vpr increases the activity of

the cullin 4A-DDB1-DCAF-1 complex for its normal substrates or

allows it to recruit a novel one for ubiquitination and degradation.

In either case, the characterization of this substrate will be highly

important for our understanding of Vpr function. It may also help
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to clarify whether G2 arrest is beneficial for the virus because it

increases HIV-1 transcription (Goh et al., 1998) or whether it is

just a side effect of the destruction of a factor playing a dual

role in cell-cycle progression and host-mediated viral restriction.

Of note, HIV-1 Vpr also facilitates infection of macrophages

(Balliet et al., 1994; Connor et al., 1995). In the HIV-2/SIVsmm

lineage that also contains a vpx gene, the two major functions

of Vpr are segregated: Vpr induces cell-cycle arrest, and Vpx

facilitates infection of macrophages (albeit with much higher

efficiency than HIV-1 Vpr) (Goujon et al., 2007; Sharova et al.,

2008). Importantly, Vpx also binds DCAF-1 to interact with the

cullin 4A-DDB1 complex, and this interaction seems critical for

its ability to promote macrophage infection (Le Rouzic et al.,

2007; Srivastava et al., 2008). Thus, it is tempting to speculate

that Vpx (and Vpr) may target an as yet unknown restriction

factor expressed in macrophages for polyubiquitination and

degradation.

HIV-1 viral protein U (Vpu) is a 16 kDa integral membrane

protein produced together with Env during the late stage of the

viral life cycle. Vpu has two main functions. First, it interacts

with newly synthesized CD4 in the endoplasmatic reticulum

and recruits a ubiquitin ligase complex to its cytoplasmic tail to

mediate polyubiquitinylation and proteasomal degradation

(Bour et al., 1995; Willey et al., 1992). CD4 is the primary receptor

of all primate lentiviruses. Thus, its degradation may facilitate

virus release, avert superinfection, and enhance the incorpora-

tion of functional Env proteins into progeny virions by preventing

the formation of gp120/CD4 complexes in virally infected cells.

Second, Vpu is required for efficient viral particle release in

some cell types but only after type I interferon treatment in others

(Strebel et al., 1989; Göttlinger et al., 1993). Microarray screening

for membrane-associated proteins constitutively expressed in

cells in which Vpu is required for efficient virion release and

induced by IFN-a treatment in those in which it is dispensable

allowed the identification of BST-2 as the antiviral factor antago-

nized by Vpu (Neil et al., 2008). An independent study (Van

Damme et al., 2008) also identified this long-sought ‘‘tethering’’

factor by following up on a previous report showing that BST-2

is downmodulated from the plasma membrane by the Kaposi’s

sarcoma associated herpes virus (KSHV) protein K5, a viral

ubiquitin ligase, and by Vpu (Bartee et al., 2006). BST-2, or

‘‘tetherin’’ as it is now commonly called, is a type II single-pass

transmembrane protein with a cytoplasmic N-terminal region,

followed by a transmembrane (TM) domain, a coiled-coil extra-

cellular domain, and a C-terminal glycophosphatidylinositol

(GPI) anchor (Kupzig et al., 2003). It also contains three cysteine

residues mediating homodimerization. Since its discovery by the

Bieniasz and Guatelli labs, there has been a flurry of papers on

tetherin and its viral antagonists, and this has been the topic of

several recent reviews (Malim and Emerman, 2008; Neil and

Bieniasz, 2009; Ruiz et al., 2010; Sauter et al., 2010). In brief,

tetherin dimers seem to directly tether nascent virions to the

surface of the producer cells with one membrane anchor sticking

in the virion and the other in the cell membrane (Figure 2). In

agreement with this straightforward mechanism, the cyto-

plasmic tail and the GPI anchor are both critical for its antiviral

activity (Neil et al., 2008). Furthermore, an artificial ‘‘tetherin’’

composed of entirely different sequences but with comparable

topology inhibits virus release (Perez-Caballero et al., 2009).
Recent data suggest that its conformational flexibility may help

tetherin to maintain its anchoring in both the cellular and viral

membranes during virion budding (Hinz et al., 2010). Usually,

tetherin is not expressed at high levels in primary CD4+ T cells.

However, its expression is strongly induced by type I interferons

(Neil et al., 2007). Vpu interacts with the TM domain of tetherin in

a highly specific manner and targets the restriction factor to the

trans-Golgi network or to early endosomes for proteasomal and/

or lysosomal degradation by a b-TrCP-dependent mechanism

(Douglas et al., 2009; Goffinet et al., 2009; Gupta et al., 2009;

Mangeat et al., 2009; McNatt et al., 2009). Vpu reduces the levels

of tetherin expression at the cell surface (Van Damme et al.,

2008; Mitchell et al., 2009; Douglas et al., 2009). However, down-

modulation and/or degradation of tetherin may not always be

required for the capability of Vpu to promote virion release

(Dubé et al., 2010; Goffinet et al., 2010; Miyagi et al., 2009; Neil

et al., 2008). Thus, though it is clear that Vpu keeps tetherin

away from the sites of virion budding, the exact mechanism of

tetherin antagonism needs further study.

The finding that HIV-1 developed an effective tetherin antago-

nist clearly supports a relevant role of this restriction factor

in vivo. However, HIV-1 O strains can cause AIDS, although their

Vpu and Nef proteins are poor tetherin antagonists (Sauter et al.,

2009). Early data suggested that Vpu may not be required

for effective cell-to-cell spread (Gummuluru et al., 2000). Thus,

ineffective tetherin antagonism could just shift the spread of

HIV-1 to cell-to-cell transmission. However, a recent study

suggests that tetherin also restricts cell-to-cell spread of the

virus, albeit with limited efficiency (Casartelli et al., 2010b).

Furthermore, HIV-1 replication is hypersensitive to IFN-a (which

induces tetherin) in the absence of Vpu (Neil et al., 2007), and

intact vpu genes are required for effective replication in ex

vivo-infected human lymphoid tissues (Schindler et al., 2010).

Thus, the importance of tetherin antagonism for viral replication

both in vitro and in vivo remains to be clarified.

All-Rounder Nef: Manipulation and Evasion
of Adaptive Immunity
The negative factor (Nef) of HIV-1 is a myristoylated protein of

about 27 kDa associated with cytoplasmic membranes and

abundantly expressed early during the viral life cycle. Its name

is misleading because intact nef genes are critical for the main-

tenance of high virus loads and accelerate disease progression

in HIV-1-infected human individuals and in SIVmac-infected rhe-

sus macaques (Kestler et al., 1991; Deacon et al., 1995; Kirchhoff

et al., 1995). Nef performs a striking number of activities and

induces complex changes in cellular trafficking, gene and

receptor surface expression, antigen presentation, and signal

transduction (reviewed in Ariën and Verhasselt, 2008; Kirchhoff

et al., 2008). Furthermore, Nef may also affect the survival and

function of bystander cells (Lenassi et al., 2010) and deregulate

the communication between T cells and antigen-presenting cells

(Arhel et al., 2009; Thoulouze et al., 2006). Thus, most likely,

multiple Nef activities cooperate to delay the elimination of

HIV-1-infected cells by the immune system to turn them into

more effective producers of fully infectious virions and to render

the cellular environment more conducive for viral spread.

In HIV-1-infected T cells, Nef downmodulates CD4, MHC-I,

and (less efficiently) CD28 and CXCR4 (CXCL12) from the
Cell Host & Microbe 8, July 22, 2010 ª2010 Elsevier Inc. 59
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Nef downmodulates HLA molecules, CD4, CD28, CXCR4, and CD3 from the surface of infected CD4+ T cells by recruiting them to the endocytic machinery via
interactions with adaptor protein 2 (AP2) complexes or by rerouting them to endosomes. These Nef functions reduce CTL lysis, suppress cell migration, facilitate
virus release, and modulate signal transduction by the immunological synapse. Furthermore, Nef interacts with cellular kinases and induces downstream
signaling events to modulate T cell activation; to induce rearrangements of the actin skeleton; to activate NF-AT, NF-kB, and AP-1; and to induce the efficient
transcription of the viral LTR promoter, as well as of cellular genes, including those encoding inflammatory cytokines, activation markers, and death receptors.
Nef also directly enhances the infectivity of progeny virions. As indicated by green boxes, SIVagm and SIVsmm Nef alleles are more effective than those of HIV-1
in modulating CD28 and CXCR4 and, in addition, also downregulate CD3. Thus, in contrast to HIV-1 Nefs, they prevent the formation of the immune synapse and
not just deregulate it. As indicated by the orange box, cells expressing HIV-1 Nefs express higher levels of death receptors and inflammatory cytokines than those
expressing SIVsmm or SIVagm Nef proteins. Modified from Arhel and Kirchhoff, 2009.
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surface by recruiting these receptors to the endocytic machinery

or by rerouting them to lysosomes for degradation (reviewed in

Roeth and Collins, 2006; Arhel and Kirchhoff, 2009). These Nef

functions protect virally infected T cells against CTL lysis, reduce

their migration in response to the chemokine SDF-1 (CXCL12),

prevent superinfection, and may facilitate the release of fully

infectious virions (Figure 3). Of note, Nef selectively downmodu-

lates HLA-A and –B, but not HLA-C or –E, alleles from the cell
60 Cell Host & Microbe 8, July 22, 2010 ª2010 Elsevier Inc.
surface (Cohen et al., 1999) to balance escape from CTL lysis

with protection from attack by natural killer cells. Furthermore,

Nef interacts with various cellular kinases and modulates signal

transduction pathways to manipulate the responsiveness of

virally infected T cells to TCR-mediated stimulation. As a conse-

quence, the HIV-1 Nef protein promotes the induction of cellular

transcription factors, such as NF-AT, NF-kB, and AP-1, that

elevate the transcription of the viral LTR promoter and thus viral
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replication (Fenard et al., 2005; Fortin et al., 2004; Manninen

et al., 2001). Nef also affects MHC-II antigen presentation by

efficient upmodulation of the Invariant chain (Ii or CD74) at the

cell surface (Stumptner-Cuvelette et al., 2001). Ii usually caps

the MHC-II peptide-binding site during its transport to endoso-

mal compartments to prevent premature peptide loading.

Upmodulation of immature MHC-II-Ii complexes at the cell

surface perturbs MHC-II-restricted antigen presentation (Roche

et al., 1992). Thus, this Nef function may contribute to the

impaired helper T cell responses observed in AIDS patients.

Although Nef is commonly considered an early viral gene

product, it also acts during the late stage of the virus life cycle.

For example, Nef enhances the infectivity of progeny virions by

a poorly defined mechanism that involves the interaction of Nef

with the GTPase Dynamin-2, an essential regulator of clathrin-

mediated endocytosis (Pizzato et al., 2007). Furthermore, as dis-

cussed below, some SIVs use their Nef proteins to antagonize

tetherin (Jia et al., 2009; Sauter et al., 2009; Zhang et al., 2009).

Accumulating evidence suggests that Nef may not only manip-

ulate HIV-1-infected host cells, but also cause significant

changes in its cellular environment. For example, Nef may induce

the secretion of factors from HIV-1-infected macrophages that

attract T cells and render them more susceptible to HIV-1 infec-

tion (Swingler et al., 1999, 2003). Furthermore, it has been

proposed that the HIV-1 Nef protein itself is secreted and may

trigger apoptosis in bystander CD4+ T cells (James et al.,

2004; Lenassi et al., 2010). Finally, it has been reported that

Nef induces the formation of long-range actin-propelled con-

duits in infected macrophages to mediate its own transfer to

neighboring B cells (Xu et al., 2009). B cells containing Nef

showed impaired IgG2 and IgA class switching, suggesting

that HIV-1 may exploit Nef to manipulate the antibody response

and to evade humoral immunity (Qiao et al., 2006).

The relevance of most Nef activities for viral replication and

pathogenesis in vivo is far from clear and has been discussed

in greater depth in recent reviews (Foster and Garcia, 2008;

Kirchhoff et al., 2008). It has become clear that different Nef

functions require distinct elements and are often genetically

separable. In some cases, this allowed the specific elimination

of individual Nef activities. For example, the analysis of highly

selective SIVmac239 mutants containing changes in the

C-terminal domain of Nef demonstrated that MHC-I downmodu-

lation is associated with a strong selective advantage and

reduces CD8+ T cell responses in infected rhesus macaques

(Münch et al., 2001; Swigut et al., 2004). More often, however,

mutations in Nef have pleiotropic effects, and this is a major

obstacle for conclusive studies on the relevance of specific

Nef functions in vivo. Altogether, the results obtained in the

SIV/macaque model show that mutations in Nef that disrupt

some but not all of its activities usually result in a phenotype

intermediate between wild-type and nef-deleted SIVmac infec-

tion (reviewed in Kirchhoff et al., 2008). This implies that both

the Nef functions that are maintained, as well as those that are

disrupted, play some role for viral replication in vivo. The

emerging picture suggests that HIV-1 and SIV evolved Nef as a

multifunctional tool to manipulate the key cell types of the

acquired immune system (helper CD4+ T cells, CTLs, B cells,

and APCs) and to interfere with the various mechanisms (such

as antigen presentation, cellular migration, signal transduction,
apoptosis, and cytokine secretion) critical for the immunological

control of the virus.

Adaptations Preceding the Emergence
of Pandemic HIV-1 Strains
Genes encoding host restriction factors, such as TRIM5a,

APOBEC3G, and tetherin, evolve unusually fast (Sawyer et al.,

2004, 2007; McNatt et al., 2009). This positive selection for

diversification is most likely driven by the need to antagonize

new emerging pathogens or to escape viral antagonists over

millions of years of virus-host coevolution. As a consequence,

TRIM5a, APOBEC3G, and tetherin all show a high degree of

sequence divergence and constitute barriers to zoonotic viral

transmissions because the viral antagonists often act in a

species-specific manner. Nonetheless, primate lentiviruses

have crossed species barriers on many occasions, and HIV-1

is the product of successive zoonotic transmission and recombi-

nation events (Figure 4). As mentioned above, SIVcpz most likely

arose from a recombination between ancestors of SIVs presently

infecting red-capped mangabeys and Cercopithecus monkeys

(Bailes et al., 2003). Subsequently, SIVcpz was transmitted

from chimpanzees to gorillas and to humans to give rise to

SIVgor and HIV-1. Recent studies provide the first insights on

how these primate lentiviruses managed to jump from one

species to another (Gaddis et al., 2004; Kratovac et al., 2008;

Sauter et al., 2009; Schindler et al., 2006).

TRIM5a has been first identified as a major barrier to HIV-1

replication in rhesus macaque cells (Stremlau et al., 2004).

Human and chimpanzee TRIM5a proteins, however, seem to

be unable to restrict different primate lentiviruses, including

SIVgsn and SIVcpz (Kratovac et al., 2008). The inability of chim-

panzee TRIM5a to restrict SIVs found in small monkeys most

likely facilitated coinfection by different lentiviruses and thus

the generation of the chimeric virus that adapted to chimpan-

zees. Species-specific differences in the susceptibility of

ABOBEC proteins may also play a role in cross-species viral

transmission. Indeed, the anti-APOBEC activity of various SIV

Vif proteins in transfected H9 cells seems to correlate with the

capability of these viruses to infect humans (Gaddis et al.,

2004). However, the capability of these SIVs to antagonize

ABOBEC did not correlate with their replicative capacity in

human cells, and some SIVs were partly resistant to human

APOBEC proteins irrespectively of Vif function. Thus, the role

of ABOBEC in primate lentiviral replication is complex, and it

remains elusive whether ABOBEC constituted a barrier for the

transmission of SIVs from small monkeys to chimpanzees. This

was clearly not the case for the later transmission of the virus

from chimpanzees to humans because the SIVcpz Vif is fully

capable of antagonizing human ABOBEC proteins (Gaddis

et al., 2004).

Tetherin most likely posed a significant hurdle to the cross-

species transmissions that preceded the emergence of HIV-1.

The chimeric virus that gave rise to SIVcpz contained the vpu

gene of the precursor of SIVgsn/mus/mon and the nef gene of

the progenitor of SIVrcm (Schindler et al., 2006). Most likely,

the ancestor of SIVrcm used Nef (because it does not encode

Vpu) and that of the SIVgsn/mus/mon lineage used Vpu (because

all descendants do) to antagonize tetherin. Thus, the hybrid virus

was equipped with two potential tetherin antagonists. However,
Cell Host & Microbe 8, July 22, 2010 ª2010 Elsevier Inc. 61



Figure 4. Tetherin-Driven Evolution of Vpu and Nef Function and the Emergence of HIV-1
SIVcpz represents a recombinant of the precursors of viruses nowadays found in red-capped mangabeys and Cercopithecus monkeys and was transmitted to
humans and gorillas. Vpu was first acquired by a common precursor of SIVgsn/mus/mon and then transferred from monkeys to apes and to humans by zoonotic
primate lentiviral transmissions. The events that led to the emergence of pandemic HIV-1 group M strains are indicated by thick lines. Nef-mediated tetherin
antagonism is indicated by blue and Vpu-mediated tetherin antagonism by red lines, respectively. +, active; (+), poorly active; �, inactive; ?, unknown; n.a.,
not applicable because these viruses do not have a vpu gene. Adapted from Sauter et al., 2009.
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both were presumably poorly active immediately after cross-

species transmission because Vpus and/or Nef proteins of

SIVs infecting smaller monkeys are poor antagonists of chim-

panzee tetherin (Sauter et al., 2009). Subsequently, Nef, and

not Vpu, evolved to become an effective tetherin antagonist

in SIVcpz-infected chimpanzees, most likely because the cyto-

plasmic domain targeted by Nef is somewhat less divergent

between the chimpanzee and monkey tetherin sequences than

the transmembrane domain targeted by Vpu (reviewed in Sauter

et al., 2010). In contrast, Vpu lost its anti-tetherin activity during

adaptation to chimpanzees but maintained its capability to

degrade the CD4 receptor. After transmission of SIVcpz from

chimpanzees to gorillas, it was easy for the virus to adapt to

this new host because the CPZ and GOR tetherin sequences

differ only by two amino acid changes in the cytoplasmic domain

targeted by Nef (Sauter et al., 2009). This was different after the

species jump of SIVs from chimpanzees and gorillas to humans.

The human tetherin variant contains a deletion in the cytoplasmic

region, which most likely evolved to escape an ancient viral

antagonist and renders human tetherin resistant to Nef (Jia

et al., 2009; Sauter et al., 2009; Zhang et al., 2009). Pandemic

HIV-1 M strains mastered this hurdle perfectly by switching

from Nef to Vpu to regain efficient anti-tetherin activity in the

new human host (Sauter et al., 2009). In contrast, the Vpu

proteins of nonpandemic HIV-1 O strains remained poor tetherin

antagonists, and those of the rare HIV-1 group N strains gained

some anti-tetherin activity but lost their capability to degrade

CD4. Thus, this deletion poses a significant, but not insurmount-

able, barrier for viral transmissions from chimpanzees to hu-
62 Cell Host & Microbe 8, July 22, 2010 ª2010 Elsevier Inc.
mans. The result that only pandemic HIV-1 M strains evolved

fully functional Vpu proteins suggests a possible role in sexual

transmission. Thus, it will be interesting to determine whether

Vpu-mediated tetherin antagonism and/or CD4 degradation

may affect the shedding of infectious virions into the genital

fluids.

The direct simian precursor of HIV-2, SIVsmm from sooty

mangabeys, does not contain a vpu gene and counteracts

tetherin by Nef (Jia et al., 2009; Zhang et al., 2009). Recently, it

has been shown that HIV-2 instead uses its Env protein to antag-

onize human tetherin (Le Tortorec and Neil, 2009). Thus, the

deletion in human tetherin obviously forced both human immu-

nodeficiency viruses to switch from Nef to a different tetherin

antagonist, i.e., Vpu or Env. This illustrates the enormous

plasticity by which lentiviruses can adapt to new hosts. Of

note, only two (groups A and B) of at least seven cross-species

transmissions of SIVsmm from sooty mangabeys to humans

resulted in significant spread in the human population (Butler

et al., 2007). Thus far, anti-tetherin activity has only been demon-

strated for the Env protein of the group A HIV-2 ROD strain, but

not for the remaining groups of HIV-2 (Le Tortorec and Neil,

2009). To assess a possible role of tetherin in the spread of

HIV-2, it will be interesting to determine whether also the HIV-2

group B Env proteins, but not those of group C-H HIV-2 strains,

show anti-tetherin activity.

Possible Effects of Vpu on Nef Function
As outlined above, the functions of Vpu and Nef overlap

because both reduce the levels of CD4 at the cell surface and
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may antagonize tetherin. Furthermore, the acquisition of vpu

may have facilitated evolutionary changes in Nef function.

The great majority of primate lentiviral Nef proteins remove

TCR-CD3 from the cell surface, whereas vpu-containing viruses,

such as HIV-1, fail to perform this function (Schindler et al., 2006).

Furthermore, HIV-2 and most SIV Nefs also downmodulate

CD28 much more efficiently than those of HIV-1. As a conse-

quence, the great majority of primate lentiviral Nefs block the

responsiveness of virally infected T cells to stimulation (Figure 4).

In contrast, the effect of HIV-1 Nef on T cell activation is some-

what controversial. Some studies showed that HIV-1-infected

CD4+ T cells are hyperresponsive to stimulation (Fortin et al.,

2004; Schindler et al., 2006), whereas others reported inhibitory

effects (Thoulouze et al., 2006). In either case, it is evident that

Nef proteins derived from nonpathogenic SIVs that downmodu-

late CD3 interfere with T cell activation and the formation and

function of the immunological synapse between T cells and

APCs much more severely than HIV-1 Nefs (Arhel et al., 2009).

It remains elusive why the acquisition of a vpu gene reduced

the selective pressure for the suppression of T cell activation. I

have proposed that viruses expressing Vpu could perhaps afford

to lose the ability to block T cell activation and thus to cause

higher levels of immune activation because they are better

equipped to counteract the host restriction factors induced by

high levels of inflammatory IFN-a than viruses lacking a vpu

gene (Kirchhoff, 2009). This still seems plausible, although recent

results show that this issue is more complex than anticipated

because many SIVs lacking Vpu use their Nef proteins to antag-

onize tetherin (Jia et al., 2009; Sauter et al., 2009; Zhang et al.,

2009). Furthermore, SIVcpz and SIVgor Nefs did not regain the

‘‘lost’’ CD3 downmodulation function, although their Vpu

proteins are poor tetherin antagonists (Sauter et al., 2009).

However, it may be much easier for the virus to lose than to

regain specific activities. Furthermore, HIV-1 and SIVgsn/mus/

mon Vpus may be more effective tetherin antagonists than

SIVsmm and SIVagm Nef proteins (Jia et al., 2009; Lim and

Emerman, 2009; Sauter et al., 2009; Zhang et al., 2009). It seems

logical that SIVagm and SIVsmm need less-effective tetherin

antagonists than HIV-1 because they only transiently induce

interferon production in vivo (Bosinger et al., 2009; Jacquelin

et al., 2009). Thus, the expression of tetherin during chronic

infection should be lower than in pathogenic HIV-1 infection.

Furthermore, it seems reasonable that a more specialized teth-

erin antagonist like Vpu may evolve to become more effective

than an ‘‘all-rounder’’ protein like Nef. However, many results

on Vpu and Nef function come with the caveat that both acces-

sory proteins were expressed in trans by expression constructs.

Different expression levels and the time frame that they are

produced in the viral life cycle may have an important impact

on the anti-tetherin activity of Vpu and Nef. Thus, more studies

in virally infected primary cells are needed to draw definitive

conclusions about the efficiency by which different primate

lentiviruses antagonize tetherin.

Whatever the reason is for why vpu-containing primate

lentiviruses lost their capability to block T cell activation, it may

have relevant implications for their pathogenicity. It is well known

that some SIVs, such as SIVagm and SIVsmm, do not cause

disease in their natural simian hosts despite high levels of viral

replication (Paiardini et al., 2009; Sodora et al., 2009). For
some reason, these natural hosts of SIV are able to avoid the

chronic, generalized immune system activation that seems to

drive disease progression in HIV-infected individuals. It has

been proposed that an inborn defect in the ability of plasmacy-

toid dendritic cells to produce IFN-a in response to viral infection

is responsible for the lack of aberrant chronic immune activation

in natural SIV infection (Mandl et al., 2008). Subsequent studies

have shown, however, that SIV infection triggers rapid and

strong IFN-a responses in both African green monkeys and

sooty mangabeys (Bosinger et al., 2009; Jacquelin et al.,

2009). However, in contrast to pathogenic HIV-1 and SIVmac

infections, this response was transient. Thus, the lack of a sus-

tained type I IFN response during chronic natural SIV infection

is not due to a genetic inability to produce IFN-a but, rather,

occurs because this response can rapidly be controlled. It is

evident that both viral and host factors contribute to the develop-

ment of the different levels of immune activation after the acute

phase of pathogenic and nonpathogenic infection (Paiardini

et al., 2009; Sodora et al., 2009). It is conceivable that a virus

that blocks T cell activation may make it easier for the infected

host to develop lower levels of immune activation than a virus

that renders infected T cells hyperresponsive to stimulation.

These viral properties may not only affect the fate of virally

infected cells, but also the survival and function of uninfected

bystander cells because hyperactivated HIV-1-infected T cells

express death receptors and secrete inflammatory cytokines.

Downmodulation of CD3 and (to a lesser extent) CD28 would

be expected to impair the function of helper CD4+ T cells and

thus mainly the initiation and strength of the acquired immune

response, but not the induction of IFN by HIV-1 during acute

infection. This may potentially explain why different levels of

immune activation in pathogenic and nonpathogenic infection

develop after acute infection with the rise of the acquired

immune response. In support of a protective role in vivo, ineffi-

cient downmodulation of TCR-CD3 by Nef correlates with loss

of CD4+ T cells in natural SIVsmm (Schindler et al., 2008)

and increased levels of immune activation in HIV-2-infected

individuals (Feldmann et al., 2009). However, Nef-mediated

downmodulation of TCR-CD3 to suppress T cell activation and

programmed death is only one of several mechanisms contrib-

uting to nonpathogenic infection, and host factors also play an

important role (reviewed in Pandrea et al., 2008; Paiardini

et al., 2009; Sodora et al., 2009). This is most evident from the

fact that efficient CD3 downmodulation is insufficient to prevent

progression to AIDS in SIV-infected macaques and in HIV-2-in-

fected individuals (Kestler et al., 1991; Feldmann et al., 2009).

Nonetheless, accumulating evidence suggests that the acquisi-

tion of a vpu gene may have allowed the viral lineage that gave

rise to HIV-1 to evolve toward greater pathogenicity by removing

the selective pressure for a protective Nef function that prevents

damaging levels of immune activation (reviewed in Kirchhoff,

2009). The findings that HIV-1 is more pathogenic than HIV-2

and that SIVcpz causes AIDS in its natural chimpanzee host

(Keele et al., 2009) are in agreement with this hypothesis. Obvi-

ously, AIDS is a consequence of imperfect virus-host adaptation

because a perfectly adapted virus does not ‘‘commit suicide’’

and reduces its chance for transmission by killing its hosts.

However, it is conceivable that a virus that causes higher levels

of cellular activation may outgrow a less virulent form, and the
Cell Host & Microbe 8, July 22, 2010 ª2010 Elsevier Inc. 63
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fact that pandemic HIV-1 strains infected about 60 million people

within less than a hundred years after zoonotic transmission is

daunting evidence that the time frame from virus infection to

death is sufficient for effective viral spread.

Conclusions and Perspectives
Current data show that the ongoing ‘‘arms race’’ between

lentiviruses and their hosts started long ago, is inextricably

intertwined, and involves a considerably more sophisticated

arsenal of ‘‘weapons’’ than previously anticipated. Basically,

humans and other mammals had already developed a kind of

combination therapy long before HAART because they evolved

specific antiviral factors that interfere with different steps of the

viral life cycle, such as reverse transcription, uncoating, and

virion release. In some aspects, these cellular antiviral factors

are even superior to antiretroviral drugs because they have

broad antiviral activity and often HIV-1 cannot just avoid them

by escape mutations. Instead, HIV-1 and other primate lentivi-

ruses have acquired specific tools to antagonize these ancient

antiviral defense mechanisms. Furthermore, they evade adap-

tive immunity by their high variability and by a striking combina-

tion of Nef activities. As a consequence, primate lentiviruses are

capable of replicating efficiently and continuously in the pres-

ence of apparently strong antiviral immune responses. In fact,

recent data show that the expression of IFN-stimulated genes

encoding intrinsic antiretroviral defense factors in HIV-1-infected

individuals correlates with increasing viral loads (Rotger et al.,

2010), suggesting that they have become indicators rather

than suppressors of HIV-1 replication. Of note, the high viral

loads damage the immune system and cause AIDS mainly in

poorly adapted recent or experimental hosts, such as humans

or macaques. Most primate lentiviruses seem to coexist in a

relatively benign relationship with their natural primate hosts

because they can avoid damaging high levels of immune activa-

tion during chronic infection. It is possible that the acquisition of

Vpu facilitated the emergence of primate lentiviruses, such as

HIV-1, that cause higher levels of immune activation and damage

because they are unable to block T cell activation. Furthermore,

the evolution of a fully functional Vpu protein may have facilitated

the spread of pandemic HIV-1 group M strains.

Although exciting progress has been made, we are only just

beginning to understand the complex interactions between

lentiviruses and their hosts. For example, it is currently largely

unclear whether known host restriction factors contribute to

the control of HIV-1 in vivo and how many as-yet-unknown

antiviral factors remain to be identified. A better understanding

of the virus-host interactions seems important for many reasons.

For example, comparative studies of pathogenic and nonpatho-

genic primate lentiviral infections may teach us how the high

levels of damaging immune activation can be avoided. This

seems particularly relevant because immune activation seems

to be a problem even under HAART and may cause a premature

aging of the immune system. Studying the viral immune evasion

mechanisms may teach us how better immunological control of

HIV-1 can be achieved because it is evident that viruses evolve

to manipulate exactly those immune functions that would be

otherwise most relevant for their control. It will also be interesting

to assess whether the inhibition of the viral antagonists or the

specific induction of the natural cellular defense mechanisms
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to overpower them represent useful strategies to improve antire-

troviral therapy. It may even be possible to develop improved

artificial restriction factors with broad-based antiviral activity

that are resistant to the viral antagonists (Perez-Caballero

et al., 2009). Such studies are challenging but may be very

rewarding because it will be difficult for HIV-1 to become

resistant against host restriction factors. Furthermore, host

restriction factors do not only inhibit HIV-1 and may be effective

against a variety of viral pathogens.
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Gupta, R.K., Hué, S., Schaller, T., Verschoor, E., Pillay, D., and Towers, G.J.
(2009). Mutation of a single residue renders human tetherin resistant to
HIV-1 Vpu-mediated depletion. PLoS Pathog. 5, e1000443.

Haase, A.T. (2010). Targeting early infection to prevent HIV-1 mucosal
transmission. Nature 464, 217–223.

Hahn, B.H., Shaw, G.M., De Cock, K.M., and Sharp, P.M. (2000). AIDS as
a zoonosis: scientific and public health implications. Science 287, 607–614.

Hinz, A., Miguet, N., Natrajan, G., Usami, Y., Yamanaka, H., Renesto, P.,
Hartlieb, B., McCarthy, A.A., Simorre, J.P., Göttlinger, H., and Weissenhorn,
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