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Permeation  through  polymeric  membranes  can  be controlled  by surface  coating  of  a  polyethylene  tereph-
thalate  (PET)  membrane  with  poly(N-isopropylacrylamide)  (PNIPAAm)  and  inserting  pores  of defined
geometry.  When  the  temperature  of  the system  rises  above  the  volume  phase  transition  temperature,
the  pores  open,  which  allows  permeation  of formerly  blocked  particles.  The  exact  control  of  the  tem-
perature  allows  defined  change  of  the  pore  size  and  therefore  enables  separation  abilities.  Free  swelling
experiments  are  conducted  to obtain  the  swelling  behaviour  of  PNIPAAm.  Then,  a temperature  expansion
model  is derived  in  order  to simulate  this  behaviour  with  the  finite  element  tool  ABAQUS.  The  gained
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article separation

results  are  in  excellent  agreement  with  the  observed  shape  change.  Membranes  with  permeation  control
of particles  can be used  for biomedical  application  in microfluidics  to  analyse  the  size  distribution  of
cells  or  in chemical  information  processing  as a transistor-like  component  for  an  information-bearing
chemical  species.  The  possibility  to simulate  the  behaviour  of such  permeation  systems  allows  computer
aided  design  and  prediction  of  permeation  abilities  in these  areas.

© 2016  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
. Introduction

Membranes are entities to separate compartments of differ-
nt fluids. In biology, bilayer lipid membranes are self-assembling
tructures made of amphiphilic phospholipids. Embedded proteins
llow specific permeation abilities for ions and molecules, which
n some cases can be controlled by physical stimuli including elec-
rical, chemical, mechanical and thermal signals. The underlying
rocess is called gating [1].

In technology, membranes can be made of polymers with dif-
erent porosity regarding their application area, e.g. filtration or

everse osmosis [2]. The technological equivalent of gating shall be
alled permeation control henceforth. Besides permeation control
f ions and molecules, in life science, membranes for separation
f particles with characteristic sizes in the sub-micron to micron
ange are of interest. Permeation control can be used in medicine
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to generate particle size profiles, e.g. in blood to analyse cells
of anomalous size such as cancer cells. Another application area
is the use as chemomechanical valves for flow control [3] or as
transistor-like components for microfluidic integrated circuitries
with a transistor circuit-based information processing concept [4].

In the present work, membranes with dynamically adjustable
pore diameters and therefore tunable separation abilities con-
trolled by temperature are introduced. Experimental results are
given and the validity of the mechanical modelling with a temper-
ature expansion model is shown. This allows the computer aided
design of the filtration membranes with varying separation abili-
ties.

Various research groups focus on porous polymer membranes
made of stimuli responsive gels [5–9], where the permeation con-
trol is realised by a change in the hydrogel porosity. Further
approaches use nanotubes [10–13] to achieve selective ion trans-
port. The term switchable gate membrane [14,15] is also used for

membranes which are surface functionalised to hinder transport
parallel to the surface direction. Different groups have already
used sensitive hydrogels for flow control [3] and as microfluidic
valves [16]. Other research groups focus on the incorporation of
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Fig. 1. Diameter of the disc versus temperature of a PNIPAAm sample. The mean
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alue of the measurements is fitted with piecewise cubic Hermite interpolating
olynomials (PCHIP).

iological membrane proteins into bilayer lipid membranes to
chieve permeation control through natural gating mechanisms
17,18]. In the context of lab-on-a-chip devices, separation can be
chieved in constant flow, e.g. by using branching [19] or capillary
orces in microfilters [20].

The present work aims at a direct control of the permeation
bilities. We  demonstrate how permeation control membranes are
esigned, how the system can be characterised and how the prop-
rties of the smart actuator material can be transferred to a model of
he experimental setup for numerical analysis. Therefore, the free
welling behaviour of the hydrogel poly(N-isopropylacrylamide)
PNIPAAm) is experimentally obtained (Section 2.1). A temperature
xpansion model for hydrogel swelling is derived in Section 2.2 and
hen implemented in a finite element tool to perform simulations.
o verify the model, the free swelling behaviour of a simple model
est setup is compared to the measured experimental values in this
ection as well. The design and the experiments of the switchable
embrane are depicted in Sections 3.1 and 3.2; its numerical simu-

ation is performed in Section 3.3. Additional information about the
ore size evaluation from experimental microscopy results is given

n Section 3.4. The results of the comparison between experiment
nd simulation for the complete permeation control system are
epicted in Section 4. The conclusion is drawn in Section 5. Addi-
ional information is given in Appendix A.

. Development of the material model

.1. Free swelling behaviour of PNIPAAm

PNIPAAm shows lower critical solution temperature (LCST)
ehaviour. The swelling of the gel occurs due to the attracting
hain interactions and the screening effect of water molecules
hydrohpilic interaction). For temperatures lower than LCST, the
ood screening properties of water molecules lead to a reduced
nteraction between the PNIPAAm chains, resulting in swelling.
hose properties are lost when the temperature and subsequent
ovement/rotation of the water molecules increases over LCST.

hen, there is a stronger attraction between PNIPAAm chains and
he volume decreases, i.e. deswelling occurs. The process can be
escribed as a first order volume phase transition [21].

To investigate the real swelling behaviour of the gel, a plate-like
ad made of poly(N-isopropylacrylamide) is investigated under dif-

◦
erent temperatures (Fig. 1). At a temperature of 32 C, the diameter
s 1000 �m and the height is 120 �m.  Below a temperature of 29 ◦C
he PNIPAAm is completely swollen. Exceeding this temperature,
he hydrogel collapses until it is completely shrunken at 35 ◦C. The
uators B 232 (2016) 499–505

experiments agree with the volume phase transition temperature
of PNIPAAm in pure water [22], which is 32.8 ◦C.

Further information about the modelling background of the free
swelling behaviour is given in Appendices A.1 and A.2. Image anal-
ysis is performed as described in Section 3.4. The pad diameter vs.
temperature data is needed to calibrate the material behaviour with
the temperature expansion model explained in Section 2.2.

2.2. Modelling and simulation of the thermal induced swelling of
a PNIPAAm sample

The stress-free swelling of a hydrogel is assumed as an isotropic
deformation. The underlying processes are given, e.g. by Attaran
et al. [23] In the present work, we  use a quasi-static tempera-
ture expansion model for the thermal swelling behaviour. Dynamic
processes like temperature flux and locally varying strains are not
taken into consideration in the present work. In contrast to other
authors like Trinh et al. [24], our model is not an analogy for
the chemical behaviour, but directly depicts the thermal volume
expansion of the hydrogel as a linear-elastic material under vary-
ing temperature. In other works, the osmotic pressure derived from
the ion distribution combined with a temperature dependent coef-
ficient [25] is used to derive the swelling behaviour. The governing
equations of the quasi-static thermo-mechanical problem are the
mechanical balance equations

�kl,k + fl = 0, �kl = �lk (1)

the kinematics relation

εkl = 1
2

(uk,l + ul,k) (2)

and the material law

�kl = Eklmn(εmn −  ̨ ımn �ϑ︸ ︷︷  ︸
εel

mn

) (3)

where �kl is the stress tensor, fl the volume load, εkl the strain ten-
sor and Eklmn the tensor of elasticity. Please note that the equations
are given in index notation for k, l, m,  n ∈ [x, y, z] and a summa-
tion over identical indices is performed (Einstein convention). (),k
denotes the derivative in space with respect to the direction xk. In
the present case, there is no volume load, hence fl = 0. The change
of volume due to a temperature difference �ϑ  is defined through
an isotropic strain with ımn being the Kronecker-Delta. In order
to avoid buckling phenomena and allow superposition of thermal
and mechanical strains, we  use linear kinematics and the linear
theory of elasticity, where the components of the strain tensor εkl
are described via the gradients of the displacement uk. For large
deformations, the deformation gradient must be decomposed mul-
tiplicatively [26]. For a discussion about the linear and nonlinear
approach, please see Appendix A.2. In the present form, the total
strain εkl is gained by superposition of the thermal strain εth

kl
and

the elastic strain εel
kl

εkl = εth
kl + εel

kl (4)

The elastic strain εel
kl

is gained by the generalised Hooke’s law (3)
for linear isotropic deformation of a simple material. No viscous
effects are considered, because the experiments are conducted in
quasi-static condition, i.e. every point on the swelling curve (Fig. 1)
is in thermal and chemical equilibrium.

To transform the swelling curve into an equivalent thermal
expansion, the pad diameter, which describes the isotropic prob-

lem, is used. Preliminary studies on the analytical solution of the
disc problem have proven that this approach is valid. Application
of the pad area, which is not exactly circular due to manufacturing
inaccuracies, instead of the mean diameter have proven to yield
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ig. 2. Integral mean value of the thermal expansion coefficient ¯̨ (ϑ) in reference to
ref = 32 ◦C. The extracted values are gained from the original measurements, while

he fitted values use the strains from the PCHIP fitted mean values given in Fig. 1.

imilar results (see Appendix A.1). The strain εϑref is calculated
elating to the reference length Lref = L(ϑref) at ϑ = ϑref = 32 ◦C. The
ntegral mean value of the thermal expansion coefficient is

¯ (ϑ) = εϑref

ϑ − ϑref
(5)

his value is gained for every data point from the experimental
ean values (extracted values) and the piecewise cubic Hermite

nterpolation polynomial (PCHIP) fitted data points (fitted values)
n Fig. 2. As the experimental measurement points and respective
xtracted values of  ̨ are much coarser, the fitted values are used
or further simulation instead.

The material behaviour is implemented in the finite element
ool ABAQUS for a disc of defined dimensions at reference temper-
ture with diameter d = 1000 �m and height of h = 120 �m.  For the
ree swelling simulation, the disc is fixed at the middle and stress-
ree on the outer arc. The free swelling results in experiment and
imulation are compared in Fig. 3. Excellent agreement between
he measured ABAQUS output and the original swelling curve is
bserved, which proves the validity of the temperature expansion
odel.

. Experimental and numerical investigations
.1. Design of the permeation control membrane

The permeation control membrane is a hydrogel layered
atterned polymeric membrane. It is based on a support membrane

ig. 3. Comparison of free swelling behaviour between experiment and numerical
imulation.
Fig. 4. Setup of the permeation control membrane consisting of a PET support mem-
brane, which acts as a substrate for the PNIPAAm hydrogel layer.

made of polyethylene terephthalate (PET), which is layered with a
poly(N-isopropylacrylamide) film [27]. Materials and preparation
are described in Sections 3.2.1 and 3.2.2.

For achieving a robust and durable setup, a specific arrange-
ment is chosen consisting of a support membrane incorporated in
a stimuli-responsive material. The setup is displayed in Fig. 4. The
geometrical form of the pore is important for both opening/closing
abilities and the bypass stream obtained when the membrane pores
are blocked by particles (fouling). In the present studies, a cross
geometry is chosen. The cross geometry provides a large opening
of the pore and a tight closing. Meanwhile, it allows a high bypass
stream while granting good separation abilities and minimizing
fouling problems. Further optimisation of the pore geometry can
be achieved with numerical experiments described in this work.

3.2. Experimental investigations

After synthetisation of the system according to the recipe
described in Section 3.2.1, measurements on the pore system for
different temperatures were performed. To gain the free swelling
behaviour of the hydrogel due to temperature stimulus which is
needed for the numeric model calibration, cylindric samples were
prepared according to Section 3.2.2. The microscopy images were
taken as described in Section 3.2.3.

3.2.1. Materials and preparation of the permeation control
membrane

The composite structure (Fig. 4) of the static polymeric sup-
port membrane and active hydrogel is created in several steps. The
carrier material is a Mylar® foil.

Step 1. Into the substrate, the first circular holes with a diameter
of d = 290 �m are cut by laser ablation.

Step 2. The material is activated for 60 min  in an ozone-atmosphere
produced under an UV-lamp.

Step 3. An adhesion promoter is applied. For this purpose,
a 0.1 weight-percent solution of (3-methacryloyloxyp-
ropyl)dimethyl-chlorsilane in dicyclohexyl is applied for
1 h, thus creating covalent binding of methacryl-groups on
the surface. Isopropanol is then used for cleaning of the
surface and argon gas for dry-rinsing.

Step 4. The active material is polymerised and covalently bound on

the surface. For this purpose, a reaction container is build
which consists of two glass slides and spacers arranged
such as to ensure that cavities exist at both sides of the foil.
This results in both a constant height of the active material
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Fig. 5. Finite-element model of the quarter pore. The structure is fixed at the outer
02 A. Ehrenhofer et al. / Sensors a

and liquid layers at both sides. The reaction container
is initially rinsed with protective gas (argon). Following,
a pre-polymer solution is filled into the chamber which
consists of 1.25 mol/l acrylamide-monomer, 1.5 mol%
crosslinker N,N-methylenebis-(acrylamide) (BIS) and
1 mol% photoinitiator 2-hydroxy-4′-(2-hydroxyethoxy)-2-
methylpropiophenone (98%) dissolved in deionised water.
The solution is initially purged with argon for 30 min. UV
polymerisation is carried out in an ice-bath under exposure
of UV light (365 nm peak wavelength, 50 mW/cm2, 120 s).

tep 5. The final shape of the pore is cut into the air-dried hydrogel
by laser ablation.

.2.2. Materials and preparation of the free swelling experiments
The same procedure as in Section 3.2.1 without the substrate

oil is used to create the free swelling samples. Here, UV light is
nly locally applied using proximity lithography and a photo litho-
raphic mask (TypoPhot TO-G). As a shape, small cylinders with a
iameter of 1 mm and a height of 120 �m are chosen. The exposure
ime under UV light is 45 s.

.2.3. Microscopy images
For the microscopy images of the permeation membrane sys-

em, the hydrogel composite foil is placed directly on an aluminium
urface which is precisely adjusted in temperature by a Julabo F25
ryostat. To form a cavity with temperated swelling agent, a 200 �m
pacer and a glass cover are arranged in a way that the composite
oil is not in contact with the spacer or cover.

The temperature measurements are performed with a Qtemp
00 thermocouple device with an error of ±0.1 K. The equilibrat-

ng time after each change of temperature is 10 min. Preliminary
tudies have shown that in comparison to an equilibration time of
0 and 40 min, no difference in swelling degree could be observed.
etween 23 ◦C and 27 ◦C the temperature steps are 2 K. Within the
ore sensitive region of 27 ◦C to 35 ◦C steps of 0.5 K are used. Above

his temperature, 1 K steps are used. The diameter measurements
re performed via image analysis. The scale is calibrated on a 20 mm
ormal. The microscope is of the type Leica WILD 450.

For the free swelling samples, which lack the support of the PET
embrane, another experimental setup is used. To avoid tilting of

he sample or sticking to the surface, the hydrogel pads are placed
n a borosilicate glass sheet of 100 �m thickness and hold in place
y a spacer. Here, a minimal equilibration time of 25 min is cho-
en for each temperature step to account for the increased thermal
esistance and thus slower heat transfer through the borosilicate
lass.

.3. Numerical simulation of the permeation control membrane

The permeation control membrane is simulated with the finite
lement tool ABAQUS. Utilizing the symmetry of the pore, now only

 quarter of the PNIPAAm structure embedded into the PET mem-
rane is simulated. The structure is fixed at the outer arc, as the
ET membrane has a much higher stiffness than the hydrogel. Sym-
etry boundary conditions are given at the inside of the hydrogel

tructure. Self-contact conditions are given for the edges and in
espect to the symmetry planes to avoid intersection of the struc-
ure in the closed state. In Fig. 5, the finite-element model with

esh and boundary conditions is depicted.
Please note that preliminary studies with a circular disk, fixed

t the outside with a circular opening (cylindrical pore), were con-
ucted. In these studies and by analytical derivation it was proven,

hat the displacement is independent from the Young’s modulus,
ut strongly depends on the Poisson’s ratio.

For the simulation of a single pore structure in the membrane,
inear three-dimensional solid elements are used to also obtain the
arc. Symmetry conditions are given at the top right and bottom left areas, while
self-contact conditions and contact to the symmetry planes (analytical rigid planes)
are  given at the cross-flanks.

height change via transversal contraction. 1380 hexahedral and 120
wedge elements are needed to obtain an adequate mesh for the
simulations.

With the above derived temperature expansion model as tem-
perature dependent expansion coefficient, numerical simulations
are conducted to mirror the experiments and compare the imple-
mentation. Therefore, the dimensions acquired by image analysis
of the pore geometry (see Section 3.4) are implemented.

The experiments are conducted on the equilibrium relation,
i.e. for every measured state, thermal and chemical equilibrium is
achieved, before the microscopy image is taken. The same is valid
for the numerical simulations, where the model output is taken at
every temperature step.

3.4. Image processing and evaluation of the geometry change

The starting point of the image evaluation is at the reference
temperature ϑref = 32 ◦C. In this state, the pore geometry for the
numerical simulation in ABAQUS is identified (Fig. 6). At each
temperature, an averaging of the geometry values is realised, as
the pore is not exactly symmetrical due to manufacturing inac-
curacies. The measurements for gaining information about shape
and opening/closing abilities are taken from image analysis of
the microscopy images (Section 3.2.3) with the Open Source tool
ImageJ, developed at the National Institute of Health.

The open area A at each temperature allowing water to pass
as well as the hydraulic diameter dhydr = 4 A/C with the circumfer-
ence C of the cross-shaped pore are crucial for further investigation
of the permeation abilities. The mean diagonal diameter ddiag is
important for the size of the largest spherical particle that is able
to pass the pore at a given temperature. The mean value from the
north-west (NW) to the south-east (SE) edge and the south-west
(SW) to the north-east (NE) edge is taken into account at each tem-
perature. Thereby, the area blocked by a particle Ablocked = �ddiag
can be calculated.

When the pore is blocked, a water bypass occurs depending on
the complementary area Abypass = A − Ablocked. The second parame-
ter to describe the shape of the pore in different opening or closing
states to gain A is thus the mean normal diameter. It is taken as

the mean in vertical direction north (N) to south (S) and horizontal
direction west (W)  to east (E). Comparing the normal and diagonal
diameters in microscopy images and simulation outputs can give
an insight, if the pore closing and opening is adequately simulated.
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Fig. 8. Comparison of the mean normal diameter of the pore for different Poisson’s
ratios and the experimental results gained from image processing.
ig. 6. Pore geometry in reference state at ϑref = 32 ◦C. The construction dimensions
or the ABAQUS model were extracted from this picture with the Open Source tool
mageJ.

he interface between hydrogel and water is identified in the mid-
le between the sharp colour transition and the distinguishable
nd of the hydrogel. The measurement error can thus be deter-
ined to about 5 pixels, with a scale of 4,975,750 pixels/m for the

ree swelling and 2,266,180 pixels/m for the pore system. This leads
o an inaccuracy of ±2.21 �m for the free swelling and ±1.01 �m
or the pore system. The discussion of the measurement errors and
heir propagation is done in Appendix A.3.

. Results and discussion

Starting from the reference state at ϑ = (32 ± 0.1) ◦C, the temper-
ture is increased in steps of �ϑ  = 1 K until full deswelling occurs
t ϑmax = 38 ◦C and the maximum pore diameter is reached. The

◦
emperature is then lowered to ϑmin = 23 C where the PNIPAAm is
ompletely swollen and the pore is in a nearly closed state. Fig. 7
epicts the comparison between the diagonal diameter gained from
he experiment through image processing (see Section 3.4) and

ig. 7. Comparison of the mean diagonal diameter of the pore for different Poisson’s
atios and the experimental results gained from image processing. The images were
dded for the closed state (ϑ = 23 ◦C), the reference state (ϑ = 32 ◦C) and the opened
tate (ϑ = 38 ◦C).

Fig. 9. Comparison of experimental images and simulation results for � = 0.3. The
ABAQUS simulation output images are mirrored once to show the overall agreement
with the microscope images of the half pore.
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he numerical results gained from finite element simulation (see
ection 2.2), which is important for the filtration performance, i.e.
articles of which diameters are blocked. Different Poisson’s ratios
re assumed due to a lack of experimental and literature values. Pre-
iminary analytical studies on the disc problem have shown, that
he Young’s modulus in this case plays no role in the deformation of
he pore, but governs the corresponding stresses. Numerical simu-
ations with the membrane pore system for very high and very low
oung’s moduli show the same behaviour. The normal diameter of
he pore for different temperatures is depicted in Fig. 8.

The numerical simulation of the steady-state results are in excel-
ent agreement with the experimental results, showing only small
hape variations. A direct graphical comparison is drawn in Fig. 9,
here the simulated quarter of the pore is mirrored once and over-

aid to the experimental images. The difference between the images
ained from experiment and the simulation are larger in opening,
han in closing direction, starting from the reference temperature
nd the undeformed cross shape.

. Conclusion

In the present work, we  demonstrate that the quasi-static open-
ng and closing behaviour of a hydrogel pore can be conveniently
pproached by a temperature expansion model and numerical sim-
lation by using the finite element method.

The free swelling behaviour of the temperature-sensitive hydro-
el PNIPAAm is used to calculate an integral mean expansion
oefficient for implementation into the temperature expansion for-
ula as stress-free volume expansion. Comparisons with a free

welling disk show an exact match in the measured points.
Temperature controlled opening and closing experiments with

 cross-shaped pore are then conducted. The results are compared
o numerical simulations of the setup with the before derived tem-
erature expansion model. Different Poisson’s ratios are used for
alculation, each showing a slightly different geometry change.
verall, an excellent agreement between simulation and experi-
ent is achieved.
This agreement allows the optimised design of pore membranes

nd pore-based microfluidic elements. The experimental setup is
ell adaptable to complex microfluidic integration and can serve
ifferent purposes, e.g. in biomedicine.

In further studies, our team aims at conducting both physical
nd numerical experiments to further analyse and refine the geom-
try of the pore. This will lead to better separation abilities and
ner temperature control of the diameter. Additionally, first experi-
ents with water flow through the pore will be conducted and used

or comparison with the flow through the analysed shape. We  will
hen bring in particles of defined varying size to proof the possibil-
ty of determining a size profile in continuous flow. An analytical
ow model based on the Bernoulli equation will be used to predict
his controllable separation behaviour. For physiological applica-
ions, the chemical composition of the PNIPAAm will be modified
o better fit the temperature range of cells at the temperature of
bout 37 ◦C. As the swelling behaviour differs considerably when
he transition temperature is shifted, a new material law will be
erived for the biocompatible size profiling system.

This work is a first step to a computer-aided design of chemo-
echanical devices. It will allow the prediction of the behaviour of

hemical circuitry analog to the Electronic Design Automation.
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Appendix A.

A.1. Comparison of one-, two- and three-dimensional swelling
behaviour

When investigating the free swelling behaviour of a circu-
lar hydrogel disc, there are different possibilities to obtain the
swelling degree. In its most simple form, we  here use the diam-
eter as a one-dimensional indicator for the strain and respective
swelling degree. For manufacturing reasons, the hydrogel disc is
not exactly circular but elliptic. Therefore, the mean diameter
between minor and major axis is taken d̄1D = (dminor + dmajor)/2.
From image analysis, we can also obtain the area of the ellipse
Aellipse = �

4 dminordmajor and calculate the diameter of a disc with

equal area d̄2D =
√

dminordmajor. The same can be achieved by mea-
suring the three-dimensional volume change of the cylindrical
body with elliptical base and calculating the volume of an equiv-
alent cylinder, which needs a measurement in height-direction.
In lack of height measurements of the hydrogel disc, only one-
dimensional and two-dimensional mean values were compared.
Only very small (<0.1%) differences in the resulting strain were
detected. For the sake of easier error propagation calculation, the
one-dimensional mean value was  taken in consideration for future
computations.

A.2. Discussion of nonlinear geometry (large displacement
gradients)

When a hydrogel swells, it usually undergoes large displace-
ments. For the simulations in this paper, small displacements are
nevertheless used. This is due to two  main reasons: At first, the
implementation of the swelling behaviour uses discrete differences
to obtain a temperature expansion coefficient. For every temper-
ature step, ABAQUS uses the reference configuration (which is at
32 ◦C as in the derivation of the model) and the temperature dif-
ference to calculate the new element lengths. In this way, a perfect
match between the model deformation and the experiments at the
measured values is achieved (Fig. 2). For large deformations, instead
of the discrete differences to the reference state, the local gradient
of strain over temperature must be used. Nonlinear kinematics are
then also needed in the definition of the expansion coefficient, i.e.

 ̨ is obtained as the strain gradient over the temperature. The sec-
ond reason is related to the mechanical behaviour at the edges.
When the pore closes, the deformation leads to buckling problems
at the edges of the cross-shape. They can be overcome by per-
forming dynamic explicit simulations of the pore swelling or by
post-buckling simulations. For dynamical simulations, the devel-
opment of the temperature inside the structure must be simulated
by solving the Poisson’s problem of heat conduction. This more
complex problem will be subject of future works.

A.3. Measurement errors and propagation

As mentioned above, the measurements in temperature have a

random error of ±1 K. With the error in identifying the edges of
the hydrogel of 5 pixels modified by their respective scale, a mea-
surement error in length of ±2.21 �m and ±1.01 �m is obtained.
Through Gaussian mean error propagation, we can calculate the
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