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Abstract 

The mixed job shop scheduling problem is one in which some jobs have fixed machine orders and other jobs may be processed 
in arbitrary orders. In past literature, optimal solutions have been proposed based on adaptations of classical solutions such as by 
Johnson, Thompson and Giffler among many others, by pseudopolynomial algorithms, by simulation, and by Genetic Algorithms 
(GA). GA based solutions have been proposed for flexible Job shops. This paper proposes a GA algorithm for the mixed job shop 
scheduling problem. The paper starts with an analysis of the characteristics of the so-called mixed shop problem. Based on those 
properties, a modified GA is proposed to minimize the makespan of the mixed shop schedule. In this approach, sample instances 
used as test data are generated under the constraints of shop scheduling problems. A comparison of our results based on 
benchmark data indicate that our modified GA provides an efficient solution for the mixed shop scheduling problem.
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1. Introduction 

Scheduling is an important activity in any manufacturing environment. It is a key factor for enhancing 
manufacturing productivity and meeting customer demand, which plays a significant role in customer satisfaction. 
Shop scheduling is one of the most interesting areas of research in the field of scheduling due to the demands of 
industry. In a shop scheduling problem, there are a set of n jobs, each of which consists of a set of operations 
processed on a set of m machines. According to the restrictions on the technological routes of the jobs, a general 
shop is indicated by three well-known models: a flow shop (each job is characterized by the same technological 
route), a job shop (each job has a specific route) and an open shop (no technological route is imposed on the jobs) 
[1].  With the purpose of making the model more realistic, mixed shop is introduced in the literature of shop 
scheduling problems. Mixed shop is a combination of the job shop problem and the open shop problem. It is an NP-
hard problem. In past research, several researchers had worked on mixed-shop scheduling problem. Strusevich 
(1991) studied polynomial-time algorithm to find both pre-emptive and non-preemptive optimal mixed-shop 
schedules. Shakhlevich, Sotskov, and Werner (1999) discussed the complexity of mixed-shop problem under various 
criteria by presenting different polynomial and pseudopolynomial algorithms.  Liu and. Ong (2013) proposed the 
Bacterial Foraging Optimization algorithm which is featured with an Ant Colony Optimization algorithm and 
proposed a nature inspired computing approach to solve the Mixed Shop Scheduling problem.  

Genetic algorithm has been applied to “pure” shop scheduling problems (flow shop, job shop and open shop) and 
combinatorial problems such as flexible job-shop and stage shop scheduling. The results have proved that genetic 
algorithm is an effective method to solve shop scheduling problems with less computational effort and better results 
[18].In this paper, we propose an improved genetic optimization process based on the general genetic algorithm to 
solve the mixed-shop scheduling optimization problem. The objective of this model is to minimize makespan. In 
comparison with results obtained through classic solutions by Giffler and Thompson (1960) our solution proves 
itself to be a superior one. The algorithm will then be tested with the benchmark problems from 3x3 to 20x20 jobs x 
machines which are taken from the OR-Library website [11].  

2. Definition of mixed –shop scheduling problem and proposed modification to the general GA algorithm 

Let J Ji 1 i N
 be a set of N jobs to be scheduled where each job Ji  consists of ni  operations. Let Oi, j be 

the jth operation of Ji . Let M Mk 1 k m
 be a set of m machines and let ijp  be the processing time of Oi, j  on 

machine MM ji ,  . The set N is split into two subsets: OJ NNN .  The jobs of the set JN have to be 

processed as in the job-shop: for any job Ji NJ , there is a given  machine order 
niikiki MMl ,...,1  which 

determines a sequence of operations of that job: 
inii OO .1, ,..., , where operation Oi, j  has to be processed after 

operation 1, jiO with j=2,…, in . The jobs of the set ON  have to be processed as in the open-shop: each job 

Oi NJ  has to be processed exactly once on each machine and the machine order of this job is not fixed before 

scheduling. Given a schedule, we denote by ijst  and ijC  the starting time and completion time of operation Oi, j

(1 i N,1 j ni), respectively. The objective is to find a schedule having a minimum completion time (or, makespan), 
denoted by Cmax max

i 1..N
(Ci ) , where Ci max1 j ni

(Ci, j )  is the completion time of job Ji . [3] 
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An example of mixed-shop scheduling with 3 jobs and 3 machines is shown in table 1 below: 

    Table 1. A 3 jobs by 3 machines scheduling problem 

Sequence of operations

1 2 3

J1 (Job Shop) (1,3) (2,1) (3,2)

J3 (Job Shop) (2,3) (3,2) (1,3)

J2 (Open Shop) Any order

(3,1)

Any order

(1,5)

Any order

(2,3)

Notation: (m,p) or (machine, processing time). For example (2, 3) means machine 2 processing time 3 
The following assumptions apply for the mixed-shop problem: 

- Each machine can only execute one operation at a time and, once started, the operation cannot be 
interrupted 

- All jobs are released at time t = 0 
- There is no transportation time between machines 

In this paper, we propose to modify the general genetic algorithm for mixed –shop scheduling problems as 
follows. 

Let us give each operation a task ID. Table 2 lists the jobs and operations in each job with the corresponding task 
ID 

       Table 2. Task IDs 

Job Op. Task ID Job Op. Task ID Job Op. Task ID

1 1 1 2 1 4 3 1 7

2 2 2 5 2 8

3 3 3 6 3 9

In mixed shop scheduling problem, there are two kinds of constraints: precedence constraints and non-
simultaneous constraints.  Precedence constraints (call set ) applied for jobs that belong to the job-shop set. Non-
simultaneous constraints – called set  - are for the set of pairs of tasks that cannot be performed simultaneously 
because of sequence requirement, belonging to the same job or requiring the same machine. One of the key features 
of this paper is the swapping technique as explained below. 

2.1. Chromosome representation 

A chromosome of the GA represents a sequence of tasks in which a gene is a task ID.  
 

Chromosome 1 5 3 4 9 8 6 2 7 
Sequence consideration 1 2 3 4 5 6 7 8 9 

                                                                   Figure 1. A sample chromosome 

In this chromosome, the 5th gene has a value is 9; this  means that the 5th task ( indicated in the sequence 
consideration) is task ID 9, which is operation 3 of job 3.  

2.2. Precedence requirement 
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Check the chromosome to see if it satisfies the precedence constraint o. If it does not satisfy the constraint, then 
swap the position to make it satisfy. 

In the example, 9,8,7,3,2,1 by observation, and there are clear violations between task IDs 3 and 2, and 
task ID 9 and 7. Therefore, the sample chromosome is modified as follows: 
 

Modified chromosome 1 5 2 4 7 8 6 3 9 
Sequence handling 1 2 3 4 5 6 7 8 9 

Figure 2. Modified sample chromosome in figure 2 

Base on the task IDs, We have the information on job, processing time and required machine as following: 
 

Modified chromosome 1 5 2 4 7 8 6 3 9 
Sequence considering 1 2 3 4 5 6 7 8 9 
Job 1 2 1 2 3 3 2 1 3 
Processing time 3 5 1 1 3 2 3 2 3 
Required machine 1 1 2 3 2 3 2 3 1 

Operation _of job_ 
1 
of 
1 

Open 
2 
of 
1 

Open 
1 
of 
3 

2 
of 
3 

Open 
3 
of 
1 

3 
of 
3 

Figure 3. Job, processing time required machine and operation number information corresponding to the modified chromosome in figure 3. 

2.3. Objective function and fitness evaluation 

Based on the sequence of operations represented by the chromosome, the objective function (makespan) can be 
calculated through the following procedure: 

Step 1: Operation is considered based on the order in the sequence. Determine the ready time for each 
machine. Check type of operation. 

Step 2:  If operation is open shop type, then its start time is the maximum value of its machine ready time and 
the complete time of its non-simultaneous operations. 

If operation is job shop type, its starting time is the maximum value of its machine ready time and the 
complete time of its precedence operation. 

The complete time of the operation is the sum of start time and processing time. 
Update the ready time of the machine by the completion time. 
Step 3: Steps 1–2 are repeated for the next operation in sequence until the last is considered. The makespan is 

the maximum value of the complete time of the operation in the sequence. 
For fitness evaluation, we apply a simple definition for the fitness, i.e. Fitness=1/makespan 

2.4. Tournament selection 

Tournament selection provides selection pressure by holding a tournament among S competitors, with S being 
the tournament size. The winner of the tournament is the individual with the highest fitness of the S tournament 
competitors. The winner is then inserted into the mating pool.  

The mating pool, being comprised of tournament winners, has a higher average fitness than the average 
population fitness. This fitness difference provides the selection pressure, which drives the GA to improve the 
fitness of each succeeding generation.  

Increased selection pressure can be provided by simply increasing the tournament sizes, as the winner from a 
larger tournament will, on average, have a higher fitness than the winner of a smaller tournament. 
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2.5. Order Crossover (OX), Inverse Mutation, and Selection of new generations 

For order crossover and inverse mutation, we apply the following steps: 
1. Given two parent chromosomes, two random crossover points are selected from one parent, partitioning it 
into a left, middle and right substring.   
2. Produce the child chromosome by copying the middle substring of the first parent into the corresponding 
positions  
3. Delete the tasks from the same middle substring from the 2nd parent. The remaining tasks in the 2nd parent 
are transferred in sequence from left to right into the empty slots of the child’s chromosome.  
4. Inverse mutation is performed on the child’s chromosome by selecting 2 inverse points then reverse the task 
order in between these two points. 

For the selection of new generations, we apply the Steady-State Method which consists of deleting n worst old 
members and replacing them with n best new members. n is a parameter to be experimented with. 

3. Implementation and results 

To illustrate the effectiveness of the proposal approach, we used bench mark problems with 3 x 3, 6 x 6, 10 x 
10,15 x 15 and 20 x 20 jobs x machines. [7,11]  Note that not all bench mark problems for all three categories of job 
scheduling, i.e. job shop, open shop, and mixed shop, and their “optimum” solutions are available in the literature.    
For the cases where no optimum solution exists, we arbitrarily modify the data so that we can proceed toward 
solutions for all three categories of job shop, open shop and mixed shop. Table 3 summarizes the results based on 
the available bench mark problems.   
 
Table 3. Results of proposed GA algorithm 
 
Population

Size
Job Shop Open Shop Mixed Shop

Bench
Mark?

Optimum
result (#)

Our result
(%)

Bench
Mark ?

Optimum
result (#)

Our result
(%)

Bench
Mark ?

Optimum
result (#)

Our result
(%)

3 x 3 Yes 11(14) 11 (0%) No NA 11 No NA 11

6 x 6 Yes 55 (15) 55 (0%) No NA 47 No NA 47
10 x 10 Yes 930 (15) 960 (3.2%) No NA 739 No NA 848
15 x 15 Yes 937 (16) 972 (3.7%)
20 x 20 Yes 1155 (16) 1200 (3.8%)
#  Reference where optimum result was obtained 
%  Percentage difference between optimum result and our result 
 

Looking at table 3, it is clear that our modified GA algorithm provides equivalent results with the optimum 
results if the population size is 6 x 6 or below. For larger populations, i.e. 10 x 10 and above, our solutions appear to 
be not as good as the optimum results. Nevertheless in all cases our results are off by no more than 4%. Considering 
that the optimum results were obtained by analytical techniques such as Branch and Bound, and Simulated 
Annealing which require substantial and complicated formulation as well as sophisticated programming skills, our 
straight forward modification of the GA algorithm provide a relatively easy approach to yielding almost similar 
results. This feature can be considered as beneficial for practicing engineers who may lack the time or the 
programming knowledge to write sophisticated programming codes for their scheduling problems. 

 
In the case of the 6 x 6 and 10 x 10 mixed shop problems, it is interesting to explore further the differences 

between our results and the ones available in [17]. Figure 4 is a plot of the makespan for 10 trials and figure 5 a plot 
of the processing times for 10 trials. From these two figures, it is clear that our GA solution yields not only the better 
and more steady results, i.e. smaller and steady make span, but also the shorter processing times too. 
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Figure 4.1. Comparison between the existing, modified GT-GA in [17] and our GA in makespan objective (FT 06) 

 
Figure 4.2. Comparison between the existing, modified GT-GA in [17] and our GA in makespan objective (FT10) 
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Figure 5.1. Comparison between the existing, modified GT-GA in [17] and our GA in processing time (FT 06) 

 
Figure 5.2. Comparison between the existing, modified GT-GA in [17] and our GA in processing time (FT 10) 

4. Conclusion 

In this paper, we have proposed a G.A. algorithm that is based on a simple reformulation of the problem and the 
efficient manipulation of the general G.A. algorithm to solve the scheduling of either standard job shop operations 
or mixed shop operations. We have shown that converting each operation for each job into individual task ID in 
combination with the classic Giffler Thompson algorithm in a general G.A. framework works very well as 
demonstrated in the five bench mark examples shown in table 3 above. We demonstrated that, for problem size of 6 
x 6 or less, our algorithm matches the optimum solutions available in the literature, but for larger problem sizes, our 
results are off by no more than 4%. While we did not achieve the optimum results, we want to highlight the benefit 
of our straight forward GA modification for practicing engineers who may lack the time or the programming 
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knowledge to write sophisticated programming codes for their scheduling problems. Much remains to be 
investigated. For example in the above case studies the only resources are the machines and their availability. Quite 
often the operators are also resources not to be ignored. Bumb has addressed this problem in (8). But he has not 
applied the task ID concept there, and it should be interesting to see the results had this concept been applied. Multi-
mode resource constraints is another fertile area of research in G.A. as discussed by Ghouddousi et al (9). Multi-
objective besides minimization of the makespan is also a rich field for research as indicated in (10). In summary in 
this paper we have found a way of reformulating the scheduling problem. This reformulation approach together with 
conventional G.A. has allowed us to tackle the problem of machine scheduling for job shop, open shop  and mixed 
shop requirements in an efficient manner (computer time) and scope (type of job scheduling). 
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