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A b s t r a c t - - A n  analytical nonlinear solution for the asymmetric mode vibration of rotating disks 
is given in this paper through a recently developed, accurate plate theory instead of the von Karman 
model. The nonlinear solution can reduce to the linear one when nonlinear effects vanish. The 
symmetrical response is also recovered when the nodal diameter vanishes. The natural frequency 
varying with rotation speed and deflection amplitude is investigated through a 3.5-inch diameter 
computer memory disk. From this investigation, it is found that the softening of rotating disks 
may occur for larger nodal-diameter numbers. The methodology given in this paper can be applied 
to nonlinear responses in structures such as rotating shafts and traveling plates. (~) 2003 Elsevier 
Science Ltd. All rights reserved. 

K e y w o r d s - - R o t a t i n g  disks, Nonlinear vibration, Softening disks, Hardening disks, Nonlinear 
differential equations. 

1. I N T R O D U C T I O N  

The v ibra t ion  of ro ta t ing  disks is a complicated,  mathemat ica l ,  and mechanical  problem. Wi th  

the  wide appl ica t ion  spec t rum of ro ta t ing  disks in industry,  in 1850, Kirchhoff [1,2] developed the 

plate  theory  ra ther  than  the  membrane  theory, to invest igate the  free v ibra t ion  of ro ta t ing  disks. 

Lamb and Southwell  [3] and Southwell [4] ex tended Kirchhoff analysis when ro ta t ional  in-plane 

stresses in bo th  free and central ly c lamped disks were considered. Since then, the  linear v ibra t ion  

analysis  of ro ta t ing  disks has been used to predict  the  response and s tabi l i ty  of ro ta t ing  disks 

(e.g., [5,6]). W i t h  computer  developments,  a thin, ro ta t ing circular disk is used as a pr imary  

d a t a  s torage device. Increasing the ro ta t ion  speed of disks leads to increases in d a t a  rates from 

memory. Therefore,  ro ta t ion  speeds of disks in disk drives are used to 25,000 rpm or higher. 

However, at  such high speeds, ro ta t ing  disk flatness and waviness become an impor t an t  factor 

causing failures in d a t a  reliability, and the large ampl i tude  v ibra t ion  may  happen.  In the  linear 
plate  theory, membrane  forces generated by disk deflections are not  modeled,  and it cannot  give 

an appropr ia t e  predic t ion of the  v ibra t ion  of ro ta t ing  disks in disk drives at  such high speeds. T h e  

0898-1221/03/$ - see front matter (~) 2003 Elsevier Science Ltd. All rights reserved. Typeset by A ~ - T E X  
PII: S0898-1221 (02)00335-8 



218 A . C . J .  Luo AND C. D. MOTE, JR. 

nonlinear plate theory has been considered as a candidate to ihvestigate the vibration of rotating 
disks. For the nonlinear vibration of circular disks, in 1957, Tobias [7] applied the vonKarman 
theory to the disk and reduced it to an oscillator problem with modes containing a specified 
number of nodal diameters through the Galerkin method. In 1964, Nowinski [8] used a similar 
method and theory to predict the natural frequencies of rotating disks, and the thermal stability 
of the rotating membrane disk was discussed [9]. The yon Karman theory was also used for the 
nonlinear analysis of rotating disks (e.g., [10-12]). The von Karman theory considers a balance 
of force created by the curvature of the disks in the transverse direction. The membrane forces 
arising from force balances in the in-plane directions and moment balances are not included. The 
yon Karman theory can give a good prediction of the symmetrical, transverse responses of rotating 
disks. To avoid the above limitations, in 1999, Luo [13] developed an approximate plate theory 
when the membrane forces in six force and moment balances were considered. Such a plate theory 
can apply to the asymmetrical responses of the rotating disks possessing flatness and waviness or 
experiencing an asymmetric response. For plate imperfections, in 1990, Wang [14] used the Monte 
Carlo method to analyze the nonlinear vibration of rectangular plates with random geometric 
imperfections. Herein, the disk imperfections caused by specific, nodal diameter waviness will be 
considered, instead of the random ones. 

In this paper, nonlinear equations of motion governing the vibration of rotating disks with 
large deflection are derived from the accurate plate theory developed in [13]. Approximate, 
analytical solutions for the asymmetrical mode, nonlinear vibration of rotating disks are developed 
through the Galerkin method. The natural frequencies and displacements of the 3.5-inch diameter 
computer memory disk are considered as an example. 

2. EQUATIONS OF MOTION 

Consider a flexible, circular disk rotating with constant angular speed f~, as sketched in Figure 1. 
The disk is clamped at the hub r = a, free at the outer edge r = b, and is of uniform thickness h. 
The rotating and stationary coordinate systems are (r, 0, r)  and (r, 0, r) ,  respectively. They 
satisfy 

0 = O + ~ r .  (1) 

g 

Figure 1. Asymmetric, rotating disk with clamped-free boundaries. 

For large deflection plates, the accurate plate theory in [13] requires 

-• tr ,  0 ~,~ 0 ~1,0, 0 ~,~ 0 Uz ,  0 , 

1 2 u.,~ + ~(u~,r) <<1, 

1 1 1 i ' l  ,~2 
rur'O + r uO'O + i ~ r u:'O ) << 1, 

l + e r ~ l ,  

l + e 0 ~  1, 
(2) 

where a comma in the subscript denotes partial differentiation, and three displacement compo- 
nents of a material point on the disk are represented by ur, ue, and uz. 
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Under (2), three components of strain in the middle surface are approximated by 

1 2 1 1 I 2 
~ = ur,~ + ~(Uz,r)  , ~o = - ; ~  + 7uo,o + ~-~r~ (~z:o) , 

1 1 1 
7,-o = -ur,Or + uo,r - -r uo + (uz,r)(Uz,o). 

(31) 

From (2) and (3), the accurate plate theory in [13] gives force and moment balances 

[N~ - (QrUz,r)],r + 1 [Nro - (Qou~,r)],o 
(4) 

+ l ( N r  - No) + pohf~2r = poh (fir + 2f~gr,o + f~2ur,oo), 
r 

r r ,0 (6) 

= poh (iiz + 2f~/~z,0 + f~2uz,oo), 

M r s + -  ~o,o+ ( M r - M o ) +  (Nrouz ,o ) -Qr  =0 ,  (7') 
' r 

Mro,r + 7Mo,o + (MTo) + (NTou~,~) - Qo = o, (811 

where the superscript dot denotes derivative with respect to time r,  and {Qr, Qo} denote shear 
forces. In the yon Karman theory, shear force contributions in (4) and (5) and membrane force 
contribution in (7) and (8) were not considered. The membrane forces {Nr, No, Nro} are 

N r -  l - v 2  u r , r+~(uz , r )  + v  Ur+rUO,O+~r2(Uz,O ) , 

E h { l  1 1 2 [ 1 2]} 
No - --I _ v 2 -rUr + rU°'° + ~r2(Uz'°) + v ur,r + "~(uz,r) 

Nro - 2(1 + v--) uo,r + rUr,O - -UOr + (Uz,r)(Uz,O) , 

(9) 

and the bending and twisting moments {Mr, Mo, Mro} are 

[ , )] Mr = - D  Uz,,.r + v uz,r + 75Uz,OO , 

Mo = - D rU~,r + -~uz,oo + vu . . . . . .  

i u 1 
Mro = - ( 1 -  v)D ( r  z,rO -- -~Uz,O) , 

(10') 

where E and v are Young's modulus and Poisson ratio, and D = Eha/12(1 - v2). 
For convenience, we introduce dimensionless variables as follows: 

T 

h 

U r U 0 U z a 

u R =  T ,  u o = T ,  u z =  T ,  ,~=-g, 
e%r f~. ~ bf~ 2 E 

t = v / ~ b  , = ec----7- , c , -  p 0 ( 1 -  v 2) 

( I i )  
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With (11), substitution of (7)-(10) into (4)-(6) yields 

UR,RR ..F UR, R U R 1 -  v l + v u, 3 - v 
R R 2 + -~-~UR,oo + - - ~  O,RO - -~R~-Uo,o 

( 1 - v  ) I + V u  u l - v [  ] 
+ Uz R UZ,RR + ~ U z  ee + "~-~- Z,RO Z,O + ~ - ~  (Uz,R) 2 -  1 2 , , -~(Uz ,o)  

~2 1 ' ,0 ~2 ~*2R 

12 + 2~*UR,e + ~ UR,OO , 

Uo,oo I - v (  Uo,R Uo ) 1 -  v U 3 - v 
R--T+--K- Vo,aR+ --R-- ~ +-Sk-- R'R0+5~-UR'0 

l+Vu U Uz,o [Uz,ee 1 - v  ( URR)] +-7-h- z,R z,Ro+--h---[--h-v+-- V- Uz,RR+ -'" 
1 } 

+ ~ (V~Uz)'R ,R 

= 1-2 + 2~"~*00'0 -]- ~-~*2U°'o° ' 
1 1 2 R (R{URR--I-I(Uz,R)2+'v [-~-F U0'0 -~(Uz,o)]}  UZR 

- -  , - - - - R -  + , 

{ U R , o U o l  } )  
+ ( l - v )  UO,R + R R + ~Uz'RUZ'° Uz,o ,R 

1 Uo,o 1 2 1 2 

+ (1 - v) UO, R + ~ R -~Uz, RUz,o Uz,R/,o 

12 VaUz + Uz + 2fl Uz,o +12 Uz,oo • 

Similarly, the membrane forces in (9) become 

{ 1 1 1 
~R = UR,R + ~(Uz,R) + v ~ U R  + -~Uo,o + Kff~(Uz,o) , 

Y6 = { ~U, + ~Uo,o + 2fl-~(Uz,o)2 + '~ [UR,R + ~(Uz,R)2] } , 

I~RO _ ( l - v )  ( 1 1 R ) 2 ue,R + -KUR,e - -~Ue + (Uz, . ) (Uz,o)  . 

Accordingly, the boundary conditions become 

U R = U o = U z = O ,  UZ,R=O, at R =  ~, 

1 -~Uz,oo) = O, UZ,RR + # (~Uz,R + 1 

at R = I .  1) 
(V~Uz),R + - - ~  Uz, R - -~Vz = o, 

,00 

In addition, the radial and shear forces at R = 1 require ~rR = /~rR0 = 0, i.e, 

UR,R + (Uz,R) 2 + v -~UR + ~Uo,o + ~ ( U z , o )  = O, 
at R = I .  

1 U 1 1 uo,R + -~ R,o - -~vo + -~(Uz,R)(Vz,o) = o, 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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Considering the waviness only in the transverse direction, the initial conditions on transverse 
motion are 

U R = g I R = U o = ( ] o = O ,  U z = ¢ ( R , O ) ,  ( ] z = k O ( R , O ) ,  a t t = 0 .  (18) 

3. P E R T U R B A T I O N  

To proceed with the perturbation analysis of (12)-(14) in small parameter 0 < ~ = h/b << 1, 
we consider series solutions satisfying (2) like 

U z = g V ;  ') +E3U (3) + ' ' ' ,  UR=E2U (2) + E4U(R4) ~- " "" , Uo=E2U~ 2) + ~4U~4)+ '  (19) 

Without loss of generality, we retain terms through E 2 to avoid higher order calculation. Substi- 
tution of (19) into (12),(13) for order ~2 gives 

U (2) U(2) U(2) R,R 1 -- 1)17(2 ) 1 + v (2) 
R,RR + ~ - -  R--T + -T~-~R,eo + --~-~Ua,oo 

3 - v rr(2 ) rr(1) (U(1) 1 -  V rr(1 ) ~ l + v rr(1 ) rr(1) 
-2~R~ ~o,o + '-'z,R k Z, RR + 2R 2 ~z,oo ] + --~g-~Z,RO~Z,O 

1-v  [( 2 1 (1),21 ~ ~r.~.2 R O, -{- ~ -  U(I,)R) - - ~  (Uz,o] j -]- = 

(2o) 

Ue(2) / ,oo 1 - v (rr(2) rr(2) Uo (2) _ _  ~O,R 1 + V U(R2.) ° + 3 - v , (2 )  
R 2 + - ' ~  k ~O'RR + R -  R 2 + 2 R  ' -~-~---R,O 

(21) 
fro) Dr(1) i -yr . ( , ,  

+ 2R z,R~,,,o + ~ L R2 + - 7  k~,RR + R ~ , , ~ ] ]  = o. 

fT(2) The boundary conditions in (16) and (17) and initial conditions in (18) are retained ibr ~R 
U; 2, , and U (1) , 

U ( 2 ) = U ;  2)=U(Z 1)=0 ,  rr(l) =0 ,  a t R = ~ ; ;  'F Z,R 

Z, RR + ]2 k R~Z'R + U;I'~o (22) 
a t R = l ,  

l W ;  1) 
/ ,R ~ -- ,88 

U(2) 1 (U(zl,))2+v [l__rg2 ) 1Ue(~ ) + 1  /',r(,)'~ 2] 
R,R + ~ [R -R  + R ~ ~vz,oj j : o, 

1 rr(1) rr(1 ) 

u~2) : 0(.2) : u~2) : (:~2) : o, u(. ') : ¢ ( R ,  o), ( 4  ') : ~ ( R ,  o), 

at R = 1, (23) 

at t = 0. (24) 

4. G A L E R K I N  P R O C E D U R E  

A solution for the transverse displacement satisfying the boundary condition (22) is 

4 
U(zU = E CmRm+s [fsc(t) cos(s0) + f ss ( t )  sin(s0)], 

s=0 m=0 
(25) 

where f sc( t )  and f ss ( t )  are generalized coordinates, s denotes the number of nodal diameters, 
and the coefficients Cm (m  = 0, 1 , . . . ,  4) are determined by (22) and (25). In this analysis, t:he 
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single-mode solutions for specified s will be sought. Solutions of mode coupling with many s will 
not be included. 

Substitution of (25) into (20),(21) for specified s leads to 

U(R2) : H(2) (f~2 + f;2) + 11~2) [cos(2sS) (f~2 _ f~ )  + 2sin(2sO)(f, cf**)] 

~'2 { R 3 +  [ (1+v)a4- (3+v) t~2]R-1  [ ( l - v ) t ~ 4 + 3 + v J R }  (26) 

96 [(1 --  V)/~, 2 + (1 + V)] + [(1 V)a 2 + (1 + V)] ' 

U~ 2) II~ 2) [sin(2sO) 2 = (f;¢ _ f;2) _ 2 cos(2sO)(fsJss)], (27) 

and the functions H~ 2), l'I~ 2), and H~ 2) are given by 

4 
2{0 2 ^0 0 - i  11(02)= A ° R + A ° R - I +  E ( 15,m+-~2+ 2sR +A25m,+,n2+2sR ) l o g R  

ml ,rn.~=O 

4 [ [ m l  1 2 1 - -  ^ --  5°ntl + m 2 + 2 s  ] 5 m l + m 2 + 2 s  + 2 { 0 - - -  R ml+m2+2s -1  , (28)  
+ E A° + m 2 + 2 s - 2  m 1 ~ 2 2  ~ s s  J 

mx,m2=O 

11~2) = _a1AIR2~+1 _ A2R2S_I + blA3R_2,+1 + A4R_2~_1 

4 r ^ 1-521+rn 2 1 - g  0 
+ E [ -a lA1  . . . . . .  :., 2{2 rex+m2 

m l , m 2 =  0 L ml + m2 -- z m l  + m2 

2 i - Rml+mz+2s_ 1 -- ~__0mx +m2+4s ] + b12{3 1 5m,+mz+4S + 2{ 4 - - -  (29) 
ml  + m 2  + 4s--  2 my + m 2  + 4s J 

4 
a 2{ 6 2 D2S+I  2{ ~0 D2S--I 

+ E [-- 1 1 m r + m 2  -rl" -- 2Urnl+rn2/~ 
m l , m 2 = 0  

^ 0 --2s--1 -r'b 1 2{ 3 62ml+m2+4s R -28+1 +A45ml+m2+4sR ] logR, 

II (2) = A I R  2s+l + A2R 2s-1 + A3 R-2s+l + A4R -2s-1 

4 [2{1 1 - ~2~+m2 0 + ~ + 2{= 1 - 5m,+,,~, 

ml,m2=0 [ ml  + m2 -- 2 ml  + m2 
2 

1 -- 5m~+m2+4s , ~ 1 - 50ml+m2+4s] Rmt+m2+2s_ 1 + -1- .,"14 . . . . . .  t 
2{3 ml  + m2 + 4 s -  2 ml  + m2 + 4s J 

4 
+ ~ [~ ~2 D2S+l + 2{260 R2S-1 

|Za l Uml +m2 ~ rnl +m2 
m l , m 2 = 0  

+ 2 {  .~2 D - 2 s + l  .~ .¢0 D--2S--I]  
3uml+m2+4s~V + e't4Oml+m2+4s-rt j logR, 

(30) 

where all the coefficients 0 o ^0 ^0 A1,A2,. .  determined by (20)-(23) A1,A2, . . . ,A4  and .,2{4 are 
and (26)-(30), and 5~ is the Kronecker delta. Substitution of (19) into (15), retention of the 
terms e 2, and use of U (2) and U (2) gives the membrane forces 

1 
= 76 f~*2NR L + NRo (f~2 + f2,) + NR1 [(f2e - f28) cos(2sS) - 2(fscfss) sin(2s8)] , 

= ~ n * 2 g o  L + We0 Re (f;c + f;s) + Nol [(f2c - fs 2) cos(2s0) - 2(fscfss) sin(2s0)], 2 2 

l~rRo = NROl [(f2c - fs 2) sin(2sS) + 2(fsefss) cos(2sS)] , 

(31) 
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where Nno, Roo,... ,NRol are computed through II(o 2), II~ 2), and II~ 2). 
forces are 

N L =  (1-- v) [(a + v)n 2 - ( l + v ) n  4] 
[(1 - v ) n  2 + ( i  + v)]  n 2 + 

N° ~ = ( i  - ~) [ ( i  + ~)~4 _ (a + ~)~ ]  + 
[(1 - v)n 2 + (1 + v)] R 2 

(1 + v) [(1 - v)~ 4 + 3 + v] 
(1 - v ) ~  2 + (1 + v)  

(1 + v) [(1 - V)K; 4 + 3 -l- Y] 
(1 - v)a 2 + (1 + v)  

The linear membrane 

- (3 + v)R 2, 

- (3v + 1)R '). 

For specified s, substitution of (25)-(27) into (14) and use of the Galerkin method yields 

• . (as  + ~t'270 

as + ~'27o 
L, - 2WsL~ + a s  

~"~'2S2) f s c  + - -  

f~*2s2) L ,  + - -  

7sc + %o 

%c + %0 (fs2 + f;2s) fs~ = O. 
/L 

(32) 

(a3) 

where the coefficients as, 70, 13s, %0, %c are related to the plate stiffness, centrifugal forces, 
inertia forces, and membrane forces. The second term in (33) is caused by the Coriolis force. 
When s = 0, the two equations in (33) are identical. The problem reduces to the symmetrical 
one. For the symmetrical response, no Coriolis force contributes to the symmetrical response. 
Only the centrifugal force caused by rotation affects the symmetrical response. Therefore. the 
analyses given by Lamb and Southwell [3] and Southwell [4] are only for the symmetrical response 
of rotating disks. 

The normalization of the initial conditions in (26) gives 

f 0 _  1 a ~02~r j~ 1 
s~ 7rA E C m  ~(R, O)R m+s cos(s0) dR dO, 

m = 0  

9~ ° = - 1  ~ o  f o 2 ~  1 rrA Cm ~(R, O)R m+" cos(s0) dR dO, 

(a4) 

f~o 1 4  fO2"rr i 1 = - ~  E C m  ¢(R, O)R m+s sin(s0) dR dO, 
m = 0  

f~O 1 4  f02~r j~ 1 = - ~  E C m  V(R,O)Rm+Ssin(sO)dRdO, 
m = 0  

(as)  

where 4 4 1 -- tg m + n + 2 s ÷ l  

A= E 
r n = O  n = O  

5. N O N L I N E A R  S O L U T I O N S  

Integration of (33) with initial conditions in (34) leads to a constant energy function 

g = ~ ] i  + + 2 Zs (fl*s)2 - -  413s (f;2c + f£2) = E0. (36) 

For the hardening disk (%c + %0) > 0, and for the softening disk (%c + %0) < 0. For (%c + %o) 
> 0, the solution to (33) with (34) is 

oo 

~is y~p~ (cos {[(2/+ l>s  + Wslt + (2~ + 1>o + ¢0} 
f sc -  ~ ~=0 

+ cos {[(21 + 1 ) ~  - ws]t  + (2z + 1)~0 - ¢ 0 } ) ,  
(at) 71. z~ s oo 

fss - 2k~-(ks) E p t  (sin {[(2/+ 1)w, + fFs]t + (2 /+ 1)~0 + ¢0} 
l=0 

- sin {[(2/+ 1)ws - fFs] t + (2 /+ 1)~Oo - ¢o}), 
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where K(ks) is the complete elliptic integral of the first kind, k~ = l x / T ~ -  k~ 2, A8 is the amplitude, 
w~ is the natural frequency without Coriolis forces, and ~o is the initial phase. 

As = C - ~ - c  

B = ~ / c 2  + 4(,y~c + "~8o)Z.Eo, 

ks = 2B'  w, = 2vrB-~s g(k~ ), 

C = a8 + fF27, Pi = sech I + K(ks) J ' 

tn [ 2 K ( ~  )~° k s ] d n [  .2K(k~)~° ks]= ~A: 
, , 2wsK(k~)A o' 

tan ¢o = fs0s 
f 2 '  

A o 0 2 +  o 2  = ~ / ( fL)  ( f L ) ,  A 0 = - (n*s)fOs + [so + 

(38) 

where dn and tn are the elliptic functions. 
Substitution of (37) into (25) gives transverse displacement 

i 4 lr.~p~CmRm+ 8 (cos{[(2/+ 1)ws + fFs]t + (2/+ 1)~o + ¢o - sO} 
/=0 m=O 

+ cos ([(2l + 1)w8 - Wslt + (2I + 1)~o - ¢o + so}). 

(39) 

For (%c + Y8o) < 0, the solution to (33) with (34) is 

7rA,8 
f~c = 2k~-K'(ks) E ql (sin {[(2/+ 1)ws + n ' s i t  + (2/+ 1)~o + ¢o} 

l=O 

+ sin {[(2l + l)w8 - ~*s]t + (2l + 1)~o - ¢o}), 

7r~8 oo 
f'* = 2ks--K-(k,) , ~  qt ( -  cos {[(2/+ 1)w, + fl* s]t + (2/+ 1)~oo + ¢o} 

i I J  

+ cos {[(21 + 1)w8 - Ws]t + (21 + 1)~o - ¢o}), 

(40) 

where 

As=TC1-B1 C~C ~ 
I~s~ + "rsol' ks = 

B1 : qC12 - 4l')'8< + %olD'sEo, C, - a8 

s~ <° [~-<b)~o ] 
tan ¢o = ~oc, cs - , ks 

As=v/-~scsc+f'~, A° = i [ ] °  e 

- B~ v ~  + B1 
- 7 - ~ '  " =  2 v ~  K(k~)' 

- fF27, ql = csch l + K(ks) J ' 

[ ] dn 2K( )~o k8 - 2wsg(ks)As'  

(n*,).t'5] 2 

(41) 

Substitution of (40) into (25) gives 

U(z1) = E°° Ea  ~rAsqtCmRm+s2ksK(ks) ( s i n { [ ( 2 1 + l ) w s + i Y s ] t + ( 2 l + l ) ~ o + ¢ o - S O }  
/=0 rn=O 

+ sin {[(2/+ 1)w8 - ~*s] t + (2l + 1)~o - ¢o + sO}) ; 

(42) 

U (2) and U (2) can be determined from (26) and (27) in a similar manner. 
From time-dependent sine and cosine terms in (39) or (42), they indicate two dimensionless, 

modal frequencies 
~v* = { ( 2 / + l ) w s + f l * s ,  i f (2 /+l )ws>_Q*s ,  (43) 

1,2 fl*s :t= (2/+ 1)ws, if (2l + 1)w, < fFs. 
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When the nonlinear terms in (33) vanish, the linear solution is recovered 

u z  = ~ CmR m+'* {cos [ ( ~  + a*s ) t  + ~0 + ¢0 - se] 
s=O rn=O 

+ cos [(~, - f r s ) t  + ~o - ¢0 + sO]}, 

(44) 

where 

~s + fP27o .4~ = tan ¢o = , 
03S ~ ~S ' O'JS ' 

+ 

tan ~o = co~ ~ + f]~ 

(45) 

Because (%c +%0)  = 0 in (38) and (41), ks = O, K(ks) = r / 2 ,  and a)s in (45) is recovered. When 
(%c + %o) = 0, the subharmonic terms in (38) and (42) for l ¢ 0 vanish. The linear solution 
in (44) is recovered. 

6.  I L L U S T R A T I O N S  

Consider a 3.5-inch diameter disk similar to a digital memory disk with inner and outer radii 
of a = 15.5 mm, b = 43 ram; thickness h = 0.775 mm, density P0 = 3641 kg /m 3, Young's modulus 
E = 69 GPa, and Poisson's ratio v = 0.33. The natural frequencies from nondimensionalized w~,2 

are o21, 2 : w~,2Cp¢/x/~b. For a comparison from (38) and (41), the natural frequency in the 
nonlinear analysis depends on As and nodal-diameter number s because E0 and ks depend on As 
and s. 

As discussed in Section 4, for asymmetric mode responses of the rotating disk, the nodal 
diameter s ¢ 0. For the asymmetric mode responses, the natural frequency varying with rotation 
speed and deflection amplitude is illustrated by solid curves through (12)-(14) and dashed curves 
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Rotat ion Speed ~ (krpm) 

F i g u r e  2. N a t u r a l  f requency  (s = 1, As = 0 ,0 .5) .  As is m o d a l  a m p l i t u d e .  T h e  sol id  
a n d  d a s h e d  cu rves  d e n o t e  th i s  t heo ry  and  t he  v o n K a r m a n  theory.  T w o  n o n l i n e a r  
m o d e l s  for A8 = 0 r educe  to  t he  l inear  model .  
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2 

! 

0 i 
0 20 40 60 80 100 

Rotation Speed f~ (krpm) 
Figure 3. Natura l  frequency (s = 2, A8 = 0, 0.4). As is modal  ampli tude.  The  solid 
and  dashed curves denote this  theory and  the  von K a r m a n  theory. Two nonlinear 
models  for As = 0 reduce to the  linear model. ~'~crL, ~'~¢rK, and f~crN are the  critical 
speeds predicted th rough  the  linear theory, the  von Kaxman  theory, and the  new 
theory, respectively. 
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Rotation Speed ~ (lo-pm) 
Figure 4. Natura l  frequency (s = 4, As = 0, 0.4) of the  hardening disk. As is modal  
ampli tude.  The  solid and dashed curves denote this  theory and  the  yon K a r m a n  
theory. Two nonlinear  models  for Aa = 0 reduce to the  linear model. ~crL, ~crK, 
and f~crN are the  critical speeds predicted th rough  the  linear theory, the  yon Ka rman  
theory, and  the  new theory, respectively. 

through the yon Karman theory. When As -- 0.0, the nonlinear results return to the linear ones. 
The natural  frequency for an asymmetric mode response (s = 1) is plotted in Figure 2 when 
A8 = 0, 0.5 (or [Uz[ = 0, 0.241 ram). For such an asymmetrical response, no critical speed exists. 
Note tha t  the yon Karman model results are obtained from the accurate model when the shear 
forces in (4) and (5) and the shear membrane forces in (7) and (8) vanish. Such changes reflect on 
the coefficient %c in (33). When s = 2, the natural  frequency for this asymmetric mode response 
is plotted in Figure 3. The critical speeds predicted through the linear theory, the von Karman 
theory, and the new theory a r e  ~'~crL ~ 41.6 krpm, 12crg ~ 47.8 krpm, and Qc~N ~ 53.2 krpm at 
As = 0.4 (or [#z[ ~- 0.138mm), respectively. 
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Figure 5. Natura l  frequency (s = 6, As = 0, 0.1). As is modal  ampli tude.  The  solid 
and  dashed curves denote this  theory and the  v o n K a r m a n  theory. Two nonlinear 
models  for As = 0 reduce to the  linear model, f~crL, f~crK, and ~'~crN are  the  critical 
speeds predicted th rough  the  linear theory, the  yon Ka rman  theory, and the  new 
theory, respectively. 
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Figure 6. Natural  frequency versus deflection ampl i tude  by use of the  accurate  non- 
linear model  (f~ = 10krpm).  As is modal  ampli tude.  The  nonlinear model for As = 0 
reduces to the  linear model. The  solid and dashed curves give the  frequency for the  
backward and  forward wave responses. 

For s = 4, the natural frequency of the rotating disk for As = 0.4 (luzl ~ 0.082ram) is 
illustrated in Figure 4. The von Karman theory shows that  the rotating disk used in disk drives 
becomes softening. The new plate theory shows that such a rotating disk is still like a hardening 
spring. The three predictions of critical speeds are ftcrL ~ 38.6krpm, flcrK ~ 36.8krpm and 
~tcrN ~ 40.2 krpm at A s  = 0.4, respectively. The von Karman theory gives the critical speed less 
than the linear plate theory. The natural frequency for s = 6 is plotted in Figure 5. From the 
two nonlinear theories, the rotating disk for this asymmetric response becomes softening. The 
critical speeds given by the three plate theories are f~c~L ~ 50.2 krpm, ~'~crK ~ 30.6 krpm, and 
~'-~crN m 31.0 krpm at A s  = 0.1 ([uzl  = 0.015 mm), respectively. The two nonlinear critical speeds 
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are less than the linear one (i.e., at As = 0). When the disk becomes softening, its vibration can 
be easily induced. 

For illustration of deflection effects, the natural frequency varying with dimensional deflection 
amplitudes is plotted for ~ = 10 krpm in Figure 6. The solid and dashed curves give the frequency 
for the backward and forward traveling waves. The rotating disk is hardening for s = 1, 2 , . . . ,  5. 
Thus, the natural frequency increases when the deflection amplitude increases. However, for 
s = 6, the rotating disk becomes softening, and the natural frequency decreases with increasing 
the deflection amplitude. It is observed that the sensitivity of the natural frequency to the 
deflection amplitude increases with increasing nodal diameters. 

7 .  C O N C L U S I O N S  

The responses of the asymmetric mode vibration of rotating disks with initial waviness are 
investigated through a recently developed, accurate plate theory instead of the von Karman one. 
The nonlinear solutions of rotating disks reduce to the linear ones when the nonlinear effects 
vanish. The asymmetric results reduce to the symmetric ones when s = 0. Such a methodology 
presented in this paper can be applied to nonlinear responses in structures such as rotating shafts, 
traveling plates, and shells. 
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