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In this paper the convergence of general iteration algorithms defined by point-to- 
set maps is examined lirst. Special practical convergence conditions are then derived 
from the general theory. 0 1992 Academic Press, Inc 

In recent years, the study of general iteration schemes has included a 
substantial effort to identify properties of iteration schemes that will 
guarantee their convergence in some sense. A number of these results have 
used an abstract iteration scheme that consists of the recursive application 
of a point-to-set mapping. In this paper we are concerned with these type 
of results. Iteration schemes of this form have great importance in 
optimization, input-output systems, stability analysis of dynamic systems, 
and in all fields of applied mathematics. 

The paper is divided in two parts. Section 1 gives an outline of general 
iteration schemes, and the convergence of such schemes is examined. We 
also show that our conditions are very general: most clasical results can be 
obtained as special cases, and if the conditions are weakened slightly then 
our results may not hold. In Section 2 the discrete time scale Liapunov 
theory is extended to time dependent, higher order, nonlinear difference 
equations. In addition, the speed of convergence is estimated in most cases. 
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1 

1.1. Algorithmic Models 

Let X denote an abstract set, and introduce the following notation: 

x*=x, X2=XxX, . ..) p=p-‘xx k>2. 

Assume that I is a positive integer, and for all k > I - 1, the point-to-set 
mappings fk are defined on Xk+‘, furthermore, for all (x(l), . . . . xCk+‘)) E 
Xk+’ and XE~~(X(‘), . . ..x(~+‘). XE X. For the sake of brevity we will use 
the notation fk : Xk’ ' + 2x, where 2x denotes the set of all subsets of X. 

DEFINITION 1.1. Select x0, x,, . . . . xi _ i E X arbitrarily, and construct the 
sequence 

xk+ 1 ~fktXO, x1> ...? xk) (k>l- l), (1.1) 

where an arbitrary point from the set fk(xg, xi, . . . . xk) xan be accepted as 
the successor of xk. Recursion (1.1) is called the general algorithmic model. 

Remark. Since the domain of fk is Xk+’ and fk(x,,, x,, . . . . xk) G X, the 
recursion is well defined for all k > I- 1. Points x0, . . . . x,- , are called the 
initial approximations, and the maps fk are called the iteration mappings. 

DEFINITION 1.2. The algorithmic model (1.1) is called an l-step process 
if for all k > I- 1, fk does not depend explicitly on x0, xi, . . . . xk ~ i, that is, 
if algorithm ( 1.1) has the special form 

Xk+lEfk(Xk~I+I,...rXk-l,Xk). (1.2) 

It is easy to show that any Z-step process is equivalent to a certain 
single-step process defined on x’. For k > 0, introduce vectors 
& = (zf), zy, . ..) xIf’). Starting from the initial approximation 

zo = (x0, Xl 9 ...> XI- 1 h 

consider the single step algorithmic model, 

(1) - (2) 
‘kfl-=k 

(2) - (31 
‘k+l -=k 

(1.3) 

zL$ , E fk (2; ), . . . . zI('). 
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This iteration algorithm is a single-step process, and obviously it is 
equivalent to the algorithmic model (1.2) since for all k 3 0, 

z)cl)=xk,Zy=X!,+], . ..) “‘- Zk -xk f/~ 1. 

This equivalence is the main reason why only single-step iteration methods 
are discussed in most publications. 

DEFINITION 1.3. A I-step process is called stationary, if mappingsf, do 
not depend on k. Otherwise the process is called nonstationary. 

Iteration models in the most general form (1.1) have a great importance 
in certain optimization methods. For example, in using cutting plane algo- 
rithms very early cuts can still remain in the latter stages of the process by 
assuming that they are not dominated by later cuts [4]. Hence the 
optimization problem of each step may depend on the solutions of very 
early problems. Multistep processes are also used in many other fields of 
applied mathematics. As an example we mention that the secant method 
for solving nonlinear equations [9, l] is a special two-step method. Non- 
stationary methods have a great practical importance in analysing the 
global asymptotical stability of dynamic economic systems, when the state 
transition relation is time-dependent [6]. 

In this paper the most general algorithmic model (1.1) will be first 
considered, and then, special cases will be derived from our general 
convergence theorem. In order to establish any kind of convergence, X 
should have some topology. 

Assume now that X is a Hausdorff topological space that satisfies the 
first axiom of countability. (For definitions see, for example, [lo]). Let 
S c X be the set of desirable points, which are considered as the solutions 
to the problem being solved by the algorithm. For example, in the case of 
an optimization problem X can be selected a the feasible set, and S as the 
set of the optimal solutions. If a linear or nonlinear fixed point problem is 
solved, then X is the domain of the mapping and S is the set of all fixed 
points. In analysing the global asymptotic stability of a discrete dynamic 
system, set X is the state space and S is the set of equilibrium points. 

DEFINITION 1.4. An algorithmic model is said to be convergent, if the 
accumulation points of any iteration sequence {xk} constructed by the 
algorithm are in S. 

Note that the convergence of an algorithm model does not imply that 
the iteration sequence is convergent. This more general convergence prin- 
ciple was introduced and investigated by many authors (see, for example, 
[ 11, and Refs. therein]). They presented a comprehensive summary of con- 
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vergence criteria for algorithmic models. They compared the known criteria 
and showed that they are special cases of a new result being published first 
in that article. In the next section this theorem will be further generalized. 

1.2. Convergence Criteria for Algorithmic Models 

Assume that for k > 0 there exist functions ck: X+ R’ with the following 
properties: 

(A,) For large k, functions { ck} are uniformly locally bounded below 
on X\S. That is, there is a nonnegative integer N1 such that for all XE X\S 
there is a neighborhood U of x and ab E R ’ (which may depend on x) such 
that for all k 2 N1 and x’ E U, 

c,(x’)>b; (1.4) 

(A*) If k2N1 and x’~fj(z(~), ,,,, zCk), x) (x, z(‘)EX, i= 1, . . . . k), then 

ck+l(x’)~ck(x); (1.5) 

(A3) For each z~x\S if {zi} c X is any sequence such that zi+ z 
and {ki} is any strictly increasing sequence of nonnegative integers such 
that c,Jzi) + c*, then for all iteration sequences {xi > such that xk, = zi 
(i > 0) there exists an integer N, such that k, > N, - 1 and 

CkN2+lb)<C* for a11 y EfkN2tX09 x1, . ..? Xk,& (1.6) 

THEOREM 1.1. If conditions (A,), (A,), and (A3) hold, then the algo- 
rithmic model (1.1) is convergent. 

Proof: Let X* be an aCCUIIIdatiOII point Of the iteration sequence { xk } 
constructed by the algorithmic model (l.l), and assume that x* EX\S. 
Let {ki} denote the index set such that {xk,} is a subsequence of {xk} 
Converging to x*. Assumption (A*) implies that for large k, {ck(xk)} is 
decreasing, and from assumption (A,) we conclude that {ck,(xk,)} is 
convergent. Therefore the entire sequence { c,(x,)} converges to a c* E I% 
From (1.5) we know that for k 2 N,, 

(1.7) 

Use subsequence {xki} as sequence {zi} in condition (A,) to see that there 
exists an N2 such that k, 3 N, - 1 and with the notation M= k, + 1, 

c&,44) < c*, 

which contradicts relation (1.7) and completes the proof. 

409116811-4 
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Remark 1. Note lirst that in the special case when (1 .I ) is a single-step 
nonstationary process and (‘k does not depend on k this theorem 
generalizes [ 11, Theorem 4.31. If the process is stationary, then this result 
further specializes to [ 11, Theorem 3.51. 

Remark 2. The conditions of the theorem do not imply that sequence 
{xk} has an accumulation point, as the next example shows: 

EXAMPLE 1.1. Select X= R’, S= {O}, and consider the single-step 
process with fk (x) = f (x) = x - 1, and choose ck (x) = x for all x E X. 

Since functions ck are continuous and fk (x) < x for all x, condition (A,) 
obviously holds, and since functions fk are strictly decreasing and con- 
tinuous, assumptions (AZ) and (A3) also hold. However, for arbitrary, 
x0 E X, the iteration sequence is strictly decreasing and divergent. (Infinite 
limit is not considered here as limit point from X.) 

Remark 3. Even in cases when the iteration sequence has an accumula- 
tion point, the sequence does not need to converge as the following 
example shows. 

EXAMPLE 1.2. Select X= R’, S = {O; 1 }, and consider the single step 
iteration algorithm with function 

i 

1 

f!f(X)=f(X)= 0 
(x-l 

Choose 

Ck(X) = c(x) = 
i 

0 
x 

if x=0 

if x=1 

if x$S. 

ifxES 
otherwise. 

On X\S, function c is continuous, hence assumption (A, ) is satisfied. If 
x$ S, then f(x) < x, which implies that c(f(x)) < c(x). If XE S, then 
f(x) ES. Therefore in this case c(f(x)) = c(x). Hence condition (A*) also 
holds. Assumption (A,) follows from the definition of functions ck and 
from the fact that f(x) < x on X\S. If x0 is selected as a nonnegative 
integer, then the iteration sequence has two accumulation points: 0 and 1. 
If x0 is selected otherwise, then no accumulation point exists. 

Note that Definition 1.4 is considered as the definition of global con- 
vergence on X, since the initial approximations x0, xi, . . . . x,- , are arbitrary 
elements of A’. Local convergence of algorithmic models can be defined in 
the following way: 
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DEFINITION 1.5. An algorithmic model is said to be locally convergent, if 
there is a subset X, of X such that the accumulation points of any iteration 
sequence {xk} constructed by the algorithm starting with initial 
approximations x0, x1, . . . . x,- , from X, are in S. 

Theorem 1.1 can be modified as a local convergence theorem by 
substituting X and S by X, and X, n S, respectively. 

2.1. The General Convergence Theorem 

Consider again the algorithmic model 

xk + 1 Efk (‘b, xI, *.., xk ) &>I- l), (2.1) 

where for k>l-1, fk:xk+‘+2? Here we assume again that X is a 
Hausdorf topological space which satisfies the first axiom of countability, 
and 1 is a given positive integer, furthermore in relation (2.1), any point 
from the set fk(xg, x1, . . . . xk) can be accepted as the successor of xk. 
Assume furthermore that the set S of desirable points has only one 
element s*. 

Assume that 

(B, ) There is a compact set Cc X such that for all k, xk E C; 

(B,) Condition (A,), (AT), and (A,) of Theorem 1.1 are satisfied. 

The main result of this section is given as 

THEREM 2.1. Under assumptions (B,) and (B2), xk + s* as k + 00 with 
arbitrary points x0, x,, . . . . x,- , E X. 

Proof since C iS Compact, sequence {xk} has a COIWXgent sub- 
sequence. From Theorem 1.1 we also know that all the limit points of this 
iteration sequence belong to S, which has only one point s*. Hence the 
iteration sequence has only one limit point s*, which implies that it 
converges to s*. 

The speed of convergence of algorithm (2.1) can be estimated as follows. 
Assume that 

(B3) X is a metric space with distance d: Xx A’+ R’; 

(B4) There exist nonnegative constants uki (k > I- 1,O < i< k) such 
that if k > I- 1 and XE~~(X(“), x(l), . . . . xck)), then 

k 

d(x,s*)< 1 akid(X('),s*). 
i=O 
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From (2.1) we have 

k 

E k+ I 6 c akiEif 
i=O 

where E;= d(x;, s*) for all i>O. 
Starting from initial values di = ci(i = 0, 1, . . . . f - 1) consider the non- 

stationary difference equation 

6 k+l= 1 akibi. 

i=o 
(2.2) 

Obviously, for all k > 0, &k < dk. In order to obtain a direct expression for 
Bk, and therefore the same for the error bound of xk (k B Z- l), introduce 
the following additional notation: 

1 
1 

bk= 
. * i I and al= (akO? akl, . . . . akk), 

1 
akO ... akk 

Then from (2.2), 

dk+l =A,& - 
and hence, finite induction shows that for all k b 1, 

~k=~k~,Ak~,“‘~,-,d,-,. - 

Note that the components of d,-, are the errors of the initial approxima- 
tionsx,,x ,,..., xIPl. From (2.2) we have 

6 -aTd -(aTA A kcl--k-k- -k,k--l,k-2 -q,-,,d,-,=b:d,-, 

with 

b:=@;dk&1dk~Z”.&l - - 

being a Z-dimensional row vector. Introducing finally the notation 

b,T= (bkO, bklr ..., bk,l--lb 

the definition of the numbers 6, and relation (2.2) imply the following 
result: 
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THEOREM 2.2. Under assumptions (B, t( B4), 

I- 1 

4x k+l, S*) 6 C bkid(xi, J’*) (k>l-1). (2.3) 
i=O 

COROLLARY. If for all i = 0, 1, . . . . I - 1, b,, + 0 as k + KI, then the itera- 
tion sequence {xk} generated by algorithm (2.1) convergences to s*. Hence, 
in this case conditions (B,) and (B2) are not needed to establish convergence. 

The conditions of Theorem 1.1 are usually difficult to verify in practical 
cases. Therefore in the next section we will relax these conditions in order 
to derive sufficient convergence conditions which can be easily verified. 

2.2. Convergence of l-Step Methods 

In this section l-step iteration processes of the form 

Xk+lEfk(Xk-‘+1~Xk-‘+2~-~~Xk) (2.4) 

are discussed, where 12 1 is a given integer, and for all k, fk: X' + Zx. 
Assume again that the set S of desirable points has only one element s*. 

DEFINITION 2.1. A function V: X’ + DB: is called the Liapunov;function 
of process (2.4), if for arbitrary x(j) E X (i= 1,2, . . . . 1, .x(I) # s*) and 
YEfk(Xcl), Xc2), . . . . Xc')) (k>l- I), 

v(x’2’, . ..) XC’), y) < V(x”‘, x(2), . ..) XC’)). (2.5 1 

DEFINITION 2.2. The Liapunov function V is called closed, if it is 
defined on X’, where x is the closure of X, furthermore if ki + co, 
x!‘) + xc’)* as i + co (xi’) E X for i > 0 and j= 1, 2, . . . . 1 such that xc’)* #s*) 
and yi Efk,(xi(r), . . . . xi’)) (i>O) such that yi-+y* as i-+ co, then 

v(x’*‘*, . ..) XC’)‘, y) < V(x(‘)‘, . ..) xy. (2.6) 

Assume now that the following conditions hold: 

(C,) For all k>f-- 1, fk(x(l), . . . . x(‘-‘I, s*)= {s*} with arbitrary 
x(‘) 3 . . . . xu- 1) E JJ. 9 

(C,) Process (2.4) has a continuous, cased Liapunov function; 
(C,) X is compact. 

THEOREM 2.3. Under assumptions (C,), (C,), and (C,), xk -+s* as 
k-co. 
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Proof: Note first that this process is equivalent to the single-step 
method (1.3) where set X is replaced by X=X’, and the new set 
of desirable points is now S= S’. Select function c as the Liapunov 
function V. 

We can now easily verify that the conditions of Theorem 2.1 are satisfied, 
which implies the convergence of the iteration sequence {xk ). 

Assumption (A,) follows from (C,) and the continuity of V. Condition 
(C, ) and the monotonicity of V imply assumption (AZ). And finally, 
assumption (A3) is the consequence of condition (C,) and relation (2.6). 

Remark 1. Assumption (C,) can be weakened as follows: 

(C;) For all x E X\S, there is a compact neighborhood U c X of x. 

In this case we have to assume that s* E X, and condition (C,) is 
required only if s* E X. 

Remark 2. Assumption s* E X is needed in order to obtain s* as the 
limit of sequences from X. Assumption (C,) guarantees that if at any 
iteration step the solution s* is obtained, then the process remains at the 
solution. We may also show that the existence of the Liapunov function is 
not a too strong assumption. Assume that X is a metric space, and consider 
the special iteration process xk+ i = f(xk) and assume that starting from an 
arbitrary initial point, {xk} converges to the solution s* of equation 
x =f(x). Let I/: X -+ [WI be constructed as follows. With selecting x0 = x, 
consider sequence xk + i =f(xk), (k 2 0), and define 

V(x) = 
0 if .Y=s* 
max d( xk, s* ), k>,O, 

where d is the distance. Obviously, V(f(x)) < V(x) for all XE X. The 
continuity-type assumptions in (C,) are also natural, since without certain 
continuity assumptions no convergence can be established. Assumption 
(C,) says that the entire sequence {xk} is contained in a compact set. This 
condition is necessarily satisfied, for example, if X is in a finite dimensional 
Euclidean space, and is bounded or if for every K > 0 there exists a Q > 0 
such that I(‘), . . . . t (I) E X and 11 f(J) 11 > Q (for at least one index j) imply that 

V(_t’“, . . . . f”) > K. 

In the case of one-step processes (that is, if I = 1) this last condition can be 
reformulated as V(x) -+ co as I/ x (I -+ co, x E X. 

Assume next that the iteration process is stationary, that is, mappings fk 
do not depend on k. Replace condition (C,) by the following pair of 
conditions: 

(C;) The process has a continuous Liapunov-function; 
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(C;) Mapping f is closed on X, that is, if xii) +.x(j)* as i--t CO 
(j= 1, 2, . ..) I) and Y~E~(x~‘), . . . . XI’)) such that y, +y*, then y* E 
f(Xy . ..) x(l)‘). 

THEOREM 2.4. If process (2.1) is stationary and conditions (C,), (C;), 
(C;), and (C,) hold, then xk -+ s* as k -+ CO. 

Remark 1. This result in the special case of I = 1 can be considered as 
the discrete-time counterpart of the famous stability theorem of Uzawa 
c121. 

Remark 2. Assume that for all k 3 l- 1, mapping fk is closed, and the 
iteration sequence converges to s*. Then for all k > I- 1, s* efk (s*, . . . . s*). 
Hence, s* is a common fixed point of mappings fk. 

The speed of convergence of process (2.4) is next examined. Two results 
will be introduced. The first one is based on the general result presented in 
Section 2.1, and the second one is based on special properties of the 
Liapunov function. 

Note first that in the case of a l-step process assumption (R4) is modified 
as 

(C,) There exist nonnegative constants ski (k 3 I- 1, k- 1+ 1 6 
id k), such that for all k > I- 1 and x E fk(xcl), . . . . x(l)), (xc”, . . . . x(l) E X are 
arbitrary), 

d(x, s*)< f: ak+-(+ ,d(x(‘), s*). 
i= 1 

Then Theorem 2.2 remains valid with the specification that ski = 0 for all 
i<k-I. 

In the case of a StatiOnary process Constants ak,k _ ,+ , do not depend on 
k. If we introduce the notation Gi= ok,&-,+ ;, then (2.2) reduces to 

6 k+l = f: aidk+l-;. 
i=l 

(2.7) 

Observe that sequence (6,) is the solution of this fth order linear 
difference equation. Note first that the characteristic polynomial of this 
equation is as follows: 

Assume that the roots of cp are A,, &, . . . . II, with multiplicities 
ml, m2? . . . . mR? then the general solution of Eq. (2.7) is given as 

R m,-1 

6 k+l = 1 5 cmk”C 
r=, s=o 
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where the coefficients c,, are obtained by solving the initial-value equations 

R m,-I 

1 C c,,iS~;=d(xi-,,s*) (i= 1,2, . . . . 1). 
r=l .s=o 

Hence, we have proved the following: 

THEOREM 2.5. Under assumption (C,), 

R m,-1 

4x kfl, s*)< c c c,k”ljf (k>1-1). 
r=l s=o 

(2.8) 

COROLLARY. Zf for all r, r = 1,2, . . . . R, I&I < 1, then xk + s* as k -+ 03. 
Hence, in this case the conditions of Theorem 2.4 are not needed to establish 
convergence. 

In the rest of the section the speed of convergence of process (2.4) is 
estimated based on some properties of the Liapunov function. 

Assume now that 
(C,) There exist constants ai, b, (i= 1, 2, . . . . I, a, >O) such that 

f: ai4 
I 

xci), s*) < V(x”‘, . . . . x(j)) < 1 b,d(x(‘), s*) 
i= 1 i= 1 

for all x(‘) E X (i = 1, 2, . . . . I). 

The following result holds. 

THEOREM 2.6. Assume that process (2.4) has a Liapunov function V, 
which satisfies condition (C,). Then for k > I- 1, 

d(xk+l,s*)ba;l i (bi=ajP1)d(xk-,+I,s*) (ao=O). (2.9) 
i= 1 

PrOOf: If xk = S*, then xk + i = S*, and therefore (2.9) obviously holds, 
since the left hand side equals zero. If xk #s*, then condition (C,) implies 
that 

i a,&%,+,+,,s*)6 V(Xk+2-,, -vxk+l) 
i=l 

G vtxk+ 1 - 1, . . . . xk) G 1 bid(Xk-i+i, S*). 
i= 1 

The assertion is a simple consequence of this inequality. 
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COROLLARY. Introduce next the notation ai = (b, - ai- I)/a, (i = , 2, . . . . I), 
and let the sequence {Sk} denote now the solution of difference equation (2.7) 
with initial conditions oi = d(xip,, s*) (i = 1, 2, . . . . I). Then obviously, 
4x,, s*) < ok for all k > l- 1, and with the above coefficients ai, 
Theorem 2.5 remains true. 

2.3. Convergence of Single-Step Methods 

In this section single-step processes generated by point-to-set mappings 
are first examined. For the sake of simplicity we assume that X is a subset 
of a Banach space B. The iteration process now has the form 

xk+ 1 Efk(Xk) (kko), (2.10) 

where fk: X + 2x. It is also assumed that 0 is in X and s* = 0. We may 
have this last assumption without loosing generality, since any solution s* 
can be transformed into zero by introducing the transformed mappings 

It is also assumed that for all k, fk(0) = {O}. 
We start our analysis with the following useful result. 

THEOREM 2.7. Assume that X is compact, and there is a real valued 
continuous function a: X\ { 0} + [0, 1) such that 

II YII 64x)llxII (2.11) 

for all k 3 0, x # 0, and y Efk (x). Then the iteration sequence (2.10) 
converges to 0 as k + co. 

Proof We now verify that all conditions of Theorem 2.3 are satisfied 
with the Liapunov function V(x) = /I II x an s* = 0. Note that (C,) and d 
(C,) obviously hold, and condition (C,) is implied by the facts that a and 
the norm are continuous, and a(x) < 1 for x # 0. 

Remark 1. If (2.11) is replaced by the weaker assumption that 

II Y II < II x II 

for all k > 0, x # 0, and y Efk(x), then the result may not hold, as the 
following example shows. 

EXAMPLE 2.1. Select B= [w’, X= [0, 21, and for ka0, 

fk(x)= [(k+ l)‘- l](k+ 1)-*x. 



54 ARGYROSAND SZIDAROVSZKY 

If the initial point is chosen as x,, = 2, then finite induction shows that 

x,=l+(k+l) ‘+l#O as k+oo. 

Furthermore, for all k 3 0 and x # 0, 

lfk(X)l< 1x1 

COROLLARY. Recursion (2.10) and inequality (2.11) imply that for k B 0, 

II x kfl II ~4-%)lld~ 

and therefore finite induction shows that 

IIxk+lII ~~~~I,~~~~/,~,~~~~~~~~~II~~II. (2.12) 

As a special case assume that a(x) 6 q < 1 for all 0 #x E X. Then for all 
k 2 0, 

/Ixk+l/l w+’ Il.d, (2.13) 

which shows the linear convergence of the process in this special case. 

Relation (2.12) serves as the error formula of the algorithm. In addition, 
it has the following consequence: Assume that (2.11) holds for all 
O#x~X,furthermorea(x,)a(x,~,)~~~a(x,)~Oask~co.Thenx,~O 
for k + co. Hence in this case we may drop the assumptions that 
a(x) E [0, 1) (0 # x E X) and X is compact. 

An alternative approach to Theorem 2.7 is based on the assumption that 
there exists a function h : (0, cc ) + [w such that 

II Y II G h(r)ll x II (2.14) 

for all k > 0, r > 0, 11 x 11 < r, x E X and y E fk (x). 
In this case it is easy to verify that for all k, 

where qk is the solution of the nonlinear difference equation 

qk+l =h(qk)qk, qo= /IxoI/. 

Hence, the convergence analysis of iteration algorithms defined in a 
Banach space is reduced to the examination of the solution of a special 
scalar nonlinear difference equation. 

In deriving further practical convergence conditions we will use the 
following special result. 
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LEMMA 2.1. Assume that X is convex, andfunction h: X + X satisfies the 
,following condition: 

II h(x) - &‘)I1 G 4t)ll x-x’ /I (2.15) 

for all x, x’ E X, where 5 is a point on the linear segment between x and x’, 
furthermore a : X -+ [w’ is a real function such that for all fixed x and x’ E X, 
a(x’ + t(x - x’)) as the function of the parameter t is Riemann integrable on 
[0, 11. Then for all x and x’ E X, 

IIh(x)-h(x’)ll <Jbi a(x’+ t(x-x’))dt IIx-xX)11. (2.16) 

Proof: Let x, x’ E X and define tj = i/N (i = 0, 1, 2, . . . . N), where N is a 
positive integer. Then from (2.15) 

IIh(x)-h(x’)ll 6 $J IIh(X’+ ti(x-x’))-h(x’+ti-1(x--‘))[I 
i=l 

6 f a(x’+Ti(X-X’))ll(ti-ti&~)(X-x’)II, 
i=l 

where ri E [ti- 1, ti], which implies that 

Observe that the first factor is a Riemann-sum of the integral 
j; a(x’+ t(x-x’)) dt which converges to the integral. Let N -+ cc in the 
above inequality to obtain the result. 

Remark. If function a is continuous, then a(x’ + t(x - x’)) is continuous 
in t, therefore it is Riemann integrable. 

Assume next maps fk are point-to-point and process (2.10) satisfies the 
following conditions: 

(D,) fk(0)=O for kb0; 
(D2) For all k20, 

II fk(x) -fkW)Il G 4L)llx- x’ II (2.17) 

for all x, x’ E X, where a : X + lR1 is a continuous function, and <, is a point 
on the linear segment connecting x and x’. 

(D3) a(x)E [0, 1) for all O#XEX; 
(D4) X is compact and convex. 
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THEOREM 2.8. Under the above conditions, xk + 0 as k -+ CD. 

Proof: Let 0 # x E X, then relation (2.16) implies that for all k, 

II fk(x)ll 6 [; a(tx) dt II x II > (2.18) 

where we have selected x’ = 0. Break the integral into two parts to obtain 

llfk(x)II <{J;~(tx)dt+/; .(tx)dt} IIxII. 

Since a is continuous, a(O) 6 1, and since the interval [S, l] is compact, 
m(tx)<fia(x)< 1 for all 6<t< 1, where /3,:X\{O} + [w’ is the real valued 
function defined as 

Therefore, 

where ys : X\ { 0 > + IR’ is a continuous function such that for all x # 0, 
Y,(X) E co, 1). 

Hence the conditions of Theorem 2.7 are satisfied with c1= y6, which 
implies the assertion. 

Remark. Replace (2.17) by the following weaker condition: Assume 
that for all k>O and x, x’ E X, 

(2.19) 

where for k > 0, ak: X + R is a continuous function, tk is a point on the 
linear segent connecting x and x’, and ak (x) E [0, 1) for all k 3 0 and 
OZXEX. 

Then the assertion of the theorem may not hold, as it is illustrated in the 
case of Example 2.1. 

COROLLARY. Recursion (2.10) and inequality (2.18) imply that for k B 0, 

I/x&+lll = /I fktxk)il Gatxk)li xkll, 

where 

E(x) = i’ a(tx) dt. 
0 

Hence, by replacing a(x) by CL(x), Corollary of Theorem 2.7 remains valid. 
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In the previous results no differentiability of functions fk is assumed. In 
the special case of Frechet differentiable functions fk, the above theorems 
can be reduced to very practical convergence conditions. These results are 
presented in the next section. 

2.4. Convergence of Single-Step Methods with Differentiable Iteration 
Functions 

Assume now that B is a Banach space, XL B and functions fk: X-r X 
are continuously differentiable on X. It is also assumed that X is compact 
and convex, 0 E X, furthermore 0 is a common fixed point of functions fk. 
In this special case the following result holds. 

THEOREM 2.9. Let f;(x) denote the Frechet derivative of fk at x. Assume 
that for all k 3 0, 

II fk'(x)ll G P(x), (2.20) 

where /?: X-r rW: is a continuous function such that for x # 0, j?(x) E [0, 1). 

Then xk-+O ask-co. 

Proof Select 

X0= {x/xEXand Ilxll G IIxoll}, 

then X,, is compact. Select furthermore CI = /I. We can easily verify that all 
conditions of Theorem 2.8 are satisfied with X0 replacing X, which implies 
the assertion. Assumptions (Dr ) and (D,) are obviously satisfied. Assump- 
tion (DJ follows from the mean value theorem of derivatives and then 
from the fact that the linear segment between x and x’ is compact and func- 
tion c( is continuous. In order to verify assumption (D4) we have to show 
that xk~XO for all k >O. From the beginning of the proof of Theorem 2.4 
we conclude that for 0 #XG X, II fk(x)ll < I/x 11. Then finite induction 
implies that for all k 3 0, 11 xk II < II x0 )I. Hence xk E X0 for all k > 0, which 
completes the proof. 

Remark 1. If (2.20) is replaced by the weaker assumption that for all 
k>O and x#O, 

II fk’(x)ll < 19 

the result may not hold, as the case of Example 2.1 illustrates. However, if 

fk does not depend on k, that is, when fk =f, the condition 

Ilf ‘(x)ll < 1 for all x# 0 

implies that xk --) 0 as k + co. To see this assertion select /I(x) = I( f’(x)11 . 
Note that this special result was first introduced by Wu and Brown [13]. 
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COROLLARY. Note that the Corollary of Theorem 2.8 remains valid with 
a(x) = j?(x). 

Remark 2. Assume that no assumption is made on the derivatives at 
the fixed point 0. 

Consider next the special case, when B = R”‘. Obviously the above results 
are still valid. However, this further specialization enables us to derive even 
stronger conditions for the convergence of the iteration process 

X k+ 1 =fktxkh 

where fk : B --) B. 

THEOREM 2.10. Let U be an open neighborhood of 0. Assume that for all 
k, fk d;ff IS 1 eren la t’ bl e, and there exists a continuous function tl: [WN + [WI such 
that a(x) E [0, 1) for x # 0, furthermore 

(E,) IIf~(x)ll~a(~)lIxIIf~~a~~~~n~~Z~~U; 
(E2) Zf x$ U and II fk(x)ll =a(x)ilxII with some k, then 

llfL(x) x II G 4x)ll x I/. 

Under these assumptions xk + 0 as k + a3. 

Proof We will prove that for all k 3 0 and x # 0, relation (2.11) holds, 
which implies the assertion. 

Assume that for some k, (2.11) does not hold in the entire set R”\ { 0}, 
then 

r* = inf { /( x /I \x # 0 and (2.11) does not hold for k} 

exist and is positive. If for all vectors satisfying /Ix II = r*, )I fk(x)lj > 
a(x)11 x II, then the continuity of functions fk and a implies that r* can be 
reduced, which contradicts the definition of r*. Therefore there is at least 
one x* such that 

I( x* 11 = r* and /I fk(x*)il = 'dx)Iix* 11. (2.21) 

Since fk is differentiable we know that for any E > 0, and sufficiently large 
i E (0, 11, 

which together with (EJ implies that 

= w(x*) +&l/Ix* II > 
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where 

fib*)= IIf;(x*)x*Il IIx*II-l<~(x*). 

From this and equality (2.20) we conclude that 

llfk((l -~)x*)ll’ llfk(x*)Il -m(x*)+~lllx*II 
= ((x(x*) - Ifi - n&)11 x* 11 

> 11 x* 11 a(x*)( 1 - 1”) = I/( 1 -A) x* II a(x*), 

when E is selected small enough. Since a is continuous, with sufficiently 
large A, 

which contradicts again the definition of r*, and completes the proof. 

COROLLARY 1. Note that the Corollary of Theorem 2.7 can be applied 
for estimating the convergence speed under the assumption of the theorem. 

COROLARY 2. Consider the special case, when fk =f: The assertion of the 
theorem remains valid, if conditions (E,) and (E2) are substituted by the 
following assumptions: 

There exists an E > 0 and a 0 6 q < 1 such that 

(E;) For all x#O and I/xl/ <E, 

II f (x)ll 6 4 II x II ; 

(Ei) If II.4 3Ea4f(x)ll = Ilxll, then 

II f ‘(xl x II < II x II 

Proof: Define 

rk=max {iI f'tx) xII /Ix/I p'\ilf(x)ll 
=llxll,kE <llxII,<(k+l)E} for k = 1, 2, . . . . 

Obviously rk < 1. Introduce constants 

R,=max{q;r,;r,;...;r,}, 

and the piece-wise linear function s(t) with vertices (0, q), (E, R,), (2.5, R,), 
(3~ RJ, . . . . . Then all conditions of the theorem are satisfied with 
U= {x\ 1) x II <E} and a(x) = s( )I x II ). 
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Remark. The mean value theorem of derivatives implies that if 
/I f’(O)11 < 1, then there exist E > 0 and 0 6 q < 1 which satisfy condition 
(E;). Assume furthermore that if .X # 0 and 11 f(x)11 = I/xl/, then 
/I f’(x) x II < (Ix 11. In this case condition (EL) is also satisfied. Hence the 
iteration sequence {xk} converges to 0. This special result was first 
introduced by Fujimoto [2]. 

Assume again that X E B, where B is a Banach space, furthermore for all 
k 2 0, fk is Frechet differentiable at 0, and /I f:(O)11 < 1. As the following 
example shows, these conditions do not imply even the local convergence 
of the algorithm. 

EXAMPLE 2.2. Select X= IR’, and for k >, 0 let 

(k+ l)(k+4) 
fk(X)=(k+2)(k+3)X’ 

It is easy to verify that for all k 3 0, 

(k + l)(k + 4) 
o~fw)=(k+2)(k+3)< 1. 

If x0 # 0 is any initial approximation, then finite induction shows that 

k+3 1 
x,=-X,-rjX,#O 

3(k+ 1) 
as k-w. 

However, if the process is stationary, then the following result holds: 

THEOREM 2.11. Assume fk =f (k > 0), 0 is in the interior of X, and f is 
Frechet differentiable at 0, furthermore II f (O)ll < 1. Then there is a 
neighborhood U of 0 such that x,, E U implies xk -+ 0 as k + 00. 

Proof. Since f is differentiable at 0, we can write f(x) = t(x) + R(x), 
where L is a bounded linear mapping of X into itself and lim 
II R(x)11 II x )I -’ = 0 as x --t 0. By assumption II L II < 1. Select a number 
b > 0 such that II L 11 < b < 1. There exists a d > 0 such that 

II WN < (1 - b)ll x II if IIxII cd. 

Let U = {x E x\ )I x II < d}. We shall now prove that U has the required 
properties. Using the triangle inequality we can easily show that 

II f (x)ll < e II x II , if XE U, 

where e = I/ L I/ + 1 -b. Since 0 <e < 1, it follows that U is f-invariant. 
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Consequently, if x,, E U, then the entire sequence of iterates xk is also 
contained in U, and using finite induction we obtain 

Since ek+O,xk+O as k-co. 

Remark 1. Assumption II f’(O)11 < 1 can be weakened by assuming 
only that the spectral radius of f’(0) is less than one. In this case 
/I f’(O)“11 < 1 with some N> 1, and then apply the theorem for the 
function 

f”(x) = (fofo . . . of)(x), 

Remark 2. Note that no differentiability is assumed for x # 0. 

Remark 3. When X= [WN, our results can be reduced to the ones 
obtained by Ostrowskii [7], Argyros [ 11, and Rheinboldt [S]. 

In the previous results the special Liapunov function V(X) = /Ix 1) was 
used, where 11.1) is some vector norm. Now select the Liapunov function 
V(x) = I( Px (I, where P is an n x n constant nonsingular matrix. For the 
sake of simplicity we assume that fk = f for all k 2 0. Then in Theorem 2.7 
and 2.10 conditions (2.11) and (2.20) can be substituted by the modified 
relations 

and 

II Pf b)ll < II px II 

II Pf'b) u II < II Pull (for all u # 0). 

If one selects the Euclidean norm 1)x I( = xTx, then these conditions are 
equivalent to the relations 

fT(X)P=Pf(x)<xTPTPx (2.22) 

and 

u'f'(x)'PTPf'(x)u< uTPTPu. (2.23) 

Note that (2.22) holds for all u # 0 if and only if matrix 
f'(~)~ PTPf ‘(x) - PTP is negative definite. This condition has been derived 
in [3] and is a generalization of [S, Theorem 1.3.2.31. The case of other 
Liapunov functions can be discussed in an analogous manner, the details 
are omitted. 
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