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Abstract

The M-relative distancedenoted byp;, is a generalization of the-relative distance
introduced in [R.-C. Li, SIAM J. Matrix Anal. Appl. 19 (1998) 956-982]. We establish
necessary and sufficient conditions under whigl is a metric. In two special cases
we derive complete characterizations of this metric. We also present a way of extending
the results to metrics sensitive to the domain in which they are defined and find some
connections to previously studied metrics. An auxiliary result of independent interest is an
inequality related to Pittenger’s inequality in Section 4.
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1. Introduction and main results

In this section we introduce the problem and state two useful corollaries of the
core results. The core results themselves are stated only in Section 3, since they
require an additional notation. The topic of this papeMsrelative distances
which are functions of the form

[x — ¥l

omx,y):= m,
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where M :RT x Rt — Rt is a symmetric function satisfying/(|x|, |y]) > 0
if |x||y| > O for x andy in some normed space (note tiRit denoteq0, 0o)).
We want to know wherm,, is a metric, in which case it is called thié-relative
metric

The first special case that we consider is wi¥trequals a power of the power
mean,M = A%, where

Ape,y) = (P +37)/2" . Ag(x, ) = (rp) M2,
A_oo(x,y):=min{x,y} and As(x,y):=maxx, y},

for p e R\ {0} andx, y € R, see also Definition 4.1. In this case we denate

by p,.4 and call it the(p, g)-relative distanceThe (p, 1)-relative distance was
introduced by Ren-Cang Li [10], who proved that it is a metridirfor p > 1

and conjectured that it is such@as well. Later, thép, 1)-relative distance was
shown to be a metric it for p = oo by David Day [7] and foip € [1, co) by An-

ders Barrlund [4]. These investigations provided the starting point for the present
paper. The following theorem contains the results from [4,7] as special cases.

Theorem 1.1. Letg # 0. The(p, ¢)-relative distance
lx — yl
Ap(lx], [yD4
is a metric inNR” ifand only if0<g <landp >maXxl—gq, (2—q)/3}.

pp,q(x’ y)=

Remark 1.1. As is done in [4,7], we defing, ,(0,0) = 0 even though the
expression fop, , equals §0 in this case.

The second special case which we study in deptiis, y) = f(x) f(y),
where f :RT — (0, 00).

Theorem 1.2. Let f:RT — (0,00) and M(x,y) = f(x)f(y). Then py is
a metric inR” if and only if

() f isincreasing,
(i) f(x)/x is decreasing fox > 0, and
(i) f is convex.

(There are non-trivial functions which satisfy conditions (i)—(iii); for instance,
the functionf (x) := (1+ x?)? for p > 1.)

In Section 4 we derive an inequality of the Stolarsky mean related to Pittenger’s
inequality which is of independent interest. In Section 6 we present a scheme
for extending the results of this investigation to metrics sensitive to the domain
in which they are defined. This provides connections with previously studied
metrics.



40 P.A. Hastd / J. Math. Anal. Appl. 274 (2002) 38-58

This paper is the first of two papers dealing with tierelative distance. In
the second paper [8] we will consider various properties oftheelative metric.
In particular, isometries and quasiconvexitymf are studied there.

2. Preliminaries
2.1. Metric and normed spaces

By ametricon a setX we mean a functiop : X x X — RT which satisfies
the following conditions:

(1) p is symmetric;
(2) p(x,y)>0forallx,ye X andp(x,y)=0ifand only ifx = y;
() p(x,y) < p(x,2) +p(z,y) forallx,y, ze X.

A function which satisfies Condition (2) is known assitive definitethe
inequality in Condition (3) is known as theangle inequality

By anormed spac&e mean a vector space with a function| - |: X — R™
which satisfies the following conditions:

(1) |ax|=|al|x| for x € X anda € R;
(2) |x|=0ifandonly ifx =0; and
3) x+y|<|x|+]|y|forallx,ye X.

2.2. Ptolemaic spaces

A metric spac€X, d) is calledPtolemaicif
d(z, wyd(x,y) <d(y, w)d(x,z) +d(x, w)d(y,z) (1)

for all x,y,z, w € X (for background information on Ptolemy’s inequality, see
e.g. [5, 10.9.2]). A normed spac&( | - |) is Ptolemaic if the metric space
(X, d) is Ptolemaic, wherel(x, y) = |x — y|. The following lemma provides
a characterization of Ptolemaic normed spaces.

Lemma 2.1 [2, 6.14]. A normed space is Ptolemaic if and only if it is an inner
product space.

Since the Ptolemaic inequality (1), withequal to the Euclidean metric, can be
expressed in terms of cross-ratios (see (13) in Section 6), it follows immediately
that (R”, ¢) is a Ptolemaic metric space, wherelenotes the chordal metric:

x>yl 1
) ) = 2
Virnryirpe 10 @

IRVAEaTTE

q(x,y):=
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with x, y € R". The following lemma provides yet another example of a Ptole-
maic space.

Lemma 2.2 [9]. Hyperbolic space is Ptolemaic.

Thus, in particular, the Poincaré model of the hyperbolic metBi€, p) is
Ptolemaic. This metric will be considered in Section 5 of the sequel of this
investigation, [8].

2.3. Real-valued functions

An increasing functionf : Rt — R is said to bemoderately increasingor
shorter, to be MI) iff(¢)/¢ is decreasing o0, oo). A function P :RT x Rt —
RT isMlif P(x,.) andP(-,x) are Ml for everyx € (0, c0). Equivalently, if P is
symmetric andP # 0 thenP is Ml if and only if P(x, y) > 0 and

z_ P(z,y) P(x,z) z

< <1< < - forall0<y<z<x.
x P(x,y) P(x,y) "y

The next lemma shows why we have assumedthét, y) > 0 forxy > 0.

Lemma 2.3. Let P:R*T x Rt — RT be symmetric and MI. Then exactly one of
the following conditions holds

(i) P=0.

(i) P(x,y)=0ifandonlyifx =0o0r y=0.
(i) P(x,y)=0ifandonlyifx =0andy =0.
(iv) P(x,y)> Oforeveryx,yeR™T.

Proof. SupposeP # 0. Letx, y € (0, o0) be such thaP (x, y) > 0. Then
P(z,w) > min{l, z/x} min{l, w/y}P(x,y) >0

for everyz, w € (0, 00). Let thenx € (0, 00) be such thatP(x,0) > 0. Then
P(z,0) > min{1, z/x}P(x,0) > 0 for everyz € (0, c0). Finally, if P(0,0) >0
thenP(x, y) > 0 for everyx, y € R* sinceP is increasing. O

Lemma?2.4.Let P:RT x Rt — Rt be symmetric and MI. TheR is continuous
in (0, 00) x (0, 00).

Proof. Fix pointsx, y € (0, c0). SinceP is Ml we have

min{1, z/x} min{1, w/y}P(z, w) < P(x, y)

<
<maxl, x/z}maxl, y/w}P(z, w),
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for w, z > 0, from which it follows that|P(x, y) — P(z, w)| is bounded from
above by

max{l —min{l, z/x} min{1, w/y}, maxl, x/z} max{l, y/w} — 1},

and so the continuity is obvious.O

A function P:RT x Rt — RT is said to bea-homogeneoysx > 0, if
P(sx,sy) = s“P(x,y) for everyx,y,s € R*. A 1-homogeneous function is
calledhomogeneous

Lemma2.5. Let P:RT x RT — RT be symmetric, increasing, andhomogene-
ous for som® < o < 1. ThenP is Ml.

Proof. Letx >z >y > 0. The relations

xP(z,y) =xz"P(,y/z) 2 zx*P(L, y/x) =zP(x,)
and

yP(x,2) =yz"P(x/z2,1) <zy*P(x/y, 1) = zP(x,y)
imply thatP isMI. O

2.4. Conventions

Recall from the introduction thal/ : RT x Rt — R is a symmetric function
which satisfiesM (x, y) > 0 if xy > 0. Throughout this paper we will use the
short-hand notatio (x, y) := M(|x|, |y|) in the case when, y € X. We will
denote byX a Ptolemaic normed space which is non-degenerati, nen-empty
andX # {0}. Moreover, if M (0, 0) = 0 then “pys is a metric inX” is understood
to mean thap,, is a metric inX \ {0} (similarly for R or R” in place ofX).

3. The M-relativemetric

Theorem 3.1. Let M be MI. Thenp,, is a metric inX if and only if it is a metric
in R.

Proof. Since in all cases it is clear thaf; is symmetric and positive definite,
when we want to prove thah, is a metric we need to be concerned only with the
triangle inequality. The necessity of the condition is clear; just restrict the metric
to a one-dimensional subspaceXfvhich is isometric tdR.

We will consider a triangle inequality of the formy, (x, y) < pm(x,2) +
om(z,y). Let x,y,z € X be such that thatM(x, y), M(x,z), M(z,y) > O.
SinceM is increasing, the case= 0 is trivial, and we may thus assurfg > 0.
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For sufficiency we use the triangle inequality for the nari and Ptolemy’s
inequality withw = 0 to estimatgx — y| in the left-hand side opy(x, y) <

om(x,2) + pm(z, y)-
We get the following two sufficient conditions fei,; being a metric:

lx —z|(1/M(x,2) = 1/M(x, ) + |z — y|(1/M(z, y) — 1/M(x, y)) >0,
|yl x|
|x—z|< - >+|z— |( - )>o.
M(x.2) 1AM, y) M\ MEy) T RMGy)

If |z] < min{|x|, |y}, the first inequality holds sinc@/ is increasing. The
second one holds ifz| > maX|x|, |y|} since f is Ml. By symmetry we may
therefore assume théat| > |z| > |y|. Then|x — z| has a negative coefficient in
the first inequality, whereds — y| has a positive one. The roles are interchanged
in the second inequality. Thus we get two sufficient conditions:

2yl UM, y) —1/M(x,2)
e =zl 7 1Mz, y) -1/ M(x, y)

and
2=yl YMx,2) — |yl/(zIM(x, y))
e =zl Ixl/(zIM(x, y) = 1/ Mz, y)
Now if
UM(x,2) — Iyl/(zIMx, y)) 1/ M(x, y) — 1/M(x, 2)
Ix1/(zIM(x, y) —1/Mz.y) ~ 1/M(z,y) —1/M(x,y)’
then certainly at least one of the above sufficient conditions holds. Rearranging
the last inequality gives
x| — Iyl < x| — Izl IzI—IyI, 3)
Mx,y)  Mx,z) Mz, y)
the triangle inequality fop,s in R. Thus if pps is a metric inR, it is a metric inX,
so the condition is also sufficient.

Remark 3.1. In the proof of Theorem 3.1 we actually proved that én the
statement of the theorem could be replace®by Since the latter in not a vector
space, we prefer the above statement. Nevertheless, in proofs it will actually
suffice to show thap,, satisfies the triangle inequality for®y < z < x, since

the other cases follow from the MI condition as was seen in the proof.

We may definep,, in metric spaces as well. Lete X be an arbitrary fixed
point. Then we define

d(x,y)
M(d(x,a),d(y,a))
(As with X, if M (0, 0) = 0 then we consider whethej, is a metric inX \ {a}.)

pm(x,y) =
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Corollary 3.1. Let M be Ml and letX be a Ptolemaic metric space and let X
be an arbitrary fixed point. Thepy, is a metric inX if it is a metric inR.

Proof. As in the previous proof we conclude that
[dix,a) —d(y,a)| _ ld(x,a) —d(z, @)  1d(z,a) —d(y,a)|
M(d(x,a),d(y,a)) ~ M(d(x,a).d(z.a))  M(d(z.a),d(y,a))

is a sufficient condition foroy; being a metric inX (it corresponds to (3)).

However, sinced(x,a), d(y,a), and d(z,a) are all just real numbers, this
inequality follows from the triangle inequality @fy; in R. O

Corollary 3.2. Let M be MI. Then each dbg{1 + p (x, y)}, arcsinhoys (x, y),
andarccoskl + pr(x, y)} is a metric inX if and only if it is a metric inR.

Proof. Denote byf one of the functiong* — 1, cosiix} — 1, or sinhx so that
the distance under consideration equafst(py). Applying f to both sides of
the triangle inequality off ~1(o4) gives

pm(x,y) < pm(x,2) + pm(z,y)
+8(F Homx. ), FHem @z, ), 4)

where g(x,y) == f(x +y) — f(x) — f(y). Proceeding as in the proof of
Theorem 3.1, we conclude that (4) follows from

ol N O ] et C O e el N
~
M(x,y) = M(x,z) ~ M(z,y)

lx| — |z| _1f x—z| _1f 12—l
+|x—z|g<f (M(x,z))’f (M(z,y)))' ©)

We may replace the tergix| — |z])/|x — z| by (Iz| — |y])/|z — y| by considering

the ratio|x — z|/|z — y| instead oflx — z|/|x — z| in the proof of Theorem 3.1.
Since both conditions are sufficient we may write it as one condition by using the
constant

m = ma

x| — Izl IZI—IyI)2 x| —lz] [z = Iyl ©6)

Ix—z| " |z—yl Ix—z| lz—yl~

Then (5) follows from the triangle inequality R if
-1 IXI—IZI> _1<Izl—|yl)
g<f (rces) Gy
-1 lx —z| -1 |Z_y|)
gmg(f (M(x,z))’f <M<z,y) )
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For f equal to one o#* — 1, coslx} — 1, and sink, we find thatg(f ~1(a),
f~Y(b)) equalszb, ab+~/a? + 2a~/b? + 2b, anda(v/1+ b2—1)+b(v/1+ a?—
1), respectively. Now we see that each of these terms has either adaétoor
Jab, hence by choosing a suitable termvinor the lower bound from (6), using
|x — y| > |x| — |yl etc., the inequality follows. O

The reason for considering 16D+ pam(x, y)}, arccoslil + pp(x, y)}, and
arcsinhpas(x, y) is that these metric transformations (see the next remark) are
well-known and have been applied in various other areas, notably in generalizing
the hyperbolic metric (see [8, Section 5]).

Remark 3.2. (i) Let X be a set and/: X x X — R* be a function. Denote
conditions ord as follows:

d is a metric inX;

log{1+ d} is a metric inX;
arcsinljd} is a metric inX; and
arccoshl + d} is a metric inX.

O0w>»

Then A= B = D and A= C = D, but B and C are not comparable, in the
sense that there exisfssuch that B is satisfied but C is not, and analogously the
other way round. These claims are easily proved by applying inverse functions
(that is,e*, sinhx, and cosh) to the triangle inequality. For instance, to prove
A = B we satisfied that the triangle inequality for the {bgt+ d} variant
transforms into 1+ d(x, y) < (14 d(x, 2))(1+ d(z, y)), which is equivalent to
dx,y)<d(x,2) +d(z,y)+d(x,2)d(z,y).

(i) Another relevant remark is that if is subadditive and is a metric then
f od is a metric as well. Since any MI function is subadditive, as noted in
[3, Remark 7.42], it follows that the composition of an MI function with a metric
is again a metric.

Definition 3.1. A function P : R*T x RT — R* which satisfies

max{x®, y*} > P(x, y) = min{x®, y*}

is called anx-quasimeana > 0. A 1-quasimean is called mean We define
thetrace of P by tp(x) := P(x, 1) for x € [1, 00). If P is ana-homogeneous
symmetric quasimean then

P(x,y)=y"P(x/y,1)=y*tp(x/y)

forx > y > 0, so thatp determinesP uniquely in this case.

If we normalize are-homogeneous increasing symmetric functirso that
P(1,1) =1thenP is ana-quasimean.
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Definition 3.2. We define a partial order on the setwefjuasimeans by > N if
tp(x)/ty(x) is increasing.

Note thatP > N implies thatrp(x) > ty(x), sincetp(l) =ty (1) = 1 by
definition.

We will need the following family of quasimeans, related to the Stolarsky mean
(see Remark 3.3):

x—y
Sp ) i=A=pP gy Sen=xf, 0<p<l,
S1(x,y) :=L(x,y) 3=m, S1(x,x) =x,

defined forx, y € R*, x # y. Note thatSi(x, y) = lim,_1S,(x, y) equals the
classical logarithmic meaid,, and thatS1(x, 0) := 0.

Lemma 3.1. Let0 < a < 1 and M be increasing and-homogeneous.

I. If M > S, thenpy, is a metric inX.
Il. If py is a metric inX, thenM (x, y) > Sy (x, y) for x, y e RT and

M(x,1) M2 1)

X for x 2 1.
SO! (xv l) SD( (xza l)

Proof. By Lemma 2.5,M is MIl. By Remark 3.1 it suffices to show that the
triangle inequality holds ifR* with y < z < x. We will consider the cases= 1
anda < 1 separately.

If @ =1, setg(x) :=1y(x)/tr(x) for x € [1, 00). SinceM (x,0) =xM (1, 0)
and M (z,0) = zM (1, 0), the triangle inequality is trivial ify = 0, so we may
assume that > 0. Then the triangle inequality fary; becomes

logst . logs logt
gis) " gls) g’

wheres = x/z andt = z/y. Since logt = logs + logz, it is clear that this
inequality holds if g is increasing, hencd. < M is a sufficient condition.
Choosings = r shows thag(s) < g(s?) is a necessary condition.

Assume, conversely, thaty, is a metric. Let O< y =xp < x1 < -+ <
xn+1 = x (note thatX has a subspace isomorphicRy. Using M (x;, xj+1) = x;
we conclude that

()

n n
X =y Xi+l — Xi Xi4+l — Xi
<2 ST
Mx,y) g M xiv1) 5 X
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it follows by taking the limit that

and hence.(x, y) < M(x, y).
Assume now thak < 1 and letg(x) :=1y(x)/ts,(x) forx € [1,00).If y=0
then the triangle inequality takes the form
xlfoz _ Zlfoz X—z
M©O,1) ~ Mx,2)

This is equivalent to
gx/0)<M1,0/1—-a)= s'Lmoog(S)

and hence the lemma follows, singés increasing. Assume then that- 0. Then
the triangle inequality becomes

xl—oc _ yl—a xl—oc _ Zl—oc —a yl—a

1
Z
oy S s ey

wherey < z < x. Clearly this holds ifg is increasing. The necessary conditions
g(x) =1 andg(x) < g(x?) follow as above. O

Remark 3.3. For p € (0, 1] andx, y € R, the quasimear, defined above is
related to Stolarsky’s measr;_, by

P —yP\VP-D
Stp(x,y) = <7y> =81 ,(x, y)Y AP,
p(x—y)

for 0 < p <1 andSt(x, y) := L(x, y). Note that the Stolarsky mean can also be
defined forp ¢ [0, 1), however, we will not make use of this fact. The reader is
referred to [13] for more information on the Stolarsky mean.

Remark 3.4. Strong inequalities, i.e. inequalities of the type- B, have been
recently proved by Alzer for polygamma function [1]. Also, although not stating
so, some people have proved strong inequalities when they actually wanted to
obtain just ordinary inequalities. Thus, for instance, Vamanamurthy and Vuorinen
proved thatAGM > L, where AGM denotes the arithmetic—geometric mean,
see [14]. Thus there are potentially many other forms which can be shown to be
metrics by means of Lemma 3.1.
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4, Stolarsky mean inequalities

Definition 4.1. Let x, y > 0. We define thgpower-mean of ordep by

xP 4 yP p
Ap(X,y):( > )

for p € R\ {0} and, additionally,

A_oo(x,y) = min{x, y}, Ao(x,y):=./xy, and
Aoo(x, )’) = maX{x, y}
Also follow the convention that ,(x, 0) = 0 for p < 0.

In order to use the results of the previous section, we need to investigate the
partial order *<” from Definition 3.2. The nextresultis an improvement of a result
of Tung-Po Lin in [11] which states thdt < A, if and only if p > 1/3. Lin’s
result is implied by Lemma 4.1, sinces” implies “<”.

Lemma4d.l. L <A, ifandonlyifp €[1/3, co].

Proof. Denoters, by t,. Sincer;, t, € C1, L < A, is equivalent to

dlogtp (x) o dlogt,(x)

8
dx ox ®)
Since
32logt,(x)  xP~llogx
= >0,

dpdx (xP +1)2
(8) holds forp > 1/3 if it holds for p = 1/3. Calculating (8) fop = 1/3 gives

1 1 1

— < .
x—1 xlogx = x4+x2%3

Substitutinge = y2 and rearranging gives
3logy < (° — DA +1/y)/(y?+1).

Note that equality holds fop = 1. It suffices to show that the derivative of
the right-hand side is greater than that of the left-hand side. Differentiating and
rearranging leads to

¥y —3y°+3y4—2y34+3y2-3y+1>0,
which is equivalent to the tautology — 1)*(y? + y + 1) > 0.
Since "<” implies “<”, it follows from [11] thatL £ A, for p <1/3. O

The previous lemma can be generalized to the quasimean case.
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Lemma4.2. For0<gq <1, A% > S, if and only if
p=max{l—gq,(2—q)/3}.

Proof. The claim follows from the previous lemma for= 1. For O< ¢ < 1,
we need to show that(x) := (x? + 1)4/?(x1~7 — 1) /(x — 1) is increasing for
all x >1andp > max{l— g, (2— ¢)/3}. This is equivalent to show that the
logarithmic derivative ofg is non-negative forc > 1, i.e. thatg’(x)/g(x) > 0.
Rearranging the terms, we see that this is equivalent to

g(x? +x7)(x = 1) < (x =T (P 4+ 1). 9)

Letting x — oo and comparing exponents, we see that this can hold only if
p = 1—gq. The other bound op comes fromx — 17, however, only after some
work.

As x — 17 (x tends to 1 from above), both sides of (9) tend to 0. Their first
derivatives both tend tog2and the second derivativestg@ + 1 — ¢g). Only in
the third derivatives is there a difference, the left-hand side tending to

3q(p(p =D +q1-q)
and the right-hand side to

3p(p—Dg +2p(1—q)q —29(1—¢%) + p(1— q)q.

Thus the right-hand side of (9) is greater than or equal to the left arly if
3p=>2—g.

We still need to check the sufficiency of the conditiongarSinceA , > A, for
p > s, itisenoughto check =maxl—gq, (2—¢q)/3}.Forg <1/2setg=1—p
in (9). This gives(2p — 1)x”(x — 1) + x — x?” > 0. Since the second derivative
of this function is positive, the inequality follows easily.

Now setqg = 2 — 3p in (9). Dividing both sides by” and rearranging terms
gives

g () =@p—D(x — x4 2-3p(1—x2) -yl >0
Since

g13(x)=1—x?3-14+x?3=0 and

g12(x) = (x —1)/2+ (L —x)/2 - x¥? 1 xV? =0,
the previous inequality follows if we show thafg,(x)/dp? < 0 for everyx.
Now

8%gp(x)

ap?

= 12(x2p - x2p*l) logx

- (4(3p — D2 tyae-— 3p)x2p —xt P4 9x3p—1) |ngx,
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and hence?g,(x)/dp? < 0 is equivalent to (we divide hy?)
12(1—1/x) < (9P~ —x1737 1 42— 3p) + 43p — 1)/x)logx.  (10)
We will show that inequality holds fop = 1/3 andp = 1/2 and that the right-
hand side is concave ip. Hence the inequality holds for/3 < p < 1/2 as well.
For p =1/3, (10) is equivalent to
x(3x72/3 + l) logx > 4(x — 1).
Since
x—1
x4+ 3x1/3
holds forx = 1, it suffices to show that the derivative of the left-hand side is
greater than that of the right-hand side:

10+ 3P —DA+x) 241478 .
x (x +3x1/3)2 x2 4 6x4/3 4+ 9x2/3

We setr = y3 and rearrange to obtain the equivalent condition:
=234y 49y —4=(y-D3(y*+3y+4 >0,

which obviously holds. Next let = 1/2 in (10). We now need to show that
6(x — 1) < (x +4x"?+ 1) logx

holds forx > 1. This follows by the same procedure as foe 1/3. We still have
to show that the right-hand side of (10) is concave. However, after we differentiate
twice with respect tp all that remains is

9()6‘”_1 — xl_sp) log®x.

Clearly this is negative fat > 1 andp < 1/2. O

logx >4

As we noted in Remark 3.3, the Stolarsky mean was introduced in [13] as a ge-
neralization of the logarithmic mean. The previous lemma may be reformulated
to a result of independent interest. This result is related to Pittenger’s inequality,
which gives the exact range of values pffor which the inequalitij’J =8
holds (see [6, p.204]). Note that the bounds in Pittenger’s inequality equal our
bounds only forg € [0,1/2] U {1}. For q € (1/2,1), there arep such that the
ratio A% /S, is initially increasing but eventually decreases, however its values
are never below 1.

Corollary 4.1. Let 0 < g < 1. For fixedy > 0 the ratio A,(x, y)/St,(x,y)
is increasing inx > y if and only if p > maxXgq, (1 + ¢)/3}. In particular,
Ap(x,y) = Sty(x, y) forall x,y e R for the samep andgq.

Proof. The claim follows directly from Lemma 4.2 and the relationship between
S andsSt given in Remark 3.3. O
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5. Applications

In this section we combine the results from the previous two sections to derive
our main results as to wheny, is a metric.

Proof of Theorem 1.1. Assume that the triangle inequality holds for some pair
(p,q) with p > 0. Then

2=0p4(=1,1) < 0p,q(=1,0)+ 0, 4(0,1) = 21+q/p’

henceg > 0.

Suppose next thap < 0 and ¢ > 0. Consider the triangle inequality
Ppq(e, D)< ppgle, 1/2) + pp4(1/2,1) ass — 0. Then the left-hand side tends
to co like 279/P(1 — ¢)e~? and the right-hand side like 2/7(1/2 — &)e~4;

a contradiction for sufficiently smadl.

Suppose then that, g < 0. Thenp, ,(x, 0) = 0 for everyx € X, contrary to
the assumption that,, , is a metric. Forp = 0 we arrive at contradiction of the
triangle inequality by letting; tend to 0 oroo according ag; is greater or less
than 0.

Hence only the case, g > 0 remains to be considered. When> 1, the
triangle inequalityp, 4 (x, y) < pp,q(x,2) + pp,¢(z, ¥) cannot hold, as we see
by lettingz — oc.

The non-trivial cases follow from Lemmas 3.1 and 4.2pif= max{1 — g,
2/3—q/3}, pp,q is a metric by the lemmas. | < maxq1—g,2/3—¢q/3}, the
ratio in the definition of- is decreasing in a neighborhood of 1cr(this is seen
in the proof of Lemma 4.2). In the first casa;{(x, D <S;x,1)in (1,a) for
somea > 1, contradicting the first condition in Lemma 3.1. In the second case,
Al(x,1)/S,(x, 1) > A%(x2,1)/5,(x2, 1) for sufficiently largex andp, , is not
a metric by the second condition in Lemma 3.11

We will now consider an application of Corollary 3.2.

Lemmab.1. Letiy : X x X — R be defined by the formula

Ay (x,y) :=log{1+ pm(x, y)}.
Theniy, . is a metric inX if ¢ > 1 for p € [0,00] and ¢ > 27Y/7 for p €
[—o0, 0). The latter bound for the constanis sharp.

Proof. By Corollary 3.2, it suffices to prove the claims R with y <z < x.
We start by showing that, . is a metric forc > max1, 2-1/r}. Since the case
y = Qs trivial, we may assume that> 0. Denotef (x) :=t4,(x). The triangle
inequality fora,y,

log{1+ pm(x, )} <log{1+ pm(x.2)} +10g{1+ pm(z. y)}.
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is equivalentto

st—1 s—1 -1 s—1r—-1
< + +c ,
fG) — fl)  f@ fs) f@

wheres =x/z andt =z/y. Sincest —1=(s—-0D)¢ -1+ —-1D+@¢ -1
and sincef is increasing and greater than 1, the triangle inequality surely holds if
f(st) = f(s)f()/c. However, this follows directly from Chebyshev’s inequality
(see [6, p. 50]) forp > 0 and is trivial forp = 0. For p < 0 it follows from the
inequality(L + sP)(1+tP) > 1+ (st)P.

We will now show that we cannot choose< 2-1/7 for p < 0. Lets =t
in (11): (s + 1)/f(s?) < 2/f(5) + (s = D/(f()?). As s — 00, f(s) = 2Y/7,
hence at the limit ¥7(s + 1) < 21*V/? 4 ¢22/P(s — 1) which implies that
cx27Vr. g

(11)

We now consider the second special cadey, y) = f(x) f(y).

Lemmab.2. Let M (x,y) = f(x)f(y) and assumg (x) > 0 for x > 0. Thenpy,
is a metric inR if and only if f is Ml and convex iR ™.

Proof. Assume thap,, is a metric inR. Let y = —x in the triangle inequality for
— X <Z<X:

2x < X—2z x4z 2x

FO2 STl i@ Ff@
Hencef(x) > f(z), i.e. f isincreasing. It > x, we getinsteadf (x) < xf(2),
i.e. f(x)/x is decreasing, so that is MI. Let now 0< y < z < x. Then the
triangle inequality multiplied byf (y) f (z) f (x) becomes

x=fR)<@=f)+ &=y f). 12)

But this means thaff is convex [6, p. 61]. (Alternatively, setting =: ay +
(1—a)x gives more standard form of the convexity conditigiigy + (1 —a)x) <
af(y) +(1—a)f(x).)

Assume then conversely that is Ml and convex inR*. Then convexity
gives (12) for 0< y < z < x, and, dividing this inequality byf (y) f(z) f (x),
we get the triangle inequality for the sanyez, x. However, we know from
Remark 3.1 that this is a sufficient condition fpg; to be a metric, provided
MisMIl. O

Proof of Theorem 1.2. If py is a metric inR” it is trivially a metric in R,
sinceR” includes a subspace isometrically isomorphidtoHence the claims
regardingf follow from Lemma 5.2. Iff :RT — (0, co) is MI and convex then
pm is ametric inR by Lemma 5.2 and hence R* by Theorem 3.1. O

We now give an example of a relative-metric family whefeis not a mean.
Note that this family includes the chordal metigG,as a special casg & 2).
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Example5.1. The distance
lx —yl
Y1+ x1P Y1+ ylP
is a metric inR” if and only if p > 1.

6. Further developments

In this section, we show how the approach of this paper can be extended
to construct metrics that depend on the domain in which they are defined. The
method is based on interpreting, as pa,r\ (0}, Where py g is a distance
function (defined in the next lemma) that depends both on the funéfiand
the domainG. The proof of the next lemma is similar to that that of [12,
Theorem 3.3]. Note that the topological operations (closure, boundary etc.) are
taken in the compact spate .

Lemma 6.1. Let G ¢ R" with G #R". If M is continuous in(0, co) x (0, co)
and py, is a metric then

|x — ¥l
om,G(x,y) = sup
acag M(|x —al, |y —al)

is a metric inG.

Proof. Clearly only the triangle inequality needs to be considered. Fix two
pointsx andy in G. SinceM is continuous andG is a closed set in the compact
spaceR” there exists a point € dG such thatoy g (x, y) = py(x —a,y —a).
Since

pm(x —a,y —a) < py(x —a,z—a)+ pu(z—a,y—a)

< pm,6(x,2) + pm,G (2, ),
it follows thatpps ¢ is a metricinG. O
Remark 6.1. Let M (x, y) := min{x, y}. Then
lx —yl lx —yl
pm,G(x,y) = Sup — = — ,
acoc Min{|x —al, [y —al}  min{d(x),d(y)}

whered(x) =d(x, 9G). We then have

. _ _ =yl
log{1+ pm.c(x, M} = jc(x,y) = Iog(1+ min{d (x), d(Y)}>’

which provides our first connection to a well-known metrjg (occurs in, e.g.,
[3,12,15)).
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The previous lemma provides only a sufficient condition fa§ ¢ to be
a metric. It is more difficult to derive necessary conditions, but with some
restrictions onG, such as convexity, this might not be impossible.

If M is homogeneous, we have a particularly interesting special case, as we
may set

ly,a,x,bl 1

!
Py cx,y)= sup —————= sup ,
M.G abedG (X, b,a,y))  apesc M(x,y,a,bl,|x,y,b,al)

where

q(a,c)q(b,d)
la,b,c,d| = —————+ 13
q(a,b)g(c,d) (13)
denotes the cross-ratio of the pointsh, c,d € R", a # b, ¢ # d, andq denotes
the chordal metric (defined in (2)). With this notation we have

Lemma6.2. LetG c R with carddG > 2. If M is increasing and homogeneous
and oy is a metric inR" thenpy,  is a metric inG.

Proof. Fix pointsx andy in G. There are: andb in the compact seétG (possibly
a = oo or b = o0o) for which the supremum i}, (x,y) is attained. By the
M®obius invariance of the cross ratio, we may assume 4¢hat0 andb = oco.
Thenp), ¢ (x, y) = pm(x', y"), wherex" andy’ are the points corresponding.to
andy, and we may argue as in the proof of Lemma 6.0

Corollary 6.1. Let G ¢ R” with carddG > 2 and letM (x, y) = max1, 21/7} x
A_p(x,y). Then

8¢ (x,y) :=10g{1+ pj (x, )},
is a metric inG.

Proof. Follows directly from Lemmas 5.1 and 6.20

With this notation we havéc = 67, whereég is Seittenranta’s cross ratio
metric [12]. Also note that

Sg(x, y): sup |Og{1+(lx,a’y’bw_;r_|x’b’y’a|p)l/p}
a,bedG

actually receives a quite simple form.
Instead of taking the supremum over the boundary we could integrate over it:

1/p
Py (X: ) :z(/pM(x—a,y—a)”du)

G

(defined foru-measurabl@G). This metric takes the boundary into account in
a more global manner, but is difficult to evaluate for mG4.
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Lemma 6.3. Let py/, G, and .. be such thaﬁ/{},G(x, y) exists for allx, y € G.
If pu is @ metric thenpy, ; is a metric inG for p > 1.

Proof. From Minkowski’s inequality
1/p

1/p 1/p
(/(erg)”du) <</f”du) +</g”du> ,
G G G

wheref, g > 0 andp > 1, and the basic triangle inequality (take= py (x — a,
z—a)andg = pu(z —a,y — a) above)py(x,y) < pm(x,2) + pm(z, y) it
follows thatﬁf‘;,G also satisfies the triangle inequalityc

The integral form is quite difficult to evaluate in general, however, we can
calculate the following explicit formulae. Note that? denotes the upper half-
plane.

Lemma 6.4. For some constants,
~1/(1-2 lx — yl
F; /(1-21)

B o B

for 0 <t < 1/2, whereh is the distance from the mid-point of the segnient]
to the boundary ofH?2, h :=d((x + y)/2, dH?). Hence

lx =yl
ViIx = y|?+ 4n?

is a metricinH2for0 <t < 1/2.

Proof. The formula is derived directly by integration as follows:

1/s
0y, q2(x,y)=c / dmi(§) lx — vl
A2 H (Ix — &2+ |y — §1%)%/2
dH?

1/s
dw
:C( / (a2+b2+h2+w2)9/2) |x—y|’
—0oQ

where 2 :=x1 — y1 and & := x2 — yp and & is as above x; refers to the
ith coordinate ofx, similarly for y). Let us use the variable substitutien=

a2+ b2 + h?z. Then we have
00 1
o _ Va?+ b2+ h?dz 8
PAZ,Hz(x’y)—C ((az |x_)7|
—0Q0

+ b2+ h2)(1 + Z2))3/2

1/s—1)/2
=c(lx =y + 4n2) Y VP yie,
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where

0 1/s
_ dz
° _<./<L+¥rﬂ) |
—00

Note thatc; < oo fors > 1.
The last claim follows directly from Lemma 6.3, singg, is a metric, by
Theorem 1.1. O

Remark 6.2. We saw that
lx — yl
(|X _ y|2 + 4h2)(1—1/s)/2
is a metric fors > 1. We then conclude that lim o ¢, exists and hence that
2|x — y|

Lo (2, ) 1= e
” VIx =2+ 4n2

is a metric also. Note that this metric is a lower bound of the hyperbolic metric in
the half-plane, as is seen by the path-length metric method in [8, Section 4].

ts(x, ) =

We may define yet another distance by taking the supremum over two
boundary points:

|x — y]

1/

Py, y)i= s .
MG )= o Mk —al. [y — b))

If we assume that/ is increasing and continuous, this amounts to taking

" |-x - )’|
PG X, y) MA@ d0) (14)
whered (x) :=d(x, 0G).

One could ask whether we could construct a general theor)oﬂpg -type
metrics. This would be a very interesting theory, since it would involve metrics
taking the geometry of the domain into account which would not include
a complicated supremum. However, this cannot, in general, be done by our
techniques: the following lemma has the important consequence that the proof
technique of Lemma 6.1 cannot be extended to metrics of thedfjpg. In the
following two lemmas we will use the convention that is denoted by, etc.

Lemma 6.5. Let G :=R" \ {—a,a} (¢ > 0) n > 2, and assume thadM is
increasing and continuous. ThexijG is a metric if and only ifM = ¢ > 0.

Proof. We assume thaty, ; is a metric. Consider first the pointsa — r and
a + r and lety be on the line joining. We may chooseso thatd(y) varies
between 0 and. Then, by the triangle inequality,
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2(r +a)
Mo = py.c(—r—a,r+a)<pyg(—r—a,y)+pycO.r+a)
_ 2(r+a)
M(r,d(y))

Consider next the pointsa + rez anda + rez and lety be on the line joining
them. We have

2a < 2a
M(r,r) ~ M(r,d(y))

but nowd (y) varies between and+/r2 + a2. Hence we have/ (x, y) < M (x, x)
for y € [0, vVx2 +a?].

Let us now consider the pointg := —a — s + he2, y :=a — s + he2, and
xp2:=a-+t+hep, forr >0, ands < a. We have

2a+s+t

" 4 4
=Py, (X1, %2) < Py (X1, ¥) + Par, 6 (Vs X2)
M(rd(x) "¢ o o

_ 2a n s+t
T M(r,r) M(r,d(x2)’

wherer = +/s2 + h2. From this it follows thatM (r,7) < M(r, y) wherey =

V12 + h2 =+/r2 — 52 1 12, Combining the upper and lower bounds, we conclude
that M (x, x) = M(x, y) for y € [v/b, v/x2 + a2?], whereb := max0, x?> — a?}.
From this it follows easily thaMl =¢. O

The next idea might be to build a theory,d,{,’G—type metrics for sufficiently
regular, e.g. convex domains only. The following lemma shows that this approach
does not show much promise, either. (Note tBatdenotes the unit ball.)

Lemma 6.6. Let P:(0,1] x (0,1] — (0,00) be symmetric, increasing, and
continuous. Thep}, 5. is a metric if and only ifP = ¢ > 0.

Proof. According to (14),

p// (x,y) = lx — ¥ — |x — yl
PEET P, d(y)) T P(L— x|, 1—1yl)
Consider the triangle inequality of the pointg, 0, andr, 0 < r < 1:

2r o 2r
PA-r1—r) PA1-—r)
This implies thatP(1,s) < P(s,s) for 0 < s < 1, and, sinceP is increasing,
P,s)=P(t,s)forO<s <t <1.
It follows that there exists an increasing functign(0, 1] — (0, co) such that
P(x,y) =: g(min{x, y}). Take points O< y < z < x <1 on theej-axis. Then the
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triangle inequality
xX—Yy X —2z z—Yy
g g gy

implies thatg(z) < g(y) and since is increasing, by assumption it follows that
and henceP, is constant. O

Since the unit ball is in many respects as regular a domain as possible, we
see that the prospects of generalizing the theory by restricting the domain are not
good. A better approach seems to be to conside{rllegp;‘;’G(x, y)}, since we
know from Remark 3.2 that this can be a metric even thqa{,g!b(x, y) is not.

The metricjg is an example of such a metric. This line of research seems to be
the most promising further extension.
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