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Abstract

The rough sets theory has proved to be a useful mathematical tool for the analysis

of a vague description of objects. One of extensions of the classic theory is the

Dominance-based Set Approach (DRSA) that allows analysing preference-ordered

data. The analysis ends with a set of decision rules induced from rough approxi-

mations of decision classes. The role of the decision rules is to explain the analysed

phenomena, but they may also be applied in classifying new, unseen objects. There

are several strategies of decision rule induction. One of them consists in generating

the exhaustive set of minimal rules. In this paper we present an algorithm based

on Boolean reasoning techniques that follows this strategy with in DRSA.

Key words: Dominance-based Rough Set approach, decision

rules, decision rules induction, exhaustive set of rules.

1 Introduction

Classi�cation is one of the most frequently posed decision problems. It con-

cerns an assignment of objects, described by a set of attributes, to pre-de�ned

classes. Very often, in the analysed data, there may appear some inconsis-

tencies or situations, in which two objects having the same description are

assigned to di�erent classes. To deal with such inconsistency, the rough set

approach (further related in this paper as the Classic Rough Set Approach

{ CRSA) has been proposed by Pawlak [6,7]. The key idea of rough sets is

the approximation of some knowledge by other knowledge. The granules of

knowledge identi�ed by indiscernibility relation are used for these approxima-

tions.
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The original rough set theory approach does not consider, however, at-

tributes with preference-ordered domains, i.e. criteria. Nevertheless, in many

real situations the ordering properties of the considered attributes play a cru-

cial role. F or instance, such features of objects as product quality, market

share or debt ratio are typically treated as criteria in economic problems.

Classi�cation taking into account the preference-ordered data is called sort-

ing. Motivated b y this observation, Greco, Matarazzo and Slowinski [1,2,3,4]

yproposed an extension of the rough sets approach, called Dominance-based

Rough Set Approach (DRSA).

In DRSA, where condition attributes are criteria and classes are preference-

ordered, the knowledge approximated is a collection of upward and downward

unions of classes and the granules of knowledge are sets of objects de�ned

using a dominance relation. The rough set analysis arrives at a set of decision

rules, which are induced from rough approximations of unions of decision

classes. Decision rules are expressions of the form `if . . . , then . . . ', which

are discriminant and minimal at the same time. We can distinguish three

types of rules that describe certain, possible and approximate knowledge. The

main role of induced rules is to explain regularities and relationships in the

analysed data set. Moreover, the set of rules combined with a particular

classi�cation/sortingmethod may be used to classify/sort new, unseen objects.

Generating decision rules is a complex task. Within the rough sets ap-

proaches a number of procedures were proposed that implement this process.

Some of them use the strategy of computing an exhaustive set of rules, i.e.

the set of all minimal rules. Let us notice that such a set of rules may be

obtained b y di�erent approaches. Within CRSA the well-known algorithms

are: the all-rules option of the LERS system [5], tec hniquesbased on relative

cores [6], the Explore algorithm, based on the apriori property [13] and ap-

proaches based on the notion of discernibility matrix and Boolean reasoning

[11,12,18]. It is obvious that any other CRSA rule induction strategy induces

a subset of the exhaustive set of decision rules. The problem looks a little bit

di�erent within DRSA, where we distinguish two kinds of rules with respect

to their construction: robust rules, i.e. rules based on objects, and non-robust

rules. A set of all robust rules is di�erent from the set of non-robust rules.

DomApriori [14] is an extension of Explore that may induce an exhaustive set

of non-robust rules. Two other procedures, All-Rules [15 ]and Aristotle [8],

follo w the strategy of inducing all robust rules.The later one is characterised

b yspeci�c binary representation of relations occurred in data.

Despite the fact that induction of an exhaustive set of rules has been

considered many times, it is hard to determine the motivation of using this

strategy. This approach produces the most comprehensive knowledge base

on the analysed data set but it certainly requires a considerable amount of

computing time and operational memory, as the complexity of the process is

exponential. Such discussions hav e taken place several times in rough sets

literature(see, for instance: [5,13]). In this paper we skip this discussion and
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simply focus on presenting another technique for obtaining such representa-

tion of analysed data within DRSA. The algorithm adopts the basic methods

of Boolean reasoning in looking for object-related reducts (in the context of

DRSA). Additionally, we introduce the notion of the dominating/dominated

local reduct and de�ne the dominance matrix and the dominance function.

The structure of the paper is as follows. In section 2, a brief reminder of

DRSA is presented. Section 3 contains description of the proposed algorithm

and section 4 shows a short example of its application. Section 5 concludes

the paper.

2 Dominance-based Rough Set Approach

2.1 Data representation

Data are often presented as a table, where columns are labelled b y criteria,

ro ws b y objects, and en tries of the table are criterion values. F ormally, a

decision table is the 4-tuple S = hU;Q; V; fi, where U is a �nite set of objects,

Q is a �nite set of criteria, V =
S

q2Q
Vq, where Vq is the domain of the criterion

q, and f : U � Q ! V is an information function such that f(x; q) 2 Vq for

every (x; q) 2 U �Q. The set Q is divided into condition criteria (set C 6= ;)
and the de cisioncriterion d.

It is assumed that the domain of a criterion q 2 Q is completely pre-

ordered b y an outranking relation � q; x �q y means that x is at least so

good as (outranks) y with respect to the criterion q [10]. In the following,

without any loss of generality, we consider condition criteria having numerical

domains, i.e. Vq � < (< denotes the set of real n umbers) and being of type

gain i.e.: x �q y ) f(x; q) > f(y; q), where q 2 C, x; y 2 U . The former

constraint permits simple use of such operators as: > or 6. In general, the

domain of condition criterion may be also discrete, but the preference order

between its values has to be provided.

The decision criterion d, the domain of which is Vd = fvt
d
; t 2 Tg, T =

f1; :::; ng, induces a partition Cl(d) = fClt, t 2 Tg of U into a �nite number

of classes Clt = fx 2 U : f(x; d) = vt
d
g. Each object x 2 U is assigned to one

and only one class Cl t 2Cl(d). The classes from Cl(d) are preference-ordered

according to an increasing order of class indices, i.e. for all r, s 2 T , such

that r>s, the objects from Cl rare strictly preferred to the objects from Cl s.

F or this reason, we can consider the upward and downward unions of classes,

which are de�ned, respectively, as: Cl>
t

=
S

s>tCls, Cl6
t
=
S

s6tCls, t 2 T:

The statement x 2 Cl
>
t
means \x belongs to at least class Cl t", while x 2 Cl

6
t

means \x belongs to at most class Cl t".

2.2 Dominance relation and approximation of class unions

The dominance relation that identi�es granules of knowledge is de�ned as

follows. F ora giv endecision table S, x dominates y with respect to P � C,
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denoted b y x DP y, if x �q y; 8q 2 P . F oreach P � C, the dominance

relation DP is reexive and transitive, i.e. it is a partial pre-order.

Given P � C and U , the granules of knowledge induced by the dominance

relation DP are: the set of objects dominating x, D+

P (x) = fy 2 U : yDPxg,

and the set of objects dominated b y x, D�

P (x) = fy 2 U : xDPyg, which

are called P-dominating set and P-dominated set with respect to x 2 U ,

respectively .The granules are used for rough approximations. The sets to be

approximated are upward and downward unions of classes. Given a decision

table S, the P -lower and P -upper approximations of Cl>t , t 2 T , with respect

to P � C, are de�ned, respectively, as: P (Cl�t ) = fx 2 U : D
+

P (x) �

Cl
�

t g, P (Cl�t ) = fx 2 U : D�

P (x) \ Cl
�

t 6= ;g. Analogously, P -lower and

P -upper approximation of Cl�t , t 2 T , with respect to P � C, are de�ned,

respectively, as: P (Cl�t ) = fx 2 U : D�

P (x) � Cl
�

t g;, and P (Cl�t ) = fx 2 U :

D
+

P (x) \ Cl
�

t 6= ;g. Finally, the P -boundaries of Cl�t and Cl
�

t are de�ned as:

Bn(Cl�t ) = P (Cl�t )� P (Cl�t ); Bn(Cl�t ) = P (Cl�t )� P (Cl�t ):

2.3 De�nition of de cisionrules

The decision rules are expressions of the form `if [conditions], then [conse-

quent]' that represent a form of dependency between condition criteria and

the decision criterion. Procedures for generating decision rules from a de-

cision table use an inductive learning principle. In order to induce decision

rules with the consequent K, objects concordant with K are called positive

examples (Pos) while all the others { negative examples (Neg).

We can distinguish three types of rules: certain, possible and approxi-

mate. Certain rules are generated from lower approximations of unions of

classes; possible rules are generated from upper approximations of unions of

classes and approximate rules are generated from boundary regions. In the

follo wing,for the reason of simplicity,we consider only certain rules. Analo-

gous reasoning holds, however, also for possible rules. Approximate rules, on

the other hand, are more complex and not all of the described notions could

be easily generalized for this kind of rules.

The positive examples for certain rules are those from each lower approxi-

mation, i.e. P (Cl>t ) and P (Cl6t ), of each considered union of classes, Cl>t and

Cl
6
t . The corresponding negative examples are taken from U � P (Cl>t ), i.e.

P (Cl6t ), and U � P (Cl6t ), i.e. P (Cl>t ), respectively.

Considering upward and downward unions we can distinguish two types of

rules:

� D>-decision rules with the following syntax:

if f(x,q1)> rq1 and f(x,q2)> rq2 and. . . and f(x,qp)> rqp, then x 2 Cl
>
t ,

� D6-decision rules with the following syntax:

if f(x,q1)6 rq1 and f(x,q2)6 rq2 and. . . and f(x,qp)6 rqp, then x 2 Cl
6
t ,

where P=fq1,...,qpg� C, (rq1,...,rqp)2 V q1 � V q2�...�Vqp and t 2 T:
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So, in its general form the condition part (or antecedent) of the decision

rule is a conjunction of elementary conditions. The total number of elementary

conditions in the rule is called the length of the rule.

Consider a D>-decision rule if f(x,q1)> rq1 and f(x,q2)> rq2 and. . . and

f(x,qp)> rqp, then x 2 Cl
>
t
. If there exists an object y 2 P (Cl

>
t
) such that

f(x,q1)= rq1 and f(x,q2)= rq2 and. . . and f(x,qp)= rqp then y is called the basis

of the rule. Each D>-decision rule having a basis is called robust because it

is `founded' on an object. Analogous de�nition of robust decision rules exists

for the possible rules (but not for the approximate rules).

Moreov er, each decision rule should be minimal. Since a decision rule is

an implication, by a minimal decision rule we understand such an implication

that there is no other implication with an antecedent of at least the same

weakness (in other words, rule using a subset of elementary conditions or/and

weaker elementary conditions) and a consequent of at least the same strength

(in other words, rule assigning objects to the same union or sub-union of

classes).

3 All-Dominance-based-Rules Induction Algorithm

Proposed All-Dominance-based-Rules Induction Algorithm (ADRIA) induces

a set of all minimal, robust rules. The key idea is based on incorporating the

Boolean reasoning in toDRSA, which is used employ ed to search for object-

related reducts, i.e. local reducts. This method may be used to generate

certain and possible rules. In the following we present an implementation

that allo wscomputing certain rules and assumes that the rules are induced

using the subset of condition criteria P � C.

Within DRSA, local reducts are de�ned as follows. The dominating local

reduct r+(x) � P (or a dominating reduct relative to decision Cl>
t
and object

x 2 P (Cl
>
t
), t 2 f2; :::; ng; where x is called a base object) is a subset of

criteria such that:

8y 2 P (Cl
6
t�1) (9r 2 r+(x) : :y �r x) , and r+(x) is minimal with re-

spect to inclusion.

The dominated local reduct r�(x) � P (dominated reduct relative to deci-

sion Cl6
s
and object x 2 P (Cl6

s
), s 2 f1; :::; n � 1g; where x is called a base

object) is a subset of criteria such that:

8y 2 P (Cl
>
s+1) (9r 2 r�(x) : :x �r y) , and r�(x) is minimal with

respect to inclusion.

In other words, a dominating/dominated local reduct based on an object

x is a minimal subset of criteria that allows to distinguish in the sense of

dominance relation the object x 2Pos from all objects belonging to Neg.

It is easy to see that on the base of a local reduct it is possible to build

a minimal, robust rule. Consider a rule induced from the positive examples

Pos with the consequent K. The condition part of this rule is constructed b y

associating each criterion of a local reduct (based on x) with a value of x on
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this criterion, and the decision part is compatible with K. We sa y that the

local reduct leaves a trace on the object x.

Within CRSA the concepts of the discernibility matrix and the discernibil-

ity function [10] were often used in the process of generating all local reducts.

Similar concepts may be found in DRSA. Dominance matrix is de�ned as

follows:

DM(P )=fÆ�(x; y) : x; y 2 Ug, where Æ�(x; y)=fq 2P :x�
q
yg andP �C.

In other words, the set Æ�(x; y) contains all criteria on which x outranks

object y, while Æ�(y; x) is the set of criteria on which x is outranked b y y.

Moreov er, if Æ�(x; y) = P , then x P -dominates y, and if Æ�(y; x) = P , then

x is P -dominated b y y. Objects x and y are indi�erent with respect to P if

Æ�(x; y) = Æ�(y; x) = P . The matrix DM is not symmetric.

Dominance function Df (P ) is a Boolean function de�ned as follo ws. Let

q� be a Boolean variable corresponding to q 2 P , and let
S
:Æ�(x; y) denote

a Boolean sum of all negated Boolean variables associated with the set of

criteria Æ�(x; y).

P -Dominance function for dominating local reducts Dfx>(P ) based on

object x 2 P (Cl
>
t
), t 2 f2; :::; ng is de�ned as:

Df
x>
t

(P ) =
Q
f
S
:Æ�(y; x) : y 2 P (Cl

6
t�1)g; P � C:

P -Dominance function for dominated local reducts Dfx6(P ) based on ob-

ject x 2 Cl6
s
, s 2 f1; :::; n� 1g is de�ned as:

Dfx6
s

(P ) =
Q
f
S
:Æ�(x; y) : y 2 P (Cl

>
s+1)g; P � C:

T ransformationof this functions from its conjunctive form to the non-

redundant disjunctive form corresponds to problem of searching of all local

reducts relative to x. The set of all prime implicants ofDfx>(P ) (orDfx6(P ))

determines the set of all dominating (or dominated) local reducts relative to x

with respect to P � C. The transformation can be aptly realized through the

FRGA (Fast Reduct Generating Algorithm) originally presented b ySusmaga

(see: [16,18]).

The general scheme of the presented algorithm is presented in Figure 1.

F or simplicity reasons, we consider the induction of D>decision rules. The set

of positive examples Pos consists of objects belonging to P (Cl
>
t
) and the set

of negative examples Neg contains all other objects.

The main part of the algorithm consists of generating all dominating local

reducts with the FRGA algorithm and testing the minimality of the rule. In

step 2.1 all local reducts of the object xi with respect to negative examples

are computed with FRGA. Next, on the base of the local reduct, a rule is

created (procedure trac e in step 2.3). Step 2.4 consists of testing if the rule is

minimal. The non-minimal rules are omitted from the �nal result.

T esting the minimality of a rule is a complex and computationally diÆcult

process. The simplest method consists in comparing a newly generated rule

to every rule that was generated previously. This na��ve method is not com-

putationally e�ective. Below we present an algorithm, in which it is enough
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Input: set of positive examples Pos, set of negative examples Ne g

Output: set of all minimal robust rules R that distinguish objects belonging to

Pos from objects belonging to Ne g.

Inducing of exhaustive set of minimal robust rules

Step 1: R = ;
Step 2: for i = 1... jPosj
Step 2.1: R(xi) = FRGA(xi, Neg);

Step 2.2: for eac hj = 1.. jR(xi)j
Step 2.3: rl = Trace(rj ; xi); rj 2 R(xi)

Step 2.4: Min(rl; xi; R);

Step 2.5: if rl is minimal, then R = R [ rl;

End: The �nal result is the set of all minimal robust rules R.

Fig. 1. Algorithm for inducing of exhaustive set of minimal robust rules

to examine some properties of the rule using the dominance matrix to verify

minimality of the rule.

Let us remind that a decision rule is minimal if there exists no other rule

with an antecedent of at least the same weakness (generality) and a consequent

of at least the same strength (speci�ty). According to the above, in order to

ensure minimality of a decision rule, the following three conditions must be

tested:

a) no rule with an antecedent at least the same weakness and with the same

consequent exists (for example: rule r1:`if f(x,q1)>4 and f(x,q2)>5, then

x 2 Cl
>
3 ' is not minimal with respect to r2: `if f(x,q1)>2 and f(x,q2)>5,

then x 2 Cl
>
3 )',

b) no rule with an antecedent of the same weakness and with a consequent

at least the same strength exists (for example: rule r1: `if f(x,q1)>3 and

f(x,q2)>3, then x 2 Cl
>
2 ' is not minimal with respect to r2: `if f(x,q1)>3

and f(x,q2)>3, then x 2 Cl
>
3 )',

c) no rule with an antecedent of at least the same weakness and a consequent

of at least the same strength exists (for example: rule r1: `if f(x,q1)>4

and f(x,q2)>4, then x 2 Cl
>
2 ' is not minimal with respect to r2: `if

f(x,q1)>2 and f(x,q2)>3, then x 2 Cl
>
3 )'.

Let us consider the �rst case (a). Assume that there are two robust rules:

r1 and r2, induced from the set of positive examples Pos, using FRGA. The

basis of the rules are objects x; y 2 Pos, respectively. If x = y then the rules

are minimal by de�nition of the local reduct. The problem consists in testing

if r1 is minimal with respect to r2, if x 6= y. Let us remark that r2 would be

more general only if r1 and r2 hav e the same length.

Let r
+(x) and r

+(y) be the dominating local reducts, which are bases of

rules r1 and r2 and assume that r
+(y) � r

+(x) � P � C. The following

situations may be considered:

1) x and y hav e the same values on r
+(x),
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2) x and y hav e the same values on r
+(y),

3) x and y hav e values on r
+(x), such that xDr+(x)y and :yDr+(x)x,

4) x and y hav e values on r
+(y), such that xDr+(y)y and :yDr+(y)x,

5) x and y hav e values on r
+(x), such that yDr+(x)x and :xDr+(x)y;

6) x and y hav e values on r
+(y), such that yDr+(y)x and :xDr+(y)y,

7) x and y hav e such value, that none of the above mentioned situation does

occur.

In the �rst two situations r
+(x) is not a local reduct. If an object y is

distinguished from all negative objects on r
+(y), the same must occur for the

object x (having the same values as y on the criteria belonging to r
+(y)). No

such local reduct would be generated. In situations 3 and 4, r+(x) is also not

a local reduct. Similarly, the correct local reduct for x and y is the set r+(y).

In situations 5, 6 and 7, local reducts are constructed correctly, and rules r1
and r2 may be built using r

+(x) and r
+(y), respectively . The abov e leads

to the conclusion that no minimal robust rule could be constructed using a

dominated local reduct r+(x) for which the following holds: 9y2Pos : xDr+(x)y

and :9z2Neg : zDr+(x)y. The second condition says that one of the dominating

local reducts of y is the set r+(x).

The second case (b) relates to a situation, in which the condition part

of r1is as general as the condition part of r2, but the decision part of r2 is

more speci�c. Consider a lower approximation of class Cl
>
l

and the object

x belonging to the class Cls, s > l. Let there exists a dominating local

reduct r+(x) and let y denote an object that belongs to one of the classes Cll,

Cll+1,. . . ,Cls�1 and yDr+(x)x. T oav oidthis situation it is enough to check

if such object as y does not exists. Let us remark that if the abov e is true

then there exists dominating local reducts r+(x) for lower approximations of

classes Cl
>
k
, s > k > l. Only using the local reduct generated from lower

approximation of Cl
>
s
, a minimal rule could be founded. Then the consequent

of the rule would be the strongest (most speci�c).

The third situation (c) never occurs. Let us consider two rules r1 and r2,

where the consequences are Cl
>
s

and Cl
>
l
, s > l, respectively, and r1 has a

more general antecedent than r2. In this case r1 may not exists, because there

exists a basis of r2 belonging to Cl
6
s�1 that dominates the basis of r1 with

respect to criteria involved in r1.

The procedure of rule minimality testing is presented in Figure 2. Let

us comment shortly on this algorithm. The whole test is executed using the

dominance matrix, which makes the process more eÆcient. The notation

`if r+(x) \ Æ
�(x; y) = r

+(x)' is equivalent to `if xDr+(x)y'. In the third step

we test if any,more general, rule was induced from the previously considered

examples. The fourth step consists in checking if any, more general, rule

could be induced from objects that still hav e not been considered. The test

from step 3.2 and the second condition of the test from step 4.1 permit to
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Input: rule rha ving the consequent Cl
>
t , the base object xl 2Pos, where l means

that it is l-th considered object, set of positive examples Pos and set of negative

examples Ne g, the dominance matrix with elements Æ
�
(x; y) (x,y 2 U).

Output: true if a rule r is minimal, otherwise: false

Minimality test of a robust D>-decision rule

Step 1: minimal = true

Step 2: r
+
(xl) = UnTrace(r, xl);

Step 3: for i = 1, ..., l -1

Step 3.1: if r
+
(xl) \ Æ

�
(xl; xi) = r

+
(xl), then

Step 3.2: if r
+
(xl) \ Æ

�
(xi; xl) = r

+
(xl), then minimal = false; go to End;

Step 3.3: for j = 1, ... jNe gj

Step 3.4: if r
+
(xl) \ Æ

�
(zj ; xi) = r

+
(xl); zj 2 Neg, then break loop;

Step 3.5: minimal = false; go to End;

Step 4: for i = l + 1, ..., jPos j

Step 4.1: if r
+
(xl) \ Æ

�
(xl; xi) = r

+
(xl) ^ r

+
(xl) \ Æ

�
(xi; xl) 6= r

+
(xl), then

Step 4.2: for j = 1, ... jNe gj

Step 4.3: if r
+
(xl) \ Æ

�
(zj ; xi) = r

+
(xl); zj 2 Neg, then break loop;

Step 4.4: minimal = false; go to End;

Step 5: if xl 2 Cls; s > t and minimal =true, then

Step 5.1: minimal = false;

Step 5.2: for i = 1, ..., jCl tj

Step 5.3: if r
+
(xl) \ Æ

�

(xi; xl) = r
+
(xl), then minimal = true; go to End;

End: The �nal result is the value of variable minimal.

Fig. 2. Minimality test of a robust D>-decision rule

conclude that if two rules having exactly the same condition parts may be

build on di�erent objects, then only one rule will be induced on the basis of

the previously considered object. The �fth step concerns the situation (b).

The next section contains an example that will clarify the presented idea.

4 Example

Let us consider a decision table S, presented in Figure 3. Objects x1 through

x6, described b y the set of criteria C=fq1, q2, q3g, belong to three classes:

Cl1, Cl2, Cl3; with objects from Cl3 being preferred ov erobjects from Cl2

and objects from Cl2 being preferred over objects from Cl1. The dominance

matrix DM corresponding to S is presented in Figure 4.

Objects q1 q2 q3 d1 Objects q1 q2 q3 d1

x1 6 2 3 3 x4 3 4 1 1

x2 5 3 4 3 x5 2 2 4 1

x3 3 3 3 2 x6 4 2 1 1

Fig. 3. Decision table S

Let us consider the process of inducing rules from C(Cl
>
2
), with x2 2 Cl3

as the basis. First, we compute all dominating reducts based on this object.

The appropriate Boolean function and its representation in the form of prime
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Æ�(x; y) x1 x2 x3 x4 x5 x6

x1 fq1,q2,q3g fq1g fq1,q3g fq1,q3g fq1,q2g fq1,q2,q3g

x2 fq2,q3g fq1,q2,q3g fq1,q2,q3g fq1,q3g fq1,q2,q3g fq1,q2,q3g

x3 fq2,q3g fq2g fq1,q2,q3g fq1, q3g fq1, q2g fq2, q3g

x4 fq2g fq2g fq1,q2g fq1,q2,q3g fq1,q2g fq2,q3g

x5 fq2,q3g fq3g fq3g fq3g fq1,q2,q3g fq2,q3g

x6 fq2g f;g fq1g fq1,q3g fq1,q2g fq1,q2,q3g

Fig. 4. Dominance matrix DM corresponding to S presented in Table 3.

implicants is presented below:

Df
x2>
2 (C)=

Q
f
S
:Æ�(y; x2) :y2C(Cl

6
1 )g=(q�1_q

�
3)^(q

�
1_q

�
2)^(q

�
1_q

�
2_q

�
3)

=q�1_q
�
2^q

�
3

The reducts are r+1 (x2)=fq2, q3g and r+2 (x2) = fq2, q3g. Using the function

`trace' we can build two rules based on x2: r1: `if f(x,q1)>5, then x 2 Cl
>
2 ',

and r2: `if f(x,q2)>3 and f(x,q3)>4, then x 2 Cl
>
2 .

Now, we hav e to v erify the minimality of these rules using the algorithm

described in the previous section. Let us consider the rule r1 �rst. In step 3

we examine if any, more general, rule had been induced before. In this case

we hav e to test if r+1 (x2) \ Æ�(x2; x1) = r+1 (x2), i.e. if x2Dfq1gx1. Because

it is not true we enter step 4, which consists in checking if a more general

rule could be induced from objects that hav e still not been considered. Here

we test conditions x2Dfq1gx3 and :x3Dfq1gx2. It is easy to prov e that both

hold, which means that x3 might be a basis of a rule that would render r1 not

minimal. T oensure the abov e we hav e to check if x3 belongs to fq1g(Cl
>
2 )

(lo wer approximation of Cl
>
2 with respect to fq1g), in other words, that there

exists no z 2 Neg (i.e. C(Cl
6
1 )) such that zDfq1gx3. This is tested in steps

4.2|4.5. However, x7 dominates x3 with respect to fq1g and x3 is not the

basis of a rule built ov erq1. Next, in step 5, we check if the decision part is

not to general. In our example there exists no object y belonging to Cl2, such

that yDfq1gx2, which suggests that a rule with the same condition part would

be also induced from C(Cl
>
3 ), i.e. if f(x,q1)>5, then x 2 Cl

>
3 . Because of

this r1 is not minimal.

Similar process may be conducted for r2. Let us remark that in this case x2
dominates both x1 and x3 with respect to fq2, q3g. However, it is impossible to

build a rule based on x1because x5Dfq2;q3gx2. Because of an opposite situation

concerning x3, the minimal rule: `if f(x,q2)>3 and f(x,q3)>3, then x 2 Cl
>
2 '

will be induced in the next iteration of the algorithm basing on x3.

Below we present all certain rules, with the bases, induced from S:

if f(x,q1) > 5, then Cl
>
3
; basis: x2.

if f(x,q2) > 3 and f(x,q3) > 4, then Cl
>
3
; basis: x2;

if f(x,q1) > 3 and f(x,q2) > 3, then Cl
>
2
; basis: x3;

if f(x,q2) > 3 and f(x,q2) > 3, then Cl
>
2
; basis: x3;

if f(x,q1) 6 4, then Cl
6
2
; basis: x4;

if f(x,q3) 6 1, then Cl
6
1
; basis: x6;
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if f(x,q1) 6 2, then Cl
6
1
; basis: x5;

if f(x,q1) 6 4 and f(x,q2) 6 2, then Cl
6
1
; basis: x6.

5 Conclusions

We presented an alternative algorithm for inducing the exhaustive set of deci-

sion rules within DRSA. It is worth stating that this technique may be easily

adopted to generate minimal sets of rules or satisfactory sets of rules. Both are

other strategies of rule generation, which are often applied in real-life applica-

tions. The �rst strategy is focused on describing objects using the minimum

number of necessary rules co vering all objects from a decision table. The

second category gives as its result the set of decision rules that satisfy some

pre-de�ned user's requirements.

The main idea of the presented algorithm resolves itself into incorporat-

ing Boolean reasoning into DRSA. ADRIA utilizes the concepts of dominat-

ing/dominated local reducts, the dominance matrix and the dominance func-

tion, which are notions analogous to those of local reducts, discernibility ma-

trix and discernibility function (all well-known in the context of CRSA). In

one of its initial steps the algorithm employs the FRGA, the result of which,

namely the set of all local reducts, serves to build rules out of objects. In

further steps ADRIA uses a promising procedure for verifying the minimality

of rules.
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