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Abstract Viral protein R (Vpr) from the human immunodefi-
ciency virus induces cell cycle arrest in proliferating cells, stimu-
lates virus transcription, and regulates activation and apoptosis of
infected T-lymphocytes. We report that Jurkat cells overexpress-
ing full-length gelsolin show resistance to Vpr-induced T-cell
apoptosis with abrogation of mitochondrial membrane potential
loss and the release of cytochrome c. Co-immunoprecipitation as-
says in HEK293T cells demonstrated that overexpression of full-
length or segment 5 (G5) but not G5-deleted gelsolin (DG5) bound
to the voltage-dependent anion channel (VDAC), and that the G5
subunit can inhibit HIV-1-Vpr-binding to VDAC. We also con-
firmed that full-length gelsolin has the same effect in Jurkat cells.
Clonogenic analysis showed that transfection of G5 but not DG5
cDNA protects Jurkat T cells from HIV-Vpr-Tet induced T-cell
apoptosis and promoted cell survival, as did full-length gelsolin.
These results suggest that the gelsolin G5 domain inhibits HIV-
Vpr-induced T-cell apoptosis by blocking the interaction between
Vpr and VDAC, and might be used as a protective treatment
against HIV-Vpr-induced T-cell apoptosis.
� 2007 Federation of European Biochemical Societies.
Published by Elsevier B.V. All rights reserved.
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1. Introduction

Multiple mechanisms have been proposed to explain the

death and dysfunction of CD4+ T-cells after infection with

the human immunodeficiency virus type 1 (HIV-1) [1]. There

are various molecular HIV-1 components that play a role in

the induction of apoptosis in T-lymphocytes [1]. Viral protein

R (Vpr) plays an important role in regulating the nuclear

transport of the HIV-1 pre-integration complex, and is re-

quired for virus replication in non-dividing cells [2,3]. Vpr also

induces cell cycle arrest in proliferating cells, stimulates virus
Abbreviations: HIV-1, human immunodeficiency virus type 1; Vpr,
viral protein R; VDAC, voltage-dependent anion channel; MMP,
mitochondrial membrane permeabilization; IB, immunoblotting; Dox,
doxycycline; PTPC, permeability transition pore complex; ANT, ade-
nine nucleotide translocator; NMDA, N-methyl-DD-aspartate; VDCC,
voltage-dependent calcium channels; rtTA, reverse tetracycline-con-
trolled transactivator; PI, propidium iodide; IP, immunoprecipitation
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transcription, and regulates activation and apoptosis in in-

fected cells [2,4,5]. These changes occur in the absence of other

viral gene products, suggesting that Vpr mediates its proviral

effects at least partially or perhaps solely, through modulation

of the state of the target cell rather than directly by the virus

[3]. Vpr from HIV-1 attaches to mitochondrial membranes

and induces mitochondrial membrane permeabilization

(MMP), which is a critical step in the regulation of apoptosis

and is often accompanied by mitochondrial swelling and frag-

mentation [6,7].

Gelsolin, an actin-regulatory protein that modulates actin

assembly and disassembly, is found as both an intrinsic cyto-

plasmic protein and secreted plasma protein [8,9]. In addition,

gelsolin was identified as a substrate for caspase-3 by screening

the translation products of small complementary DNA pools

for sensitivity to cleavage by caspase-3 [10]. Expression of gelso-

lin cleavage product in multiple cell types caused the cells to de-

tach, round up, and undergo nuclear fragmentation [10]. It was

proposed that its association with actin drives the calcium-inde-

pendent activation of the N-terminal three domains gelsolin

G1–G3 during apoptosis [11]. Conversely, some reports have

previously shown that cytoplasmic gelsolin is also present in

the mitochondrial fraction of cells, and that full-length gelsolin

can inhibit apoptosis of human Jurkat T-cells [12,13]. The over-

expression of gelsolin inhibits the loss of mitochondrial mem-

brane potential and cytochrome c release from mitochondria,

resulting in a lack of activation of caspase �3, �8, and �9 in

Jurkat cells treated with staurosporine, thapsigargin, and proto-

porphyrin IX [13]. This anti-apoptotic function of gelsolin was

also observed in butyrate-induced apoptosis of colorectal can-

cer cells and the cholinergic toxin ethylcholine aziridinium-or

amyloid-beta-induced apoptosis of neuronal cells [14–17], and

segment G5 of human cytoplasmic gelsolin is sufficient for the

function recorded in the latter case [17].

In this study, our efforts were directed towards investigating

whether gelsolin can inhibit HIV-Vpr-induced cell death in

Jurkat T cells, and to determine the specific gelsolin domain

responsible for that function.
2. Results

2.1. Resistance of gelsolin-overexpressed Jurkat T-cells to

HIV-Vpr-induced apoptosis

In an effort to determine whether overexpression of gelsolin

in Jurkat T-cells affects HIV-Vpr-induced apoptosis, we used

human cytoplasmic gelsolin-stably overexpressed in a Jurkat
blished by Elsevier B.V. All rights reserved.

https://core.ac.uk/display/81944851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


536 H. Qiao, J.R. McMillan / FEBS Letters 581 (2007) 535–540
T-cell clone JGF that was previously established [12]. To con-

firm continuous expression of gelsolin in JGF and Neo control

clone JNF cells, immunoblotting (IB) analysis was performed.

Gelsolin was not detected in JNF, while JGF displayed expres-

sion of gelsolin (90 KD) and was in keeping with previous re-

sults (Fig. 1A). The level of actin remained unchanged among

all cell lines. Since we were not able to acquire HIV-Vpr stable

transfectants using a constitutively expressing Vpr plasmid, we

used an inducible expression system based on the tetracycline-

responsive operon (Tet-on system) [18]. Jurkat Tet-on cell lines

were created as described in Section 4 below that stably express

FLAG-tagged HIV-Vpr by selection in medium containing

hygromycin and zeocin. Several clones derived from cells

transfected with HIV-Vpr were isolated, analyzed by IB anal-

ysis using anti-FLAG antibody to confirm the high expression

of HIV-Vpr, and HIV-Vpr-overexpressed parental clone (JPV

5), JNF clones (JNFV 3, 4, 7) , and JGF clones (JGFV 2, 8, 9)

were established. JP cells and all clone cells did not express

HIV-Vpr under basic conditions (Fig. 1B). However, treat-

ment with doxycycline (Dox) for 48 h resulted in a marked in-

crease of recombinant Vpr protein expression without any

detectable change in b-actin expression in parental cells and

all clones. At different time points after Dox addition, JPV

clone 5, JNFV clones (3, 4, 7) and JGF clones (2, 8, 9) were

assayed for cell viability and apoptosis signs using Hoechst

33342 and PI staining. Hoechst 33342 staining showed HIV-

Vpr-induced apoptosis accompanied by changes in nuclear

morphology, such as nuclear condensation or fragmentation

in control JNFV clones at 24, 48, 72 h after Dox treatment,

while JGFV clones treated with Dox expressing HIV-Vpr

failed to show any morphological nuclear changes (Fig. 2A).

Cell viability analysis using Hoechst 33342 and PI revealed

that all JGFV clones were clearly more resistant to apoptosis

induced by Vpr compared to JPV clone 5 cells and all JNFV

clones after 24 h (Dead cells: JGFV, 5% to JPV, 24%, JNFV,

23%), 48 h (Dead cells: JGFV, 9% to JPV, 46%, JNFV, 44%)

and 72 h (Dead cells: JGFV, 12% to JPV, 55%, JNFV, 54%)
Fig. 1. Expression of gelsolin and HIV-Vpr in Jurkat cell lines by IB
analysis. (A) Confirmation of stable expression of human full-length
cytoplasmic gelsolin in Jurkat T cell line (JGF). JP, parental Jurkat
cells; JNF, neo-transfected Jurkat clone. (B) Inducible expression of
Flag-tagged HIV-Vpr in Jurkat Tet-on clones (JPV clone 5, JNFV
clones 3, 4, 7, and JGFV clones 2, 8, 9) at 24 h in the absence or
presence of 2 lg/ml Dox. The expression of actin was monitored to
ensure equivalent loading and transfer.
(Fig. 2B) after initial Dox treatment. These data demonstrated

that overexpression of gelsolin was associated with significant

resistance to HIV-Vpr-induced apoptosis.

2.2. Inhibition of mitochondrial membrane potential loss and

cytochrome c release stimulated with HIV-Vpr in

gelsolin-overexpressed Jurkat T cells

Other report demonstrated that gelsolin can inhibit apopto-

sis induced by several apoptotic reagents by blocking signal

transduction at the mitochondrial level upstream of the cas-

pase cascade in human T lymphocytes [13]. To analyze the

alteration in DeltaPsi(m) that follows HIV-Vpr apoptotic stim-

ulation, we incubated cells after Dox treatment with the cat-

ionic dye Rhodamine 123 and then analyzed the cells using a

flow-cytometer. JPV clone 5 and all JNF clones displayed loss

of all mitochondrial potential, while JGFV clones demon-

strated inhibitory activity (Fig. 3A). Another change observed

in the mitochondria of apoptotic cells is the translocation of

cytochrome c from within the innermost mitochondrial mem-

brane to a cytosolic location. Immunoblot analysis of cytosolic

fractions revealed that JPV clone 5 and all JNF clones showed

cytochrome c release after Dox treatment, while there was

almost no cytochrome c release from the JGF clones

(Fig. 3B). Evaluation of all the data indicates that gelsolin
Fig. 2. Cell viability in HIV-Vpr expressed Jurkat cell lines. (A)
Hoechst staining of HIV-Vpr expressed JNFV7 and JGFV8 cells at
72 h in the presence or absence of 2 lg/ml Dox. (B) Cell viability of
JPV, JNFV, and JGFV cell lines at 72 h in the presence or absence of
2 lg/ml Dox was calculated as the percentage of apoptotic cells
compared to total cells using Hoechst 33342 and PI. Three experiments
were performed in duplicate, and values represent the mean + S.E. of
dead cells.



Fig. 3. MMP and cytochrome c release from mitochondria in HIV-
Vpr expressed Jurkat cell lines. (A) MMP assessed by flow-cytometry
with Rhodamine 123 of JPV5, JNFV7, and JGFV8 cells at 72 h in the
presence or absence of 2 lg/ml Dox. (B) Cytochrome c release from
mitochondria of JPV, JNFV, and JGFV cell lines at 72 h in the
presence or absence of 2 lg/ml Dox.

Fig. 4. Inhibition of VDAC-Vpr interaction by full-length gelsolin and
the G5 segment of gelsolin. (A) HEK293T cells were transiently
transfected with Myc-tagged full-length gelsolin (Full), G5 or DG5
(1 lg) together with T7-tagged VDAC (1 lg) as indicated. Cell lysates
were subjected to immunoprecipitation (IP) with anti-Myc antibody,
and the resulting precipitates were subjected to IB with anti-T7 tag
antibody. A portion of the cell lysate was directly subjected to IB with
anti-Myc, anti-T7 tag antibody in order to verify the expression level
of gelsolin and VDAC proteins. (B) HEK293T cells were transfected
with Flag-tagged HIV-Vpr and T7-tagged VDAC together with
increasing amounts of Myc-G5 (0.5, 1, and 2 lg). Cell lysates were
subjected to IP with anti-T7 tag antibody, and the resulting precip-
itates were subjected to IB with anti-FLAG antibody. A portion of the
cell lysate was directly subjected to IB with anti-FLAG, anti-T7 tag,
and anti-Myc antibodies to verify the expression level of Vpr, VDAC,
and G5 proteins. (C) JPV, JNFV and JGFV cells were treated with
Dox for 48 h. Cell lysates were subjected to IP with anti-VDAC
antibody, and the resulting precipitates blotted with anti-Flag
antibody. A portion of the cell lysate was directly subjected to IB
with anti-VDAC in order to verify the VDAC protein expression level
(internal control).
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can effectively inhibit HIV-Vpr-induced apoptosis at a point

concomitant with, or upstream of, the mitochondrial events.

2.3. Inhibition of HIV-Vpr binding to VDAC by full-length

gelsolin and gelsolin segment 5 (G5)

We have previously shown that segment 5 of gelsolin (G5)

represents an important regulatory region in determining its

inhibitory effect upon cell apoptosis [17]. Recent reports sug-

gested that VDAC is a key molecule controlling apoptotic

mitochondrial changes and the HIV-Vpr induces apoptosis

via a direct effect on the mitochondrial permeability transition

pore complex (PTPC) by binding VDAC [6]. To verify the

interaction between full-length gelsolin, G5, and VDAC, co-

immunoprecipitation experiments were performed. HEK293T

cells were transiently transfected with an expression plasmid

encoding Myc-tagged full-length gelsolin, G5, or G5-deleted

gelsolin (DG5) together with expression plasmid encoding

T7-tagged VDAC, and the cell lysates were immunoprecipi-

tated with anti-Myc antibody. The resulting precipitates and

a portion of the cell lysate were subjected to IB analysis with

anti-T7 tag and anti-Myc antibodies. Results of IB analysis

showed that VDAC coprecipitated with full-length gelsolin

and the G5 domain, but not with DG5 transfectant, suggesting

that gelsolin is physically associated with VDAC and that the

G5 segment of gelsolin is necessary and by itself sufficient for

this interaction (Fig. 4A).

The observed interaction allowed us to determine if gelsolin

and HIV-Vpr compete for the binding of VDAC in cultured

cells. HEK293T cells were transiently transfected with expres-

sion plasmids encoding Flag-tagged Vpr and T7-tagged

VDAC, together with increasing amounts of expression plas-
mid for Myc-tagged G5 (Fig. 4B). Cell lysates were prepared

from transfected cells, immunoprecipitated with anti-T7 tag

antibody, and the resulting precipitates and a portion of cell

lysate were subjected to IB analysis with anti-FLAG, anti-T7

tag and anti-Myc antibodies. The results of IB analysis showed

that VDAC-bound-Vpr was reversibly reduced with the

amount of G5 administered in a dose-dependent manner.

The amounts of Vpr and VDAC expressed were almost con-

stant. These results indicate that G5 blocks the interaction

between HIV-Vpr and VDAC.

Therefore, we also examined the effect of full-length gelsolin

on the physical interaction between Vpr and the VDAC in



Fig. 5. G5 segment allows Dox-treated HIV-Vpr Tet-on Jurkat T cells
to form colonies. (A) Cells were assayed for colony-forming ability 2
weeks after apoptotic induction by Dox treatment with the transfec-
tion of an empty plasmid (–), full-length gelsolin (Full), G5 or DG5
expression plasmids. Means and standard errors of two independent
experiments each containing three replicates are shown. (B) Plates are
illustrated below the corresponding Dox (+) columns of the histogram.
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Jurkat cells, using an immunoprecipitation assay system

(Fig. 4C). Cells were treated with Dox after 48 h, cell lysates

were immunoprecipitated with anti-VDAC and the immuno-

complexes probed with Flag tagged Vpr or gelsolin antibodies.

These results showed that Vpr can interact with VDAC in JPV

and JNFV cells, but this interaction cannot be detected in

JGFV cells. These results demonstrate that Vpr is bound to

VDAC in JPV clones and all JNFV clones, but this interaction

was inhibited by full-length gelsolin overexpressing Jurkat cells

after Dox treatment.

2.4. Protective function of G5 from HIV-Vpr-induced apoptosis

in Jurkat T cells

In order to determine the protective function of full-length

gelsolin and G5 from HIV-Vpr-induced apoptosis in the Jur-

kat cell line, we examined their effects by utilizing the most

stringent criterion for cell survival: the ability to form a colony

from only a single cell. Treatment of Dox in parental Jurkat

HIV-Vpr Tet-on (JPV) clone 5 cell line with an empty control

plasmid produced a substantial reduction in colonies that sub-

sequently formed in soft agar (Fig. 5A and B). The transfection

of expression plasmids with full-length gelsolin or G5, how-

ever, produced a 3.4-fold and 3.6-fold respective increase in

the number of colony-forming cells surviving this treatment

in the JPV clone 5 cells, while that of an empty or DG5 plas-
mids showed no such increase (Fig. 5A and B). These results

indicate that the G5 domain and not DG5 has a protective

function against HIV-Vpr-induced apoptosis in Jurkat T cells,

similar to full-length gelsolin.
3. Discussion

HIV-Vpr causes a rapid dissipation of mitochondrial mem-

brane potential, as well as a mitochondrial release of apopto-

genic proteins such as cytochrome c or apoptosis inducing

factor [6]. The effects of both mitochondrial and cytotoxic

Vpr are prevented by Bcl-2, an inhibitor of the permeability

transition pore complex (PTPC) [19]. Vpr favors the permeabi-

lization of artificial membranes containing purified PTPC or

defined PTPC components such as the adenine nucleotide

translocator (ANT) combined with Bax. Again, this effect is

prevented by the addition of recombinant Bcl-2. The Vpr car-

boxyl terminus binds purified ANT, as well as a molecular

complex containing ANT and VDAC, another PTPC compo-

nent. Vpr induces apoptosis via a direct effect on the mitochon-

drial PTPC [6,19].

Koya et al. previously reported that human cytoplasmic gel-

solin is localized not only in the cytosol, but also in the mito-

chondrial fraction of cells, and that it inhibits the loss of

DeltaPsi(m) and cytochrome c release from mitochondria in

Jurkat cells treated with staurosporine, thapsigargin and pro-

toporphyrin IX [13]. Furthermore, overexpression of gelsolin

inhibits the loss of DeltaPsi(m) and cytochrome c release from

mitochondria and inhibits activation of caspase �3, �8, and

�9 in Jurkat cells treated with staurosporine, thapsigargin,

and protoporphyrin IX. These effects were corroborated

in vitro using recombinant gelsolin protein on isolated rat

mitochondria stimulated with calcium, atractyloside, or Bax

[13]. The carboxyl-terminal half of gelsolin may also prevent

apoptotic mitochondrial changes such as DeltaPsi(m) loss

and cytochrome c release in isolated mitochondria and inhibit

the activity of VDAC on liposomes [20]. Segment 5 of human

cytoplasmic gelsolin is the region responsible for inhibition of

Amyloid beta-induced cytotoxicity in PC12 rat neuronal cells,

in addition to full-length gelsolin [17]. Primary hippocampal

neurons cultured from mice lacking gelsolin showed enhanced

calcium influx after exposure to glutamate [15]. Whole-cell

patch-clamp analyses showed that currents through N-

methyl-DD-aspartate (NMDA) receptors and voltage-dependent

calcium channels (VDCC) were enhanced in hippocampal neu-

rons lacking gelsolin. These results suggest roles for gelsolin in

events that involve activation of NMDA receptors and VDCC

[15]. In this report, we have uncovered another function of gel-

solin associated with the ion channel by demonstrating binding

to VDAC in mitochondria.

Here we report that gelsolin inhibits HIV-Vpr-induced

apoptosis accompanied by the loss of DeltaPsi(m) and cyto-

chrome c release from mitochondria in Jurkat T cells. We took

advantage of the high transfection efficiency of HEK293T cells

to study interactions between VDAC and gelsolin, and demon-

strated binding between full-length gelsolin and the G5

segment, but not between other segments and VDAC. More-

over, we demonstrated in HEK293T cells that gelsolin segment

5 shows overlapping, competitive binding of VDAC with HIV-

Vpr. These results suggest that gelsolin G5 domain inhibits
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HIV-Vpr-induced T-cell apoptosis by blocking binding be-

tween Vpr and VDAC. In addition, similar results were ob-

tained in Jurkat cells using full-length gelsolin.

There are reports showing that the presence of antioxidants,

such as N-acetyl-cysteine, nicotinamide or LL-acetyl-carnitine,

were able to rescue most of the peripheral blood lymphocytes

of subjects with acute HIV syndrome from apoptosis through

a protective effect on mitochondria [21]. Additionally, IL-2 and

IL-4 produced by peripheral blood mononuclear cells during

highly active retroviral therapy provided anti-apoptotic signals

that may contribute to an increased survival of T-cells and may

thus play a part in long-term immune reconstitution [22]. In

this report, we have demonstrated significant protection pro-

duced by the G5 gelsolin subunit, but not with other gelsolin

domains, from HIV-Vpr-induced apoptotic induction of Jur-

kat T cells grow on soft agar. These findings suggest a ratio-

nale for the use of gelsolin segment 5 protein treatment, in

addition to antiviral drugs, in primary HIV infection.
4. Materials and methods

4.1. Plasmid construction
To construct a mammalian expression plasmid with Myc-tagged hu-

man cytoplasmic gelsolin (pCI-neo-6xMyc-Gelsolin), the coding se-
quence was amplified by PCR using LKCG (a kind gift from D.
Kwiatkowski of Harvard Medical School) as a template. The resulting
PCR products were subcloned into the EcoRI–SalI site of the pCI-neo-
6xMyc mammalian expression plasmid [23]. Two gelsolin mutants, G5
that encodes segment 5 of human gelsolin (amino acids 516–618) and
DG5 that lacks the region encoding segment 5, were generated using
a PCR-based method and the resulting PCR products were
subcloned into pCI-neo-6xMyc, and pCI-neo-6xMyc-G5 and pCI-
neo-6xMyc-DG5 were prepared, respectively. Human VDAC1 cDNA
was obtained by RT-PCR using forward primer (5 0-TAT-
GAATTCATGTGTAACACACCAACG-3 0) and reverse primer
(5 0-TATCTCGAGCCTCAAACCACATTAAGC-3 0) [24], and the
resulting PCR product was subcloned into the EcoRI–SalI site of
pCI-neo-3xT7 as described previously [23], and pCI-neo-3XT7-VDAC
was constructed. Vpr sequence derived from the plasmid vector
pME18Neo-F(lag)Vpr containing HIV-1-Vpr [5] (a generous gift from
Dr. Aida, Retrovirus Research Unit, RIKEN, Wako, Saitama, Japan)
and the Flag tag-Vpr was subcloned into plasmid vector pTRE2-Hyg
(Clontech) to generate the pTRE2-Hyg-Vpr plasmid.
4.2. Cell culture and establishment of stable cell lines
A lymphoblastoid T-cell line Jurkat (parental Jurkat: JP), and its

stable clones transfected with human cytoplasmic gelsolin plasmid
LKCG (JGF clone 5) or with the control plasmid LK444 (a kind gift
from P. Gunning) (JNF clone 2), were maintained in RPMI 1640 med-
ium containing 10% fetal calf serum (FCS) (Gibco BRL, Gaithersburg,
MD) as described previously [12]. HEK293T cells was maintained in
Dulbecco’s modified Eagle’s medium (DMEM) containing 10% FCS.
All cells were cultured at 37 �C in a 5% CO2 humidified atmosphere.

The Tet-on system (Clontech, Mountain View, CA) was used to ob-
tain stable cell lines that express HIV-1-Vpr. JP, JNF and JGF
(1 · 106) were transfected with 2 lg of regulator plasmid pTracer-
CMV2-Tet-on containing reverse tetracycline-controlled transactiva-
tor (rtTA), which interacts with the inducible promoter in the presence
of tetracycline or analogues as Dox and activates transcription, and
12 lg/ml of SuperFect transfection reagent (Qiagen, Tokyo) according
to the manufacturer’s instructions. Each transfectant was selected in
the presence of 0.8 mg/ml zeocin (Invitrogen, Carlsbad, CA). To select
clones with high expression of rtTA, total RNA was isolated from JP-
Tet-on JNF-Tet-on and JGF-Tet-on cell lines with extraction reagent
(TRIzol, Invitrogen). The RT-PCR was performed with 1 lg of
RNA from each sample, with reverse transcriptase (Superscript II;
Gibco BRL, Carlsbad, CA) and random primer. The reverse transcript
was incubated with Taq-polymerase and primers rtTA forward (5 0-
GAGGTCGGAATCGAAGGTTT-3 0), which matches the coding
strand of rtTA at positions 55–74, and rtTA reverse (5 0-
TCGTAATAATGGCGGCATAC-3 0), which matches the reverse
strand of rtTA at positions 513–522, as described previously [24], for
35 cycles (denaturing: 30 s 95 �C; annealing: 30 s 55 �C; elongation:
90 s 72 �C), followed by a 7 min 72 �C extension. Electrophoresis of
PCR-products was performed on a 1% agarose gel containing ethidium
bromide. JP-Tet-on JNF-Tet-on and JGF-Tet-on cell lines that ex-
pressed higher rtTA were selected. Next, the selected Tet-on cell lines,
JP-Tet-on JNF-Tet-on and JGF-Tet-on, were transfected with pTRE2-
Hyg-Vpr and each transfectant (JPV clone 5; JNFV clones 3, 4, 7;
JGFV clones 2, 8, 9) was further selected in the presence of 400 lg/
ml Hygromycin (Wako, Osaka, Japan). To investigate clones with high
expression of HIV-Vpr, each Tet-on cell line was treated with 2 lg/ml
of Dox and the expression of HIV-Vpr confirmed by IB.

4.3. Immunoblotting analysis
Total cells were extracted in SDS sample buffer (40 mM Tris–HCl,

pH 7.4, 5% 2ME, 2% SDS, 0.05% bromphenol blue). Cell lysates were
analyzed by SDS–polyacrylamide gel electrophoresis and IB as
described previously [13,22] using monoclonal anti-human gelsolin
(GS-2C4, Sigma), monoclonal anti-cytochrome c (Pharmingen, Missis-
sauga, ON, Canada), anti-Myc monoclonal antibody (Clontech), anti-
T7 tag monoclonal antibody (Novagen, San Diego, CA), monoclonal
anti-FLAG (M2) antibody (Sigma), monoclonal anti-VDAC (Sigma)
and anti-b-actin monoclonal antibody (Chemicon, Temecula, CA).
The bound primary antibodies were incubated with peroxidase-conju-
gated anti-mouse IgG+M (Jackson ImmunoResearch Lab., West
Grove, PA) and detected by ECL Western blotting detection reagents
(Amersham Biosciences). Band images were detected by a LAS 1000
mini system (Fuji Film, Kanagawa, Japan).

4.4. Assays for cell viability and mitochondrial functions
Cell viability and apoptotic cell death were assessed using Hoechst

33342 (Sigma, St. Louis, MO) and propidium iodide (PI) staining,
MMP assayed by the addition of Rhodamine 123 to the culture med-
ium, and cytochrome c release from mitochondria into the cytosol of
Jurkat cells evaluated by SDS–polyacrylamide gel electrophoresis fol-
lowed by IB of the cytosolic fraction, as previously described [13]. For
cell viability and mitochondrial functions, JPV, JNFV, and JGFV cell
lines were examined at 24, 48 or 72 h and 72 h in the presence or
absence of 2 lg/ml Dox, respectively.
4.5. Co-immunoprecipitation analysis
HEK293T cells were transiently transfected with expression plasmid

as indicated. Forty-eight hours after transfection, the cells were washed
with ice-cold Tris-buffered saline (TBS) and harvested. The cells were
then lyzed with immunoprecipitation (IP) buffer containing 50 mm
Tris–HCl (pH 7.5), 150 mm NaCl, 0.5% Triton X-100, 10% glycerol,
0.1 mM PMSF, 10 lg/ml aprotinin, 1 lg/ml chymostatin, 1 lg/ml
leupeptin, and 1 lg/ml pepstatin. The lysates were incubated on ice
for 30 min, and the cell debris was removed by centrifugation at
13000g for 20 min. The resulting supernatants were pretreated with
20 ll Protein G-Sepharose beads (Roche,Tokyo, Japan) at 4 �C for
1 h and was then incubated with 2 lg anti-T7 tag or anti-Myc mono-
clonal antibody and 20 ll Protein G-Sepharose beads at 4 �C for 2 h.
The immunocomplex that was produced was washed five times with
IP buffer. SDS-sample buffer was added to the beads, and the samples
were boiled. The immunoprecipitates and the cell lysates were sub-
jected to IB analysis. For JPFV, JNFV and JGFV cell lines, 48 h after
treatment with Dox, the cell lysates were then incubated with 2 lg anti-
VDAC monoclonal antibody under the same conditions as previously
mentioned.

4.6. Clonogenic assay
Clonogenic analysis was performed as described previously [25].

Using electroporation, 1 · 107 JPV clone 5 cells were transfected with
expression plasmids: pCI-neo-6xMyc, pCI-neo-6xMyc-Gelsolin, pCI-
neo-6xMyc-G5 or pCI-neo-6xMyc-DG5. Forty-eight hours after
transfection, both 2 lg/ml Dox and 1 mg/ml neomycin were added to
the medium. All cells harvested from each plate were suspended in
5 ml of 0.5% agarose containing 20% FCS medium and then plated
on the top of 5 ml of 1% semi-solidified agarose (Nacalai Tesque
Inc. Kyoto. Japan) with the same medium in 10 cm plates. For each
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vector control, full-length gelsolin, G5 and DG5 clones, triplicate
plates were used. The plates were incubated for 2 weeks at 37 �C in
the presence of 5% CO2 in an incubator. They were then stained with
0.5 ml of 0.005% Crystal Violet for more than 1 h. Colonies grown on
agarose were counted using a microscope.

4.7. Statistical analysis
The data shown represent mean values of at least three different

experiments, expressed as mean ± S.E. Student’s t test was used to
compare the data, and a P value of less than 0.05 was considered sta-
tistically significant.
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