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Abstract

An analysis of the linear and nonlinear acoustic responses from an interface between rough surfaces in elastoplastic
contact is presented as a model of the ultrasonic wave interactions with imperfect interfaces and closed cracks. A micro-
mechanical elastoplastic contact model predicts the linear and second order interfacial stiffness from the topographic
and mechanical properties of the contacting surfaces during a loading–unloading cycle. The effects of those surface
properties on the linear and nonlinear reflection/transmission of elastic longitudinal waves are shown. The second order
harmonic amplitudes of reflected/transmitted waves decrease by more than an order of magnitude during the transition
from the elastic contact mode to the elastoplastic contact mode. It is observed that under specific loading histories the
interface between smooth surfaces generates higher elastoplastic hysteresis in the interfacial stiffness and the acoustic non-
linearity than interfaces between rough surfaces. The results show that when plastic flow in the contacting asperities is sig-
nificant, the acoustic nonlinearity is insensitive to the asperity peak distribution. A comparison with existing experimental
data for the acoustic nonlinearity in the transmitted waves is also given with a discussion on its contact mechanical
implication.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the pioneering experimental observation (Buck et al., 1978) and theoretical analysis (Richardson,
1979) on the generation of anomalously high second order acoustic nonlinearity from interfaces and
cracks, there have been numerous investigations due to its potential application to the ultrasonic inspection
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of imperfect interfaces and cracks (Solodov et al., 1993; Hirose and Achenbach, 1993; Rudenko and Vu, 1994;
Fassbender and Arnold, 1996; Nazarov and Sutin, 1997; Hirsekorn, 2001; Chen et al., 2001; Donskoy et al.,
2001; Solodov and Korshak, 2002; Pecorari, 2003; Gusev et al., 2003; Biwa et al., 2004). Especially when a
crack is closed, it may remain undetected by the linear ultrasonic techniques (Rokhlin and Kim, 2003) even
though it can be excited ultrasonically to generate measurable second and higher order harmonic signals (Buck
et al., 1978).

When the characteristic length of the imperfectness is much smaller than the wavelength, the interaction of
acoustic waves with an interface can be described by the interfacial stiffness in the quasistatic approxima-
tion (Baik and Thompson, 1984). This continuum interface model is used widely in different problems
where the interface plays a role, e.g. Needleman (1990) and Suo et al. (1992). Although the use of the inter-
facial stiffness simplifies the analysis of the complicated scattering problem, the connection between micro-
structural characteristics and acoustic responses from the interface is lost since the statistical and
mechanical properties of the interface are represented by one lumped parameter, the interfacial stiffness. Many
researchers have studied the microstructural effects on the interfacial stiffness (Baik and Thompson, 1984;
Rokhlin and Wang, 1991; Nagy, 1992; Rokhlin, 1992; Drinkwater et al., 1996; Dwyer-Joyce et al., 2001;
Baltazar et al., 2002; Kim et al., 2004). Recently, Pecorari (2003) extended the quasistatic approximation to
the nonlinear reflection and transmission problem. To obtain the second order interfacial stiffness, the model
for the elastic contact of rough surfaces (Baltazar et al., 2002) is applied. Nazarov and Sutin (1997) predicted
the nonlinearity of cracked solids based on the nonlinear parameters of a single crack obtained from the elastic
rough surface contact model of Greenwood and Williamson (1966). In most previous analyses, the asperity
contact is assumed to be elastic. However, since the real contact area is usually only a small fraction of the
nominal contact area and thus only a small number of asperities bear the contact load, the plastic yielding
of contacting asperities is inevitable in an interface having a moderate level of roughness and even under a
light load. As shown in Kim et al. (2004), the acoustic interaction with an elastoplastically deformed interface
is quite different from that with an elastic interface. Once the plastic deformation takes place in the asperities,
the original surface profile is forgotten, resulting in a new surface profile (the elastoplastic hysteresis). An accu-
rate description of the elastoplastic contact of rough surfaces and the interaction with acoustic waves are over-
whelmingly complicated. Recently, Baltazar et al. (2002) and Kim et al. (2004) proposed micromechanical
models to describe the elastoplastic behavior of interfaces in the loading–unloading process. The model
was used to reconstruct microstructural parameters from macroscopic interfacial stiffnesses measured during
the loading–unloading cycle. Using the reconstructed surface parameters, the real area of contact was pre-
dicted successfully.

In the nonlinear acoustics, Rudenko and Vu (1994) attempted to determine the roughness height distribu-
tion from the acoustic nonlinearity of the interface. As shown in this paper, such a determination is possible
only for smooth interfaces under a low pressure. Chen et al. (2001) experimentally observed the nonlinear
transmission of vertically polarized shear waves through the interfaces between solids. This problem was later
theoretically treated by Pecorari (2003). Most recently, Biwa et al. (2004) proposed an interesting idea to pre-
dict the acoustic nonlinearity of interfaces without analyzing the complicated elastoplastic contact problem.
They assumed a simple power-law relation between the contact pressure and the displacement for calculating
the first and second order interfacial stiffness that were used to predict the nonlinearity in the transmitted and
reflected waves. Currently an analysis that relates the macroscopic acoustic responses from an imperfect inter-
face to the microstructural surface parameters in consideration of realistic contact process occurring at the
interface is lacking.

In this paper, the acoustic interactions with a nonlinear interface are investigated using a micromechanical
elastoplastic loading–unloading model for contacting rough surfaces. From the model, the first and second
order interfacial stiffnesses are calculated. The dependence of the acoustic nonlinearity of the interface on
microstructural properties is predicted. The hysteretic behaviors of the interface motion and in the linear
and nonlinear acoustic responses from the interface during a loading–unloading cycle are shown. Elastic
and elastoplastic contacts of surfaces with various parameters are examined. From the numerical results,
the loading-history dependent behavior of the acoustic nonlinearity, the feasibility of determining asperity
height distribution, the role of elastoplastic deformation and the validity condition for using the simple
power-law are discussed.
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2. Interfaces as nonlinear relaxators

Consider two solid bodies with identical material properties which are brought into contact by applied sta-
tic pressure p0. Due to the surface roughness, the contact at the interface is microscopically imperfect, forming
an initial opening displacement (or gap) d0 (=Z+ � Z�) between the nominal planes of the upper (Z+) and
lower (Z�) rough surfaces as shown in Fig. 1. These lengths (d0, jZ+j, jZ�j) are assumed to be much smaller
than the wavelength of the incident longitudinal wave so that the incoherent scattering due to the randomness
of the interface is insignificant.

A plane longitudinal elastic wave of arbitrary shape is incident normally to the interface at which reflected
and transmitted waves are produced as shown in Fig. 1. One-dimensional wave equation for the longitudinal
wave motion in Z direction is
Fig. 1.
transm
denote
o2u
ot2
¼ c2 o2u

oZ2
; ð1Þ
where u is the particle displacement, c ð¼
ffiffiffiffiffiffiffiffiffi
E=q

p
Þ is the wave speed, and E and q are the elastic modulus and

mass density respectively. The longitudinal stress (s) is related to the displacement by
s ¼ E
ou
oZ
� p0. ð2Þ
The boundary condition at the interface (the continuity of stress) is
sðþ0; tÞ ¼ sð�0; tÞ ¼ �ðp0 þ ~pðtÞÞ; ð3Þ

where ~pðtÞ is the dynamic pressure at the interface induced by elastic waves, which produces the dynamic open-
ing displacement ~dðtÞ given by
~dðtÞ ¼ ½uðþ0; tÞ � uð�0; tÞ�. ð4Þ

Like the total pressure, the total opening displacement is the sum of the static and dynamic contributions,
d0 þ ~dðtÞ. As explained in the following section, the dynamic pressure due to the elastic wave does not always
correspond to the pressure oscillating along the contact pressure-displacement curve but it is in general the local
unloading pressure (Kim et al., 2004). The displacement fields in the lower and upper half spaces are written as
po 

po 
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A schematic showing two bodies brought into contact by applied pressure p0 and elastic waves incident to, reflected from and
itted through an interface formed by the contacting rough surfaces. The average planes of upper and lower rough surfaces are
d by Z+ and Z�.
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uðZ; tÞ ¼
uIðZ � ctÞ þ uRðZ þ ctÞ; Z < 0;

uTðZ � ctÞ; Z > 0;

�
ð5Þ
where uI(Z � ct), uR(Z + ct) and uT(Z � ct) are the incident, reflected and transmitted waves that satisfy Eq.
(1). Eq. (3) may be rewritten as
1

2
½sðþ0; tÞ þ sð�0; tÞ� ¼ �fp0 þ ~p½~dðtÞ�g. ð6Þ
From Eqs. (2), (5) and (6) and the relationship ou(Z ± ct)/oZ = ±c�1ou(Z ± ct)/ot, the equation of motion of
the interface in terms of its opening displacement can be obtained, i.e.
d~dðtÞ
dt
� 2

qc
~p½~dðtÞ� ¼ �2

duIð0; tÞ
dt

. ð7Þ
This is the general equation that describes the forced-vibration of a relaxator-type interface (an interface with
no inertial component) (Gusev et al., 2003). For example, the nonlinear motion of a clapping interface can be
described with an appropriate piecewise continuous dynamic pressure. The dynamic pressure is expanded near
d0 for small amplitude of ~d, retaining up to the second order term
~p½~dðtÞ� � o~p
od

����
d¼d0

~dðtÞ þ 1

2

o2~p

od2

����
d¼d0

~d2ðtÞ ¼ �K1
~dðtÞ þ K2

~d2ðtÞ. ð8Þ
The negative sign in front of the first order (linear) interfacial stiffness is due to its conventional definition
r ¼ KDu. Inserting Eq. (8) into Eq. (7) and considering a time-harmonic incidence uI = Ucos[kZ(Z � ct)], re-
sults in
d~dðtÞ
dt
þ 2K1

qc
~dðtÞ � 2K2

qc
~d2ðtÞ ¼ 2Ux sin xt; ð9Þ
where kZ (=x/c) is the wave number of the longitudinal wave. The condition 2K1=qc > 0 ensures the stability
of Eq. (9) for a weak nonlinearity. By imposing the initial condition ~dð0Þ ¼ 0, the transient motion is sup-
pressed. From the solution of Eq. (9) obtained by the perturbation method (Pecorari, 2003; Biwa et al.,
2004) and Eqs. (4) and (5), the reflected and transmitted waves are expressed:
uRðZ; tÞ ¼
g2U 2

g1ð1þ 4g2
1Þ
þ U

ð1þ 4g2
1Þ

1
2

cos½kZðZ � ctÞ þ h1�

� g2U 2

ð1þ 4g2
1Þð1þ g2

1Þ
1
2

cos½2kZðZ � ctÞ þ 2h1 þ h2�; ð10Þ

uTðZ; tÞ ¼ �
g2U 2

g1ð1þ 4g2
1Þ
þ 2g1U

ð1þ 4g2
1Þ

1
2

sin½kZðZ � ctÞ þ h1�

þ g2U 2

ð1þ 4g2
1Þð1þ g2

1Þ
1
2

cos½2kZðZ � ctÞ þ 2h1 þ h2�; ð11Þ
where g1 ¼ K1=qcx, g2 ¼ K2=qcx, h1 ¼ tan�1ðg�1
1 =2Þ, and h2 ¼ tan�1ðg�1

1 Þ. The magnitudes of reflection and
transmission coefficients are R ¼ ð1þ 4g2

1Þ
�1=2 and I ¼ 2g1ð1þ 4g2

1Þ
�1=2 (Baik and Thompson, 1984). It is

noted that the nonlinear reflection/transmission terms (the amplitudes of the zero-frequency component
and the second harmonic) increase with the square of the incident wave amplitude, as is typical result from
a system with a weak quadratic nonlinearity.
3. Nonlinearity parameters of an interface

In the finite amplitude nonlinear acoustics, the acoustic nonlinearity parameter for a material is defined
as the negative of the ratio of the coefficients of the nonlinear term to the linear term in the nonlinear wave
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equation and is thus as the ratio of the third order elastic constant to the second order elastic constant (Bre-
azeale and Philip, 1984). The nondimensional acoustic nonlinearity parameter is a measure of the extent to
which the acoustic waveform gets distorted, and so is a direct measure of the nonlinearity of the bulk of a
material. It is expressed to be proportional to the ratio of the amplitude of the second order harmonic to
the square of the amplitude of the fundamental. As in Cantrell (2004), the acoustic nonlinearity parameter
can be defined more generally as the ratio between the coefficients of linear and nonlinear terms in the con-
stitutive equation, which is the actual source of the acoustic nonlinearity of materials.

In the case of interfaces, the nonlinearity parameter may be defined in several different ways depending on
what nonlinearity is to be quantified by the parameter. Following Cantrell (2004), the nonlinearity of the inter-
face itself should, of course, be defined to be
bI ¼
K2

K1

¼ g2

g1

. ð12Þ
This parameter is independent of frequency since it is purely a property of the interface; therefore, it is not a
measure of the distortion of the reflected or transmitted waves as Eqs. (10) and (11) indicate. One can also
define a parameter that quantifies how much nonlinearity was generated out of the incident wave amplitude
during the process of wave reflection and transmission. This, as a nonlinear reflection or transmission coeffi-
cient, is defined as the ratio of the magnitude of the second harmonic waves to the square of the incident wave
amplitude. Since the magnitudes of the second harmonic in the transmitted and reflected waves are equal, this
nonlinearity parameter is given commonly to these waves as
b ¼ g2

ð1þ 4g2
1Þð1þ g2

1Þ
1
2

. ð13Þ
On the other hand, the measure of the harmonic distortion in the reflected and transmitted waves can be de-
fined as the ratios of the second harmonic amplitudes to the square of the respective first harmonic amplitudes
as in Buck et al. (1978). The nonlinearity parameters for reflected and transmitted waves are
bR ¼
g2

ð1þ g2
1Þ

1
2

ð14-1Þ

bT ¼
g2

4g2
1ð1þ g2

1Þ
1
2

. ð14-2Þ
It should be noted that in all above definitions, the nonlinearity parameters related to the interface have the
dimensional of [m�1] while the acoustic nonlinearity parameter for a bulk material is dimensionless. Since the
nonlinearity of interface is a property of surface, it has the dimension of one length-scale less than that of
the bulk of material. All of these parameters exhibit the hysteretic behavior during the loading cycle but in
different manners. For example, bI will show the hysteresis in the motion of the interface while b will display
the hysteresis in the second harmonic amplitudes. b and bR (or bT) present respectively an absolute and an
relative (to the first harmonic) measure of nonlinearity in the reflected (or transmitted) wave. In this paper,
we use these parameters accordingly as relevant.
4. Acoustic (ultrasonic) interfacial stiffness

When acoustic waves interact with an interface, it induces a small-scale loading–unloading cycle centered at
a bias static load as shown in Fig. 2. In the elastic contact regime, the acoustic loading–unloading occurs along
the static pressure–approach (displacement) curve so that the interfacial stiffness associated with the acoustic
wave motion is the same with the static one defined as the slope of the pressure–approach curve at the bias
static load. However, when the contacting asperities are plastically deformed, since the unloading occurs fol-
lowing a curve different from the loading curve due to the elastoplastic hysteresis, the acoustically induced
loading–unloading cycles should occur along the local unloading curve (Fig. 2). Therefore, the acoustic (ultra-
sonic) interfacial stiffness between two contacting bodies can be defined more generally as the local unloading
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Fig. 2. Pressure–approach curve for two rough surfaces in elastic–elastoplastic contact. The relations of the static and acoustic (ultrasonic)
interfacial stiffness to the slope of the pressure–approach curve are illustrated.
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stiffness regardless of whether the deformation is elastic or elastoplastic. The acoustic interfacial stiffness is
always greater than the static loading interfacial stiffness in the elastoplastic regime. It is because, in the elas-
toplastic regime, the asperities have a reduced static stiffness due to the progressive plastic deformation while
the acoustic stiffness corresponds to the local unloading ‘‘elastic’’ slope and thus its increase is solely due to the
increased contact area (Fig. 2). When the unloading starts, the acoustic interfacial stiffness decreases contin-
uously from its maximum at the maximum load as observed by ultrasonic measurements (Drinkwater et al.,
1996; Dwyer-Joyce et al., 2001; Baltazar, 2002) whereas the static stiffness has a discontinuity (a jump to the
unloading stiffness) at the maximum load.

Now the first and second order interfacial stiffness in Eq. (8) are redefined in a more accurate way,
K1 ¼ �
o~punload

od
; ð15-1Þ

K2 ¼
1

2

o
2~punload

od2
. ð15-2Þ
5. Micromechanical model for elastoplastic contact

A statistical micromechanical model has recently been proposed (Kim et al., 2004) to analyze the hysteretic
behavior of the elastoplastic contact of two rough surfaces and the acoustic interfacial stiffness during load-
ing–unloading cycle. The model incorporates an accurate description of the elastoplastic contact (Kogut and
Etsion, 2002) of a single pair of representative asperities into the framework of the statistical asperity model of
Greenwood and Williamson (1966). The model uses a v2-distribution function for the distribution of asperity
heights (Baltazar et al., 2002; Kim et al., 2004):
uð2m; zÞ ¼ ðszÞme�sz=zCðmÞ; ð16Þ
where s ¼ ffiffiffiffi
m
p

=r, r is the rms roughness of the composite surface profile, defined as r ¼ ½r2
1 þ r2

2�
1=2, r1,2 are

rms roughnesses of the individual surface 1 and 2, and z is the coordinate axis attached at the top of the high-
est asperity directing downwards. This should be distinguished from the macroscopic global coordinate Z in
the previous section. The use of the v2-distribution function is advantageous in that it can describe any distri-
bution with skewness toward the top of the surface between the exponential (for m 6 2) and the Gaussian (at
m!1).
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Using this distribution function for asperity heights, the nominal pressure (the total load on contacting
asperities divided by the nominal contact area), and the first and second order interfacial stiffness in Eqs.
(15-1) and (15-2) are expressed as functions of approach d:
�pðdÞ ¼ �n
Z d

0

P ðd� zÞuðm; zÞdz; ð17Þ

�K1ðdÞ ¼ �n
Z d

0

j1ðd� zÞuðm; zÞdz; ð18Þ

�K2ðdÞ ¼ �n
Z d

0

j2ðd� zÞuðm; zÞdz; ð19Þ
where �n is the number of asperities per unit area; the overbar denotes the statistical average of a random phys-
ical quantity; (d � z) is the deformation of an asperity summit at z by approach d; P(d), j1(d) and j2(d) are the
load and the first and second acoustic stiffness of an individual spherical asperity (see Appendix A).

Substituting Eqs. (A.2), (A.8) and (A.9) into Eqs. (17)–(19) and normalizing appropriately, the total pres-
sure and the first and second order acoustic stiffness of the interface during loading are
�pðd0Þ
E�
¼ 4

3
C1r3

pR02�nr2

Z d0

0

d0 � z0

d0c

� �k1

u�ðm; z0Þdz0; ð20Þ

K1ðd0Þ
E�=r

¼ 2C2rpR0�nr2

Z d0

0

d0 � z0

d0c

� �k2

u�ðm; z0Þdz0; ð21Þ

K2ðd0Þ
E�=r2

¼ C2k2r�1
p �nr2

Z d0

0

d0 � z0

d0c

� �k2�1

u�ðm; z0Þdz0; ð22Þ
where C1,2 and k1,2 are the elastoplastic contact coefficients defined in Appendix A; rp is the material property
related to elastic–plastic transition (also in Appendix A); the prime denotes normalization of length scale vari-
ables by the rms roughness of the composite surface (r), e.g. R 0 = R/r and z 0 = z/r; u*(m; z) = u(m; z)r. We
have used three independent parameters (r/R, c, m) where c ¼ R0�nr2 for reconstructing properties of compos-
ite surfaces from the predicted and measured loading–unloading ultrasonic stiffness (Kim et al., 2004). For a
given rms roughness, these are the minimal necessary parameters to compute the contact pressure, the acoustic
interfacial stiffness and the real area of contact.

To calculate the interfacial stiffness during unloading, first, the deformation state of the asperities at differ-
ent depths is considered. Since the maximum displacement and load applied vary with depth, the asperities at
different depths possess different amounts of plastic deformation. The plastic deformation in the loading phase
leads to the flattening of asperity summits, which results in an increased radius of curvature and the residual
deformation. These permanent changes in geometry of asperities are fully taken into account in the unloading
model. As in Li et al. (2002), it is assumed that the radius of curvature of the asperity remains unchanged dur-
ing unloading. The radius of curvature Rmax at the maximum load is calculated as a function of z, using Eq.
(A.3) and applying the parabolic law, RmaxðzÞ ¼ a2

maxðzÞ=dmaxðzÞ. Therefore, at the end of the loading phase, all
parameters of plastically deformed asperities are known as a function of their initial heights z in the distribu-
tion (16). Using Eq. (A.10), the pressure–approach relation during unloading is thus obtained to be
�puðd0Þ
E�
¼ �nr2

Z d0

0

P maxðz0Þ
E�r2

� 4

3
R0maxðz0Þ
� �1

2 ðd0max � z0Þ
3
2 � ðd0 � z0Þ

3
2

h i	 
	 

u�ðm; z0Þdz0 ð23Þ
where the operator hh ii is defined as
hhf ii ¼
0 for f 6 0;

f for f > 0.

�
ð24Þ
In evaluating integral (23) at a given d 0, the contact load P(z 0) on the asperities at height z 0 is first calculated
(the term in the operator hh ii in Eq. (23)). If it reduces to or below zero, that is, unloaded completely, the
asperities at that height are excluded from the calculation of contact pressure. In this way, only load-bearing
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asperities are included in the integration accounting for their residual plastic deformations. The radius curva-
ture that is a function of the initial summit height z is included in the integrand. Assuming that the unloading
is perfectly elastic, the first and second order interfacial stiffness are calculated by differentiating successively
the unloading pressure–approach relation Eq. (23).

6. Elastoplastic hysteresis, linear and nonlinear acoustic responses of interfaces

Numerical calculations have been performed for three interfaces formed by Al 6061-T6 blocks with two
different levels of roughness. The properties of these interfaces have been reconstructed (Kim et al., 2004) from
the experimental and theoretical interfacial stiffness during the first loading–unloading cycle. The mechanical
properties are given in Table 1. The microstructural parameters of the interfaces used in the simulations are
presented in Table 2. Here, we introduce newly a plasticity index as a measure of deformability of the interface

for the v2-distribution of asperity peaks: w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m�1Þ=dc

p
. It is defined such that rougher and softer sur-

faces have higher plasticity indices in consideration of the effect of the asperity peak distribution. When
m!1, it recovers the plasticity index that was originally defined for the Gaussian distribution (Greenwood
and Williamson, 1966), and for a surface with m = 2 which corresponds to the exponential distribution, the
plasticity index is smaller than a Gaussian surface by

ffiffiffi
2
p

. The plastic indices for three composite surfaces
are also presented in Table 2.

Figs. 3–5 show the elastoplastically induced hysteresis in the reflection and transmission coefficients at 5
and 10 MHz for the three interfaces as a function of nominal pressure during the loading–unloading cycle.
Arrows indicate the loading path. Symbols represent data from the ultrasonic experiments (Baltazar, 2002).
They are in good agreement with theoretical ones. It can be seen in these figures that the acoustic waves sen-
sitively respond to the elastic–plastic deformation of the interfaces. For example, in the contact of two smooth
surfaces (Fig. 3) the transmission coefficient increases rapidly with the load since the surfaces are smooth (the
asperities have a larger radius of curvature), and thus the area of contact (conformity of surfaces) increases
rapidly. In all three cases, the transmission coefficient during unloading is higher than that in loading due
to the increased real area of contact during unloading (see Fig. 9 in our previous paper (Kim et al., 2004)).
The imperfectness of the interface is naturally more impedimental to the waves at higher frequencies, the result
of which appears as higher reflection and lower transmission at 10 MHz than those at 5 MHz.
Table 1
Mechanical properties of Al 6061-T6 and Al 1100 alloys

Property Al 6061-T6 Al 1100

Young’s modulus, E 71.0 GPa 69.0 GPa
Hardness, HB 94 38
Yield stress, rY 235 MPa 138 MPa
Poisson’s ratio, m 0.33 0.33
Longitudinal wave speed, cl 6370 m/s 6350 m/s
Density, q 2740 kg/m3 2740 kg/m3

Table 2
Model parameters (Kim et al., 2004)

Surface Given ra (lm) Reconstructed Calculated using
reconstructed parameters

r/R c m w pY
b (MPa)

Smooth–smooth 0.325 2.01 · 10�4 2.4 3.0 1.33 84.6
Rough–smooth 2.4 1.20 · 10�3 2.62 1.5 2.32 18.4
Rough–rough 3.4 1.92 · 10�3 1.27 2.0 3.62 3.30

a RMS roughness of composite surface.
b Nominal pressure at the onset of the plastic deformation at the interface.
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deformation at the interface was predicted to be 3.3 MPa (Kim et al., 2004).
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The acoustic interfacial stiffness of these interfaces are shown in Fig. 6. Among three interfaces, the inter-
face between two smooth surfaces has the smallest plasticity index, allowing the plastic yielding to occur only
at the end of loading, mostly in the asperities near the surface. This interface, however, exhibits the highest
level of hysteresis in the interfacial stiffness. In the interface formed by rough–rough surfaces, the plastic defor-
mation starts at a low load (pY = 3.3 MPa) due to its high plasticity index (w = 3.62) and the external load is
supported by the flattened asperities that are highly populated near the top surface (m = 2: the exponential
distribution). This interface shows the lowest level of hysteresis. It is interesting to note that the hysteresis lev-
els in the interfacial stiffnesses are in reverse order of those in the load–displacement curves for the same three
interfaces (see Fig. 10 in Kim et al. (2004)). A similar effect is observed in the hysteresis of the nonlinearity
presented in the followings.
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Figs. 7–9 show the nonlinearity parameters defined by Eqs. (12) and (13) for the three different interfaces.
Several interesting things can be noted. First, in both bI and b the elastoplastic hysteresis is most pronounced
in the contact of two smooth surfaces. Similarly, the hysteresis of the interface between smooth and rough
surfaces is higher than that of rough–rough surfaces. This paradoxical fact observed commonly in the hyster-
esis of the interfacial stiffness and the nonlinear parameters can be explained as followings: The interfacial stiff-
ness and the acoustic nonlinearity of an elastic interface are much higher than those of a plastically deformed
interface as shown in Figs. 6–9. In the contact of two smooth surfaces where the plastic yielding takes place at
the end of loading, the asperities are elastically deformed during loading while they remains plastically
deformed during unloading. Therefore, the interfacial stiffness and the nonlinearity change significantly from
those of elastic ones to those of plastic ones. On the contrary, in the contact of two rough surfaces, since the
plastic yielding starts at a low load level, the interfacial stiffness and the nonlinearity during loading and
unloading are similar, that is, plastically deformed, which causes little change in the interfacial stiffness and
the nonlinearity, and thus the smallest hysteresis. In all cases, the acoustic nonlinearity during unloading
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exhibits a history-dependent behavior whenever inelastic deformation occurs. Most eminently, if the maxi-
mum pressure on the smooth–smooth interface was below 84.6 MPa the pressure at onset of plastic yielding,
the interface would not have shown any hysteresis.

From b for three different interfaces, it is observed that the nonlinearity of the interface decreases by more
than an order of magnitude (>201 dB) during the transition from the elastic contact mode into the elastoplastic
contact mode in the present material (Al-6061). Once the plastic deformation occurs, the nonlinearity remains
nearly constant. For a given interface, the nonlinearity seems to be always higher during unloading than dur-
ing loading. From these, it may be concluded that a lightly loaded smooth interface generates most efficiently
the nonlinearity in the scattered waves. The nonlinearity of interface bI also exhibits a rapid initial drop at
lower contact pressures. Since the static pressure can be written approximately as p0 � dk1þ1

0 (from Eq.
(20)), the total pressure is p0 þ ~p � ðd0 þ ~dÞk1þ1. The pressure disturbance in the interface by the action of
acoustic waves is expanded near the static pressure,
1 This figure may have the dependence on the hardness of materials.
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~p � ðk1 þ 1Þdk1
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~d 1þ k1
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� �K1
~dð1� bI

~dÞ. ð25Þ
This equation indicates that the nonlinearity of the interface is inversely proportional to the static displace-
ment or the nominal contact pressure, which explains the initial drop of bI. In practice, however, instead of
the indefinite increase of nonlinearity with decreasing pressure, a complete separation and clapping motion
of two surfaces can be induced, which is another mode of nonlinear hysteretic motion (Solodov et al.,
1993; Moussatov et al., 2003). The nonlinearity due to the clapping motion has been observed to be a max-
imum at a low pressure also. Considering the low transmission coefficient at low contact pressures, the trans-
mitted wave amplitude in this regime is mostly due to the second harmonic wave.

Fig. 10 shows the dependence of the acoustic nonlinearity (bT) in the transmitted wave on the surface topo-
graphic parameters; surface roughness, peak distribution (m) and the plasticity index. An Al 1100 alloy used in
the simulation, the properties of which are presented in Table 1. To reduce the number of variables, other sur-
face parameters are fixed: c = 2.5 and R 0 = 1000. Three dashed lines show the effect of peak distribution on the
nonlinearity for the surfaces having the same roughness r = 3.5 lm. From Table 2, r = 3.5 lm represents
a quite rough interface, therefore, the plastic deformation at asperity peaks should be prevalent. In these
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interfaces, the nonlinearity exhibits no sensitivity to the asperity peak distribution, which results in a near
coincidence of the three dashed lines. On the contrary, when r = 0.35 lm which corresponds to a quite smooth
interface, the effect of asperity peak distribution is notable. From these, it can be concluded that the determi-
nation of roughness height distribution through the measurements of acoustic nonlinearity as intended by
Rudenko and Vu (1994) is possible only when the contacting surfaces are smooth making the elastic deforma-
tion dominant (w < 3). Nonetheless, it may be further limited to a situation in which the surface roughness can
accurately be measured. Otherwise, as shown in Fig. 10, three surfaces with the same distribution (m = 2) but
with different surface roughness show much larger variation.

In Fig. 11, the experimental results of Buck et al. (1978) for the nonlinearity of elastic waves transmitted
through an interface between two Al 1100 blocks are compared with the theoretical prediction. Since no data
on the material properties and on the surfaces are available in their paper, a typical set of material properties
listed in Table 1 is used in the calculation. The theoretical curve was scaled by a constant multiplier since y-axis
ðA2=A2

1Þ is in arbitrary unit (most likely the electrical signal amplitudes of the first and second harmonics were
not calibrated). The first observation from the measurement results is that there is no change in the nonlin-
earity during loading and unloading, indicative of a significant plastic deformation started at a low pressure
as we found already from Figs. 7–9. The elastoplastic hysteresis is probably small enough to fall well in the
range of the measurement error. The parameters used in the calculation are: r = 2.4 lm, c = 9.8, m = 10,
R 0 = 2000 and the resulting plasticity index is w = 5.38. It should be noted that, in spite of the apparently
excellent agreement, the theoretical curve shown is just one of many possible best-fits. In other words, as
shown in Fig. 10, due to the coincidence of the acoustic nonlinearity curves of transmitted waves for interfaces
with high plastic flow, there may be not only one but many curves from different sets of parameters that can fit
the experimental data. Due to this fact, Biwa et al. (2004) were able to fit this data set with the parameters of
the simple power-law determined from the other experimental data for a different material (Drinkwater et al.,
1996) but undergoing significant plastic flow at the interface. Therefore, the reduction of the complicated
problem using the simple power-law dependence for the pressure–approach relation is valid when there is a
significant plastic deformation at the interface so that the self-similarity of inelastic contact (Storakers
et al., 1997) supports the power-law.
7. Summary

The linear and second order acoustic stiffness of an interface under a compressive stress are calculated from
the micromechanical elastoplastic contact model to predict the acoustic nonlinearity of the interface during the
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first loading–unloading cycle. The hysteretic linear and nonlinear acoustic responses from interfaces with dif-
ferent microstructures are predicted. The second order harmonic amplitude of reflected/transmitted waves as
indicated by b decreases by more than an order of magnitude during the transition of the elastic–plastic defor-
mation. An interesting phenomenon of loading-history dependent acoustic nonlinearity during the unloading
phase is observed. For the combination of loading-history and interface properties considered here, the inter-
face between smooth surfaces can exhibit higher elastoplastic hysteresis in interfacial stiffness and nonlinearity
than the interface between rough surfaces. The different asperity distributions in the interfaces with high plas-
ticity indices do not make distinguishable change in the acoustic nonlinearity. The present model can be useful
for modeling nonlinear and hysteretic behaviors of imperfect interfaces and cracks and their ultrasonic non-
destructive evaluation based on probing these phenomena.
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Appendix A. Loading–unloading of single asperity contact

Consider two identical deformable spheres with radius R, Young’s modulus E, Poisson’s ratio m and yield
stress rY. The spheres are pressed by an external load P to be in normal contact producing a relative normal
approach d. The critical approach dc at which a local plastic yielding commences (yielding inception) (Chang
et al., 1987) is given by
dc ¼ r2
pR; ðA:1Þ
where rp = (pkH/2E*); E* = E/(1 � m2); H is the hardness of the material (Tabor, 1951); k the hardness coef-
ficient is given by k = 0.454 + 0.41m (Kogut and Etsion, 2002). The normalized load and the radius of contact
area versus the normalized approach can be represented in a unified way:
P
P c

¼ C1

d
dc

� �k1

; ðA:2Þ

a
ac

¼ C2

d
dc

� �k2

; ðA:3Þ
where a is the contact radius, Pc and ac are the load and the radius of contact area at the yield inception given
by Hertz theory (Johnson, 1985),
P c ¼
4

3
E�R

1
2d

3
2
c; ðA:4Þ

ac ¼ ðRdcÞ
1
2; ðA:5Þ
and C1,2 and k1,2 are coefficients for different contact regimes. Recently, an accurate finite element analysis of
the elastoplastic contact of two spheres (Kogut and Etsion, 2002) provides the coefficients in Eqs. (A.2)
and (A.3): C1 = C2 = 1, k1 = 1.5 and k2 = 0.5 for d/dc 6 1; C1 = 1.03, C2 = 0.96, k1 = 1.425, k2 = 0.568 for
1 6 d/dc 6 6; C1 = 1.40, C2 = 0.97, k1 = 1.263, k2 = 0.573 for 6 6 d/dc 6 110. Since the coefficients are those
for dimensionless expressions (Eqs. (A.2) and (A.3)), they are not restricted to a specific material or sphere
radius.

To calculate the acoustic interfacial stiffness of a single asperity, the local unloading slope is first obtained. At
any point of the loading curve the slope of the initial unloading curve (oPunload/od) and the acoustic stiffness of
the single asperity may be calculated (Johnson, 1996; Cheng and Cheng, 1997; Oliver and Pharr, 1992) as
oP unload

od
¼ 2aE�; ðA:6Þ
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where the elastoplastic radius of the contact area a is obtained from the loading model Eq. (A.3). Thus, the
acoustic interfacial stiffness during loading for the single asperity is
j1 ¼
oP unload

od
¼ 2aE�. ðA:7Þ
Substituting Eq. (A.3) into Eq. (A.7) and differentiating, one obtains
j1 ¼ 2C2E�ac

d
dc

� �k2

; ðA:8Þ

j2 ¼ C2k2E�acd
�1
c

d
dc

� �k2�1

. ðA:9Þ
Since the unloading process is predominantly elastic the slope at any point on the full unloading curve from
the maximum load to zero is given by Eq. (A.6) (Johnson, 1996). However, the relationship between the dis-
placement (d) and the radius of contact area (a) is generally unknown during the recovery from an arbitrary
plastic state. Therefore, to use it along the whole unloading curve an approximate unloading model is required
for calculating the stiffness from the above equation. An approximate unloading model can be evaluated by
checking if it satisfies the fundamental relationship Eq. (A.6). As in Kim et al. (2004), the unloading model of
Li et al. (2002) is employed. The load–displacement relation during unloading is given
P
P c

¼ P max

P c

� Rmax

R

� �1
2 dmax

dc

� �3
2

� d
dc

� �3
2

" #
; ðA:10Þ
where Pmax and dmax are the maximum load and the corresponding maximum approach during loading–
unloading cycle; Rmax is the radius of curvature at the maximum load.
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