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Let A be an n X n primitive nonnegative matrix. The long-run behavior x, /Il x |l
of the linear process x;,; = x, A is determined by the stochastic eigenvector 7 of
A. In this paper we consider the linear process x;,; = x; A;, where each A,
fluctuates about A, and provide numerical bounds on the difference between
x;/llx; |l and 7, thus showing how well 7 describes the long-run behavior of this
fluctuating behavior.  © 2001 Academic Press

The behavior of a linear process such as x,,, = x, 4, where A4 is an
n X n primitive nonnegative matrix, depends on the stochastic eigenvector
belonging to the largest eigenvalue of A [3]. If the transition matrix
fluctuates (the more likely case), yielding the process x,,, = x, 4, then
little is known. If A is a stochastic matrix, bounds on the components of
the x,’s can be found [1] and thus something of the long-run behavior can
be established. If A is simply nonnegative, some conditions which ensure
that the x,’s converge to some limiting set are shown in [4]. However,
computable bounds which indicate numerically where the x,’s tend are not
known. In this paper, such bounds are established. In particular, if the
A,’s remain near A, we show how closely the stochastic eigenvector of A
describes the behavior of the fluctuating system.

In this paper, all vectors are row vectors. Thus, when multiplied by a
matrix they appear to the left of the matrix.

Results. Throughout the paper we let 4 denote an n X n primitive
matrix. By the Perron—Frobenius Theorem, A has a positive eigenvalue A
and corresponding stochastic eigenvector 7.

By a fluctuation of A we will mean a nonnegative matrix A + E where
the entries of E are small compared to the corresponding entries of A.
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We suppose that the entries of E are bounded, |e; ,| <&
for all i, j.
Let p denote the projective pseudo-metric on positive vectors defined by

and a;; — &; >0

Xi/Y;
p(x,y) = max In .
(%) = 132 (xj/yj)

Using this, the coefficient of ergodicity is defined for any primitive matrix
B as
J(B) = sup p(xB,yB)/p(x,y).
Py
It follows that
p(xB,yB) <J(B)p(x,y), for all positive vectors x, y.

It is known [3] that 7{B) < 1 and that if B has all its entries positive, then
J(B) < 1.

Since A is primitive there is a positive integer r such that A" has all
entries positive. Thus, its coefficient of ergodicity is positive. Throughout
the paper we define

T=9(A").
Another number used in our bound work follows. Using p, define
8=supp(xA4,x(A +E)),

where the sup is over all fluctuations 4 + E and all positive vectors x. We
show that & is finite by proving the following two lemmas.

LEmma 1. Let A + E be a fluctuation of A. Define RE; =
sup, ». ((I(xE);|/(xA),) and RE = max; RE;. Then RE < max; (&, /a;)).

Proof.  For each i

[(xE);] lx1eq; + x5y, + - Fx,e,l
RE; = sup = su
x>0 (xA); x>0 X4y T Xpay; + 00 +Xx,4,;
X&) T X, & + o +x,E
< sup
x>0 X14y; t X0, + - tXx,4,
Eri
< max —,
k  ap;

an easily established bound which can be found in [2, p. 79]. Thus,
RE < max; (&;;/a;). 1
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LEmMMA 2. Let A + E be a fluctuation of A. If RE < 1, then, for any
positive vector X,

xA A+ E !
< .
p(xd, x( ))<1—RE

Proof. Let x > 0. For simplicity, set (x4), = z, and (xE), = ¢, for all
k. Then, for any i and j,

z; te e z; 1
=1+ — and

z; z; z;+e, 1+e/z

Thus,
z; z;te 1+ €;/z;

z+e  z B 1+e/z;

From this we have

—+ < .

From this, the result follows. [}
We put the lemmas together.
THEOREM 1.  If max(&;;/a,;) <1 forall i, j. Then

1 + max(&;/a;)
s<1 L

T max (&;/a;;)
]

L,
We now consider the fluctuating linear process
xX,>0
Xppr =X Ay,

where A, is a fluctuation of A for each k. Our goal is to obtain some
information about the behavior of the iterates x,/|lx,ll, x,/llx,ll,... . To
do this, let S denote the set of positive stochastic vectors. Note that p is
a metric on S*. Let

%, =x./llxly  forall k.

Thus X, X,,... are scaled from the iterates x,x,,... to be stochastic
vectors.
The following lemma on vectors in S* is useful throughout.
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LEMMA 3. Letx,ybein S* and let € > 0. If p(x,y) < €, then ||lx — yll,
<e—1.

Proof.  Since p(x, y) < € it follows that

Xi Y Xi Y .
max In—— < € or max — — < e°.
L] Vi Xj iLj Yi Xj
Thus,
1
> € €.
max(xi/yi)(yj/xj)
i,]

And since 1/max; ;(x;y;/y;x;) = min, (y,x;/x;y;), it follows that

XiY;

min —— >e” ¢,
iLj Y X;
Thus,
Xi Yj ..
e < —L <et forall i, ;.
Yi Xj

Since x, y are stochastic there is an r and an s such that

7 <1 and el > 1.
xr xS
Using this, we see that
X
e < —<ef for all i.
Vi

Thus,
e yi<x;<e%y and (e -1y <x -y <(e— 1)y
for all i. Since e* — 1 > 1 — e ¢ it follows that
lx, =yl < (ec=1)y, foralli.
Summing over i yields

lx —yll; <e—1.

Concerning the behavior of the iterates X, X,,... we first give a result
on the closeness of any X, to 7r. This requires two lemmas.
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LEMMA 4. Forall k and t <r,
p(X, A X Ay Agpiyy) < 28
Proof. Note that
p(ikrAt’xkrAkr"'Akr+t71)
< p(‘fkrAta )_CkrAkr e Akr+t—2A)
+ p(ikrAkr R Akr+t—2A’ )_CkrAkr e Akr+t—1)
< p(ikrAt_l’)_CkrAkr Akr+t—2) + 6

and continuing

<(t—1)6+6=16.

LEMMA 5. Forall k,
p(m, %) < o(m, %)+ (1 +T+ - +7*2)rs.
Proof. Using Lemma 4,
p(m, %,) = P(WA", )_C(k—l)rAr)
+ P()_‘(kﬂ)rAra Xe—1yr Ag—1yr -+ - Akrfl)
<Ip(m, Xy _1y,) + 8.
For simplicity set d, = p(, X,,). Thus,
d,<9d, +rd
dy, <9d, +ré.
Substitution leads to
dy <%, + T 2(rd) + T 3(r8) + -+ +18.
From this the result follows. |

Putting the lemmas together, we have the following theorem.

THEOREM 2. Forallk and t <,

p(7, %) < [T (7, %) + (1 +T+ - +T%2)rs] + 1.
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Proof.  Using Lemma 4,
p(7, Xpps) = P(WA[a Xpp Ay - Akr+z—l)
< p(WAt’ )-CkrAt) + p()-ckrAt7 xkrAkr e Akr+t71)
< p(m,X;,) +18.
Now using Lemma 5

p(7,%0,) < [T o(m, %) + (1 +T+ - +T52)rs] +15.

1
This theorem ensures that in the long run X,, X,,... get within 2 +
(r — 16 of w. We now intend to show that x,, X,,... actually tend to a

set of stochastic vectors. To do this, we use the following lemma.

LEMMA 6. Let x be a vector in S* with p(ar,x) < a. Then min; x; >
(1 /n)/(max; ;(m,/7;)e’).

Proof.  Since p(m, x) < a,

m X ™ X,
In max —— <a or max — — < e“.
imj X; iLjoX;

Suppose max; x; = x, and min,; x; = x,. Then

T X
_4_p < e“‘
xq p
So
X ;
2 < max —e¢*
xq i,] 7Tj
Since x is stochastic, x, > 5, so
1/n L 1/n
—— < max —e and T <X,
X, i nilax(ﬂ-,-/rrj)e

Let b be a positive number. Define
S, = {x: x is stochastic and x; > b for all i}.

We show that S, is compact in S* with the p metric.
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LemMA 7. S, is compact.

Proof.  First note that, in the 1-norm, S, is compact. Now, let z,, z,, ...
be a sequence in S,. Then, in the 1-norm, there is a subsequence

Zy» Zk,» - Which converges to say z € §,. Then, by the continuity of p,
Zy» Zk,, - -+ converges to z in the p metric. Thus, S, is compact in §* with
the p metric. |
Define
C={xeS":p(m,x) < +(r—1)8}.
e st p(mn) < 705+ (= 1)

Using Lemma 6 and Lemma 7, and that closed sets inside compact sets are
themselves compact, it follows that C is compact in the p metric. Define,
for any x € S™,

p(x,C) = min p(x,¢),
ceC

the distance of x from C.
We now show that the iterates X;,X,,... tend to the subset C of
stochastic vectors. The theorem requires three lemmas.

LEMMA 8. Let x be a vector in S™ and suppose, without loss of generality,

that w /x, = w,/x, = -+ = m,/x,. Then, forany o, 0 < a < 1,
T T ,
> > e > .
am; + (1 —a)x, am, + (1 — a)x, am, + (1 — a)x,

Proof. We show that if 7,/x; > m;/x;, then 7, /(am, + (1 — @)x;) =
m;/(am; + (1 — a)x;), where 0 < & < 1. This follows from the following
equivalent inequalities:

2|
Y%
H|a

amm + (1 — a)mx; > amm + (1 — a)mx,

’7Tl-(a7T]- + (1 - a)xj) > m(am + (1 - a)x;)
; ;

> .
am; + (1 — ax;) am; + (1- a)xj
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LeEmMMA 9. Using the hypothesis of Lemma 8,

@ plar, x) = In(m; /x Nx, /7).
() plm,ar+ A — @)x) = In(w, /(a7 + 1 — a)x)(am, + (1
— a)x,)/m,).
Gii)) p(m,x) = plm, amr+ (1 — a)x) + plam + (1 — a)x, x).

Proof. Both (i) and (i) are applications of Lemma 8. By reversing the
roles of x and = in (i)

X am, + (1 — a)x,

n

p(am+ (1 —a)x,x) =1In

am, + (1 — a)x, X,

Result (iii) follows by direct calculation. ||

LEmMMA 10. If x is a vector in S* and

p(m,x) < +(r—1)6 + e,

1-9
then there is a vector x € C such that p(x, X) < e.

Proof. If p(m,x) < {25+ (r — 1)8 take ¥ = x. Otherwise, consider
x(a) = am+ (1 — a)x. Since x(0) = x and x(1) = 7, « can be chosen so
that p(m, x(a@)) = 25 + (r — 1)8. Set ¥ = x(a) for this a. Then, by
Lemma 9,

p(m,x) = p(m, %) + p(X, x)

o+ (= D8+ p(x ).

Since we are given that

p(m,x) < 1 _3_+(r— 1)8 + e,

it follows that

p(%,x) <e.

THEOREM 3. Forany kandt <r,

p(C, %ppy,) <Tp(m, %,).



BOUNDS ON FLUCTUATING LINEAR PROCESSES 51

Proof. By Theorem 2,

p(m, %y,) < [T o(m, %) + (1 + T+ - +T% 1)rs] + 19,

<T* p(m, x,) + + 8.

1-9
By Lemma 10, with € =.9% (s, X,) we have ¥ € C such that

p(%. T ) <7 b(m.,).

1

As a concluding result, we now show that small changes in the iterates
X, X,,... also indicate within or close to C. This requires a preliminary
lemma.

LeEMMA 11. Let x be a positive vector. Then, for any i, if m; denotes the
stochastic eigenvector of A;,

lim p(7Ti,XAi~() = 0.

k— o

Hence m; € C.

k
Proof. It is known that lim, ¢ = ;. Thus

xA*
lim p(m, xA) = lim p(wi,—’ = p(m,m) = 0.

ke ke A%l

Now, if we have in the sequence A; = A4, for all j > i, the previous results
still hold. Thus, m; € C. 1

THEOREM 4. For all i, if 7(A;) <9 and T < 1, then

r

p(C,x;) < 1 _ip(xiaxi+1)-

Proof. By the triangular inequality
p(%i, X AT < p(Xp, Xy ) + p(X A X Ay) + oo
+ (XA X AT
<rp(%;, %) +1Ip(X;, %ipq) + o

+ 1T (% %) + T (X X )
r

< =
1-9

p()_ciaii-#l) + tg__kp()_ciaxi+l)'
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Now, letting k — oo,

r

p(X;,m) < 1 _§p(ii72i+l)'
Since by Lemma 11, 7, € C,
p(C.x;) < 1 _§P(xi’ii+1)~

An example putting the work together may be helpful.

ExampLE. Let 4 =[3¢] and & = [J1J!]. Using the formulas in [2],

9 = 0.10909. Direct calculation also shows that

RE < 0.02041 and 6 < 0.04082.
Thus, the radius of C is —2 == 0.04582. Using Theorem 3, this says that

1
the normalized iterates X, tend to the stochastic vectors in C or stay

within %432 — 1 = 0.04689 of .
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