Numerical Bounds on Fluctuating Linear Processes

D. J. Hartfiel

Mathematics Denartment Texas A \& M Iniversity College Station Texac 77843
metadata, citation and similar papers at core.ac.uk

Received April 13, 1998

Let A be an $n \times n$ primitive nonnegative matrix. The long-run behavior $x_{k} /\left\|x_{k}\right\|_{1}$ of the linear process $x_{k+1}=x_{k} A$ is determined by the stochastic eigenvector π of A. In this paper we consider the linear process $x_{k+1}=x_{k} A_{k}$, where each A_{k} fluctuates about A, and provide numerical bounds on the difference between $x_{k} /\left\|x_{k}\right\|$ and π, thus showing how well π describes the long-run behavior of this fluctuating behavior. © 2001 Academic Press

The behavior of a linear process such as $x_{k+1}=x_{k} A$, where A is an $n \times n$ primitive nonnegative matrix, depends on the stochastic eigenvector belonging to the largest eigenvalue of A [3]. If the transition matrix fluctuates (the more likely case), yielding the process $x_{k+1}=x_{k} A_{k}$, then little is known. If A is a stochastic matrix, bounds on the components of the x_{k} 's can be found [1] and thus something of the long-run behavior can be established. If A is simply nonnegative, some conditions which ensure that the x_{k} 's converge to some limiting set are shown in [4]. However, computable bounds which indicate numerically where the x_{k} 's tend are not known. In this paper, such bounds are established. In particular, if the A_{k} 's remain near A, we show how closely the stochastic eigenvector of A describes the behavior of the fluctuating system.

In this paper, all vectors are row vectors. Thus, when multiplied by a matrix they appear to the left of the matrix.

Results. Throughout the paper we let A denote an $n \times n$ primitive matrix. By the Perron-Frobenius Theorem, A has a positive eigenvalue λ and corresponding stochastic eigenvector π.

By a fluctuation of A we will mean a nonnegative matrix $A+E$ where the entries of E are small compared to the corresponding entries of A.

We suppose that the entries of E are bounded, $\left|e_{i j}\right| \leq \mathscr{E}_{i j}$, and $a_{i j}-\mathscr{E}_{i j}>0$ for all i, j.
Let ρ denote the projective pseudo-metric on positive vectors defined by

$$
\rho(x, y)=\max _{i, j} \ln \left(\frac{x_{i} / y_{i}}{x_{j} / y_{j}}\right) .
$$

Using this, the coefficient of ergodicity is defined for any primitive matrix B as

$$
\mathscr{T}(B)=\sup _{\substack{x y \\ x \neq y}} \rho(x B, y B) / \rho(x, y) .
$$

It follows that

$$
\rho(x B, y B) \leq \mathscr{T}(B) \rho(x, y), \quad \text { for all positive vectors } x, y .
$$

It is known [3] that $\mathscr{\mathscr { T }}(B) \leq 1$ and that if B has all its entries positive, then $\mathscr{T}(B)<1$.

Since A is primitive there is a positive integer r such that A^{r} has all entries positive. Thus, its coefficient of ergodicity is positive. Throughout the paper we define

$$
\mathscr{T}=\mathscr{T}\left(A^{r}\right) .
$$

Another number used in our bound work follows. Using ρ, define

$$
\delta=\sup \rho(x A, x(A+E))
$$

where the sup is over all fluctuations $A+E$ and all positive vectors x. We show that δ is finite by proving the following two lemmas.

Lemma 1. Let $A+E$ be a fluctuation of A. Define $R E_{i}=$ $\sup _{x>0}\left(\left|(x E)_{i}\right| /(x A)_{i}\right)$ and $R E=\max _{i} R E_{i}$. Then $R E \leq \max _{i, j}\left(\mathscr{E}_{i j} / a_{i j}\right)$.
Proof. For each i

$$
\begin{aligned}
R E_{i} & =\sup _{x>0} \frac{\left|(x E)_{i}\right|}{(x A)_{i}}=\sup _{x>0} \frac{\left|x_{1} e_{1 i}+x_{2} e_{2 i}+\cdots+x_{n} e_{n i}\right|}{x_{1} a_{1 i}+x_{2} a_{2 i}+\cdots+x_{n} a_{n i}} \\
& \leq \sup _{x>0} \frac{x_{1} \mathscr{E}_{1 i}+x_{2} \mathscr{E}_{2 i}+\cdots+x_{n} \mathscr{E}_{n i}}{x_{1} a_{1 i}+x_{2} a_{2 i}+\cdots+x_{n} a_{n i}} \\
& \leq \max _{k} \frac{\mathscr{E}_{k i}}{a_{k i}},
\end{aligned}
$$

an easily established bound which can be found in [2, p. 79]. Thus, $R E \leq \max _{i, j}\left(\mathscr{E}_{i j} / a_{i j}\right)$.

Lemma 2. Let $A+E$ be a fluctuation of A. If $R E<1$, then, for any positive vector x,

$$
\rho(x A, x(A+E)) \leq \frac{1+R E}{1-R E}
$$

Proof. Let $x>0$. For simplicity, set $(x A)_{k}=z_{k}$ and $(x E)_{k}=e_{k}$ for all k. Then, for any i and j,

$$
\frac{z_{j}+e_{j}}{z_{j}}=1+\frac{e_{j}}{z_{j}} \quad \text { and } \quad \frac{z_{i}}{z_{i}+e_{i}}=\frac{1}{1+e_{i} / z_{i}} .
$$

Thus,

$$
\frac{z_{i}}{z_{i}+e_{i}} \frac{z_{j}+e_{j}}{z_{j}}=\frac{1+e_{j} / z_{j}}{1+e_{i} / z_{i}} .
$$

From this we have

$$
\rho(x A, x(A+E)) \leq \ln \frac{1+R E}{1-R E}
$$

From this, the result follows.
We put the lemmas together.
Theorem 1. If $\max \left(\mathscr{E}_{i j} / a_{i j}\right)<1$ for all i, j. Then

$$
\delta \leq \ln \frac{1+\max _{i, j}\left(\mathscr{E}_{i j} / a_{i j}\right)}{1-\max _{i, j}\left(\mathscr{E}_{i j} / a_{i j}\right)}
$$

We now consider the fluctuating linear process

$$
\begin{gathered}
x_{0}>0 \\
x_{k+1}=x_{k} A_{k},
\end{gathered}
$$

where A_{k} is a fluctuation of A for each k. Our goal is to obtain some information about the behavior of the iterates $x_{1} /\left\|x_{1}\right\|, x_{2} /\left\|x_{2}\right\|, \ldots$. To do this, let S^{+}denote the set of positive stochastic vectors. Note that ρ is a metric on S^{+}. Let

$$
\bar{x}_{k}=x_{k} /\left\|x_{k}\right\|_{1} \quad \text { for all } k .
$$

Thus $\bar{x}_{1}, \bar{x}_{2}, \ldots$ are scaled from the iterates x_{1}, x_{2}, \ldots to be stochastic vectors.

The following lemma on vectors in S^{+}is useful throughout.

Lemma 3. Let x, y be in S^{+}and let $\epsilon>0$. If $\rho(x, y) \leq \epsilon$, then $\|x-y\|_{1}$ $\leq e^{\epsilon}-1$.
Proof. Since $\rho(x, y) \leq \epsilon$ it follows that

$$
\max _{i, j} \ln \frac{x_{i}}{y_{i}} \frac{y_{j}}{x_{j}} \leq \epsilon \quad \text { or } \quad \max _{i, j} \frac{x_{i}}{y_{i}} \frac{y_{j}}{x_{j}} \leq e^{\epsilon} .
$$

Thus,

$$
\frac{1}{\max _{i, j}\left(x_{i} / y_{i}\right)\left(y_{j} / x_{j}\right)} \geq \epsilon^{-\epsilon} .
$$

And since $1 / \max _{i, j}\left(x_{i} y_{j} / y_{i} x_{j}\right)=\min _{i, j}\left(y_{i} x_{j} / x_{i} y_{j}\right)$, it follows that

$$
\min _{i, j} \frac{x_{i}}{y_{i}} \frac{y_{j}}{x_{j}} \geq e^{-\epsilon} .
$$

Thus,

$$
e^{-\epsilon} \leq \frac{x_{i}}{y_{i}} \frac{y_{j}}{x_{j}} \leq e^{\epsilon} \quad \text { for all } i, j .
$$

Since x, y are stochastic there is an r and an s such that

$$
\frac{y_{r}}{x_{r}} \leq 1 \quad \text { and } \quad \frac{y_{s}}{x_{s}} \geq 1 .
$$

Using this, we see that

$$
e^{-\epsilon} \leq \frac{x_{i}}{y_{i}} \leq e^{\epsilon} \quad \text { for all } i .
$$

Thus,

$$
e^{-\epsilon} y_{i} \leq x_{i} \leq e^{\epsilon} y_{i} \quad \text { and } \quad\left(e^{-\epsilon}-1\right) y_{i} \leq x_{i}-y_{i} \leq\left(e^{\epsilon}-1\right) y_{i}
$$

for all i. Since $e^{\epsilon}-1 \geq 1-e^{-\epsilon}$ it follows that

$$
\left|x_{i}-y_{i}\right| \leq\left(e^{\epsilon}-1\right) y_{i} \quad \text { for all } i .
$$

Summing over i yields

$$
\|x-y\|_{1} \leq e^{\epsilon}-1
$$

Concerning the behavior of the iterates $\bar{x}_{1}, \bar{x}_{2}, \ldots$ we first give a result on the closeness of any \bar{x}_{k} to π. This requires two lemmas.

Lemma 4. For all k and $t<r$,

$$
\rho\left(\bar{x}_{k r} A^{t}, \bar{x}_{k r} A_{k r} \ldots A_{k r+t-1}\right) \leq t \delta .
$$

Proof. Note that

$$
\begin{aligned}
& \rho\left(\bar{x}_{k r} A^{t}, \bar{x}_{k r} A_{k r} \ldots A_{k r+t-1}\right) \\
& \quad \leq \rho\left(\bar{x}_{k r} A^{t}, \bar{x}_{k r} A_{k r} \ldots A_{k r+t-2} A\right) \\
& \quad \quad+\rho\left(\bar{x}_{k r} A_{k r} \ldots A_{k r+t-2} A, \bar{x}_{k r} A_{k r} \ldots A_{k r+t-1}\right) \\
& \quad \leq \rho\left(\bar{x}_{k r} A^{t-1}, \bar{x}_{k r} A_{k r} \ldots A_{k r+t-2}\right)+\delta
\end{aligned}
$$

and continuing

$$
\leq(t-1) \delta+\delta=t \delta
$$

Lemma 5. For all k,

$$
\rho\left(\pi, \bar{x}_{k r}\right) \leq \mathscr{T}^{k-1} \rho\left(\pi, \bar{x}_{r}\right)+\left(1+\mathscr{T}+\cdots+\mathscr{T}^{k-2}\right) r \delta
$$

Proof. Using Lemma 4,

$$
\begin{aligned}
\rho\left(\pi, \bar{x}_{k r}\right)= & \rho\left(\pi A^{r}, \bar{x}_{(k-1) r} A^{r}\right) \\
& +\rho\left(\bar{x}_{(k-1) r} A^{r}, \bar{x}_{(k-1) r} A_{(k-1) r} \ldots A_{k r-1}\right) \\
\leq & \mathscr{T} \rho\left(\pi, \bar{x}_{(k-1) r}\right)+r \delta .
\end{aligned}
$$

For simplicity set $d_{k}=\rho\left(\pi, \bar{x}_{k r}\right)$. Thus,

$$
\begin{aligned}
& d_{2} \leq \mathscr{T} d_{1}+r \delta \\
& d_{3} \leq \mathscr{T} d_{2}+r \delta
\end{aligned}
$$

Substitution leads to

$$
d_{k} \leq \mathscr{T}^{k-1} d_{1}+\mathscr{T}^{k-2}(r \delta)+\mathscr{T}^{r-3}(r \delta)+\cdots+r \delta
$$

From this the result follows.
Putting the lemmas together, we have the following theorem.
Theorem 2. For all k and $t<r$,

$$
\rho\left(\pi, \bar{x}_{k r+t}\right) \leq\left[\mathscr{T}^{k-1} \rho\left(\pi, \bar{x}_{r}\right)+\left(1+\mathscr{T}+\cdots+\mathscr{T}^{k-2}\right) r \delta\right]+t \delta .
$$

Proof. Using Lemma 4,

$$
\begin{aligned}
\rho\left(\pi, \bar{x}_{k r+t}\right) & =\rho\left(\pi A^{t}, \bar{x}_{k r} A_{k r} \ldots A_{k r+t-1}\right) \\
& \leq \rho\left(\pi A^{t}, \bar{x}_{k r} A^{t}\right)+\rho\left(\bar{x}_{k r} A^{t}, \bar{x}_{k r} A_{k r} \ldots A_{k r+t-1}\right) \\
& \leq \rho\left(\pi, \bar{x}_{k r}\right)+t \delta
\end{aligned}
$$

Now using Lemma 5

$$
\rho\left(\pi, \bar{x}_{k r+t}\right) \leq\left[\mathscr{T}^{k-1} \rho\left(\pi, \bar{x}_{r}\right)+\left(1+\mathscr{T}+\cdots+\mathscr{T}^{k-2}\right) r \delta\right]+t \delta
$$

This theorem ensures that in the long run $\bar{x}_{1}, \bar{x}_{2}, \ldots$ get within $\frac{r \delta}{1-\mathscr{T}}+$ $(r-1) \delta$ of π. We now intend to show that $\bar{x}_{1}, \bar{x}_{2}, \ldots$ actually tend to a set of stochastic vectors. To do this, we use the following lemma.

Lemma 6. Let x be a vector in S^{+}with $\rho(\pi, x) \leq a$. Then $\min _{i} x_{i} \geq$ $(1 / n) /\left(\max _{i, j}\left(\pi_{i} / \pi_{j}\right) e^{a}\right)$.

Proof. Since $\rho(\pi, x) \leq a$,

$$
\ln \max _{i m j} \frac{\pi_{i}}{x_{i}} \frac{x_{j}}{\pi_{j}} \leq a \quad \text { or } \quad \max _{i, j} \frac{\pi_{i}}{x_{i}} \frac{x_{i}}{\pi_{j}} \leq e^{a}
$$

Suppose $\max _{i} x_{i}=x_{p}$ and $\min _{i} x_{i}=x_{q}$. Then

$$
\frac{\pi_{q}}{x_{q}} \frac{x_{p}}{\pi_{p}} \leq e^{a}
$$

So

$$
\frac{x_{p}}{x_{q}} \leq \max _{i, j} \frac{\pi_{i}}{\pi_{j}} e^{a}
$$

Since x is stochastic, $x_{\rho} \geq \frac{1}{n}$, so

$$
\frac{1 / n}{x_{q}} \leq \max _{i, j} \frac{\pi_{i}}{\pi_{j}} e^{a} \quad \text { and } \quad \frac{1 / n}{\max _{i, j}\left(\pi_{i} / \pi_{j}\right) e^{a}} \leq x_{q}
$$

Let b be a positive number. Define

$$
S_{b}=\left\{x: x \text { is stochastic and } x_{i} \geq b \text { for all } i\right\}
$$

We show that S_{b} is compact in S^{+}with the ρ metric.

Lemma 7. S_{b} is compact.
Proof. First note that, in the 1-norm, S_{b} is compact. Now, let z_{1}, z_{2}, \ldots be a sequence in S_{b}. Then, in the 1-norm, there is a subsequence $z_{k_{1}}, z_{k_{2}}, \ldots$ which converges to say $z \in S_{b}$. Then, by the continuity of ρ, $z_{k_{1}}, z_{k_{2}}, \ldots$ converges to z in the ρ metric. Thus, S_{b} is compact in S^{+}with the ρ metric.

Define

$$
C=\left\{x \in S^{+}: \rho(\pi, x) \leq \frac{r \delta}{1-\mathscr{T}}+(r-1) \delta\right\} .
$$

Using Lemma 6 and Lemma 7, and that closed sets inside compact sets are themselves compact, it follows that C is compact in the ρ metric. Define, for any $x \in S^{+}$,

$$
\rho(x, C)=\min _{c \in C} \rho(x, c),
$$

the distance of x from C.
We now show that the iterates $\bar{x}_{1}, \bar{x}_{2}, \ldots$ tend to the subset C of stochastic vectors. The theorem requires three lemmas.

Lemma 8. Let x be a vector in S^{+}and suppose, without loss of generality, that $\pi_{1} / x_{1} \geq \pi_{2} / x_{2} \geq \cdots \geq \pi_{n} / x_{n}$. Then, for any $\alpha, 0 \leq \alpha \leq 1$,

$$
\frac{\pi_{1}}{\alpha \pi_{1}+(1-\alpha) x_{1}} \geq \frac{\pi_{2}}{\alpha \pi_{2}+(1-\alpha) x_{2}} \geq \cdots \geq \frac{\pi_{n}}{\alpha \pi_{n}+(1-\alpha) x_{n}} .
$$

Proof. We show that if $\pi_{i} / x_{i} \geq \pi_{j} / x_{j}$, then $\pi_{i} /\left(\alpha \pi_{i}+(1-\alpha) x_{i}\right) \geq$ $\pi_{j} /\left(\alpha \pi_{j}+(1-\alpha) x_{j}\right)$, where $0 \leq \alpha \leq 1$. This follows from the following equivalent inequalities:

$$
\begin{aligned}
\frac{\pi_{i}}{x_{i}} & \geq \frac{\pi_{j}}{x_{j}} \\
\pi_{i} x_{j} & \geq \pi_{j} x_{i} \\
\alpha \pi_{i} \pi_{j}+(1-\alpha) \pi_{i} x_{j} & \geq \alpha \pi_{i} \pi_{j}+(1-\alpha) \pi_{j} x_{i} \\
\pi_{i}\left(\alpha \pi_{j}+(1-\alpha) x_{j}\right) & \geq \pi_{j}\left(\alpha \pi_{i}+(1-\alpha) x_{i}\right) \\
\frac{\pi_{i}}{\alpha \pi_{i}+\left(1-\alpha x_{i}\right)} & \geq \frac{\pi_{j}}{\alpha \pi_{j}+(1-\alpha) x_{j}} .
\end{aligned}
$$

Lemma 9. Using the hypothesis of Lemma 8,
(i) $\rho(\pi, x)=\ln \left(\pi_{i} / x_{1}\right)\left(x_{n} / \pi_{n}\right)$.
(ii) $\quad \rho(\pi, \alpha \pi+(1-\alpha) x)=\ln \left(\pi_{1} /\left(\alpha \pi_{1}+(1-\alpha) x_{1}\right)\right)\left(\left(\alpha \pi_{n}+(1\right.\right.$ $\left.-\alpha) x_{n}\right) / \pi_{n}$.
(iii) $\rho(\pi, x)=\rho(\pi, \alpha \pi+(1-\alpha) x)+\rho(\alpha \pi+(1-\alpha) x, x)$.

Proof. Both (i) and (ii) are applications of Lemma 8. By reversing the roles of x and π in (ii)

$$
\rho(\alpha \pi+(1-\alpha) x, x)=\ln \left(\frac{x_{n}}{\alpha \pi_{n}+(1-\alpha) x_{n}} \frac{\alpha \pi_{1}+(1-\alpha) x_{1}}{x_{1}}\right) .
$$

Result (iii) follows by direct calculation.
Lemma 10. If x is a vector in S^{+}and

$$
\rho(\pi, x) \leq \frac{r \delta}{1-\mathscr{T}}+(r-1) \delta+\epsilon,
$$

then there is a vector $\bar{x} \in C$ such that $\rho(x, \bar{x}) \leq \epsilon$.
Proof. If $\rho(\pi, x) \leq \frac{r \delta}{1-\mathscr{g}}+(r-1) \delta$ take $\bar{x}=x$. Otherwise, consider $x(\alpha)=\alpha \pi+(1-\alpha) x$. Since $x(0)=x$ and $x(1)=\pi, \alpha$ can be chosen so that $\rho(\pi, x(\alpha))=\frac{r \delta}{1-9}+(r-1) \delta$. Set $\bar{x}=x(\alpha)$ for this α. Then, by Lemma 9,

$$
\begin{aligned}
\rho(\pi, x) & =\rho(\pi, \bar{x})+\rho(\bar{x}, x) \\
& =\frac{r \delta}{1-\mathscr{T}}+(r-1) \delta+\rho(\bar{x}, x) .
\end{aligned}
$$

Since we are given that

$$
\rho(\pi, x) \leq \frac{r \delta}{1-\mathscr{T}}+(r-1) \delta+\epsilon,
$$

it follows that

$$
\rho(\bar{x}, x) \leq \epsilon
$$

Theorem 3. For any k and $t<r$,

$$
\rho\left(C, \bar{x}_{k r+t}\right) \leq \mathscr{T}^{k} \rho\left(\pi, \bar{x}_{r}\right)
$$

Proof. By Theorem 2,

$$
\begin{aligned}
\rho\left(\pi, \bar{x}_{k r+t}\right) & \leq\left[\mathscr{T}^{k-1} \rho\left(\pi, \bar{x}_{r}\right)+\left(1+\mathscr{T}+\cdots+\mathscr{T}^{k-2}\right) r \delta\right]+t \delta, \\
& \leq \mathscr{T}^{k-1} \rho\left(\pi, \bar{x}_{r}\right)+\frac{r \delta}{1-\mathscr{T}}+t \delta .
\end{aligned}
$$

By Lemma 10, with $\epsilon=\mathscr{T}^{k-1} \rho\left(\pi, \bar{x}_{r}\right)$ we have $\bar{x} \in C$ such that

$$
\rho\left(\bar{x}, \bar{x}_{k r+t}\right) \leq \mathscr{T}^{k-1} \rho\left(\pi, \bar{x}_{r}\right) .
$$

As a concluding result, we now show that small changes in the iterates $\bar{x}_{1}, \bar{x}_{2}, \ldots$ also indicate within or close to C. This requires a preliminary lemma.

Lemma 11. Let x be a positive vector. Then, for any i, if π_{i} denotes the stochastic eigenvector of A_{i},

$$
\lim _{k \rightarrow \infty} \rho\left(\pi_{i}, x A_{i}^{k}\right)=0
$$

Hence $\pi_{i} \in C$.
Proof. It is known that $\lim _{k \rightarrow \infty} \frac{x A_{i}^{k}}{\left\|x A_{i}\right\|_{1}}=\pi_{i}$. Thus

$$
\lim _{k \rightarrow \infty} \rho\left(\pi_{i}, x A_{i}^{k}\right)=\lim _{k \rightarrow \infty} \rho\left(\pi_{i}, \frac{x A_{i}^{k}}{\left\|x A_{i}^{k}\right\|_{1}}\right)=\rho\left(\pi_{i}, \pi_{i}\right)=0
$$

Now, if we have in the sequence $A_{j}=A_{i}$ for all $j \geq i$, the previous results still hold. Thus, $\pi_{i} \in C$.

Theorem 4. For all i, if $\mathscr{T}\left(A_{i}\right) \leq \overline{\mathscr{T}}$ and $\overline{\mathscr{T}}<1$, then

$$
\rho\left(C, \bar{x}_{i}\right) \leq \frac{r}{1-\overline{\mathscr{T}}} \rho\left(\bar{x}_{i}, \bar{x}_{i+1}\right) .
$$

Proof. By the triangular inequality

$$
\begin{aligned}
\rho\left(\bar{x}_{i}, \bar{x}_{i+1} A_{i}^{k r+t}\right) \leq & \rho\left(\bar{x}_{i}, \bar{x}_{i+1}\right)+\rho\left(\bar{x}_{i} A_{i}, \bar{x}_{i+1} A_{i}\right)+\cdots \\
& +\rho\left(\bar{x}_{i} A_{i}^{k r+t}, \bar{x}_{i+1} A^{k r+t}\right) \\
\leq & r \rho\left(\bar{x}_{i}, \bar{x}_{i+1}\right)+r \overline{\mathscr{T}}^{2}\left(\bar{x}_{i}, \bar{x}_{i+1}\right)+\cdots \\
& +r \overline{\mathscr{T}}^{k-1} \rho\left(\bar{x}_{i}, \bar{x}_{i+1}\right)+t \overline{\mathscr{T}}^{k} \rho\left(\bar{x}_{i}, \bar{x}_{i+1}\right) \\
\leq & \frac{r}{1-\overline{\mathscr{T}}} \rho\left(\bar{x}_{i}, \bar{x}_{i+1}\right)+t \overline{\mathscr{T}}^{k} \rho\left(\bar{x}_{i}, \bar{x}_{i+1}\right) .
\end{aligned}
$$

Now, letting $k \rightarrow \infty$,

$$
\rho\left(\bar{x}_{i}, \pi_{i}\right) \leq \frac{r}{1-\overline{\mathscr{T}}} \rho\left(\bar{x}_{i}, \bar{x}_{i+1}\right) .
$$

Since by Lemma 11, $\pi_{i} \in C$,

$$
\rho\left(C, \bar{x}_{i}\right) \leq \frac{r}{1-\overline{\mathscr{T}}} \rho\left(x_{i}, \bar{x}_{i+1}\right) .
$$

An example putting the work together may be helpful.
Example. Let $A=\left[\begin{array}{cc}5 & 6 \\ 6 & 5\end{array}\right]$ and $\mathscr{E}=\left[\begin{array}{cc}0.1 & 0.1 \\ 0.1 & 0.1\end{array}\right]$. Using the formulas in [2], $\mathscr{T}=0.10909$. Direct calculation also shows that

$$
R E \leq 0.02041 \quad \text { and } \quad \delta \leq 0.04082
$$

Thus, the radius of C is $\frac{\delta}{1-\mathscr{T}}=0.04582$. Using Theorem 3, this says that the normalized iterates \bar{x}_{k} tend to the stochastic vectors in C or stay within $e^{0.04582}-1=0.04689$ of π.

REFERENCES

1. D. J. Hartfiel, Component bounds on Markov set-chain limiting sets, J. Statist. Comput. Simulation 38 (1991), 15-24.
2. M. Marcus and H. Minc, "Modern University Algebra," MacMillan Co., New York, 1966.
3. Eugene Seneta, "Nonnegative Matrices and Markov Chains," 2nd ed., Springer-Verlag, Berlin, 1981.
4. Eugene Seneta, On the limiting set of nonnegative matrix products, Statist. Probab. Lett. 2 (1984), 159-163.
