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� �Let A be an n � n primitive nonnegative matrix. The long-run behavior x � x 1k k
of the linear process x � x A is determined by the stochastic eigenvector � ofk� 1 k
A. In this paper we consider the linear process x � x A , where each Ak�1 k k k
fluctuates about A, and provide numerical bounds on the difference between

� �x � x and � , thus showing how well � describes the long-run behavior of thisk k
fluctuating behavior. � 2001 Academic Press

The behavior of a linear process such as x � x A, where A is ank�1 k
n � n primitive nonnegative matrix, depends on the stochastic eigenvector

� �belonging to the largest eigenvalue of A 3 . If the transition matrix
Ž .fluctuates the more likely case , yielding the process x � x A , thenk�1 k k

little is known. If A is a stochastic matrix, bounds on the components of
� �the x ’s can be found 1 and thus something of the long-run behavior cank

be established. If A is simply nonnegative, some conditions which ensure
� �that the x ’s converge to some limiting set are shown in 4 . However,k

computable bounds which indicate numerically where the x ’s tend are notk
known. In this paper, such bounds are established. In particular, if the
A ’s remain near A, we show how closely the stochastic eigenvector of Ak
describes the behavior of the fluctuating system.

In this paper, all vectors are row vectors. Thus, when multiplied by a
matrix they appear to the left of the matrix.

Results. Throughout the paper we let A denote an n � n primitive
matrix. By the Perron�Frobenius Theorem, A has a positive eigenvalue �
and corresponding stochastic eigenvector � .

By a fluctuation of A we will mean a nonnegative matrix A � E where
the entries of E are small compared to the corresponding entries of A.
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� �We suppose that the entries of E are bounded, e � EE , and a � EE � 0i j i j i j i j
for all i, j.

Let � denote the projective pseudo-metric on positive vectors defined by

x �yi i
� x , y � max ln .Ž . ž /x �yi , j j j

Using this, the coefficient of ergodicity is defined for any primitive matrix
B as

TT B � sup � xB, yB �� x , y .Ž . Ž . Ž .
x , y
x�y

It follows that

� xB, yB � TT B � x , y , for all positive vectors x , y.Ž . Ž . Ž .
� � Ž .It is known 3 that TT B � 1 and that if B has all its entries positive, then

Ž .TT B � 1.
Since A is primitive there is a positive integer r such that Ar has all

entries positive. Thus, its coefficient of ergodicity is positive. Throughout
the paper we define

TT � TT Ar .Ž .

Another number used in our bound work follows. Using �, define

� � sup � xA, x A � E ,Ž .Ž .
where the sup is over all fluctuations A � E and all positive vectors x. We
show that � is finite by proving the following two lemmas.

LEMMA 1. Let A � E be a fluctuation of A. Define RE �i
Ž �Ž . � Ž . . Ž .sup xE � xA and RE � max RE . Then RE � max EE �a .x � 0 i i i i i, j i j i j

Proof. For each i

� �xE x e � x e � ��� �x eŽ . i 1 1 i 2 2 i n ni
RE � sup � supi xA x a � x a � ��� �x aŽ . ix�0 x�0 1 1 i 2 2 i n ni

x EE � x EE � ��� �x EE1 1 i 2 2 i n ni� sup
x a � x a � ��� �x ax�0 1 1 i 2 2 i n ni

EEk i� max ,
ak k i

� �an easily established bound which can be found in 2, p. 79 . Thus,
Ž .RE � max EE �a .i, j i j i j
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LEMMA 2. Let A � E be a fluctuation of A. If RE � 1, then, for any
positi�e �ector x,

1 � RE
� xA, x A � E � .Ž .Ž .

1 � RE

Ž . Ž .Proof. Let x � 0. For simplicity, set xA � z and xE � e for allk k k k
k. Then, for any i and j,

z � e e z 1j j j i� 1 � and � .
z z z � e 1 � e �zj j i i i i

Thus,

z z � e 1 � e �zi j j j j� .
z � e z 1 � e �zi i j i i

From this we have

1 � RE
� xA, x A � E � ln .Ž .Ž .

1 � RE

From this, the result follows.

We put the lemmas together.

Ž .THEOREM 1. If max EE �a � 1 for all i, j. Theni j i j

1 � max EE �aŽ .i j i j
i , j

� � ln
1 � max EE �aŽ .i j i j

i , j

We now consider the fluctuating linear process

x � 00

x � x A ,k�1 k k

where A is a fluctuation of A for each k. Our goal is to obtain somek
� � � �information about the behavior of the iterates x � x , x � x , . . . . To1 1 2 2

do this, let S� denote the set of positive stochastic vectors. Note that � is
a metric on S�. Let

� �x � x � x for all k .1k k k

Thus x , x , . . . are scaled from the iterates x , x , . . . to be stochastic1 2 1 2
vectors.

The following lemma on vectors in S� is useful throughout.
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� Ž . � �LEMMA 3. Let x, y be in S and let � � 0. If � x, y � � , then x � y 1

� e� � 1.

Ž .Proof. Since � x, y � � it follows that

x y x yi j i j �max ln � � or max � e .
y x y xi , j i , ji j i j

Thus,

1
��	 � .

max x �y y �xŽ . Ž .i i j j
i , j

Ž . Ž .And since 1�max x y �y x � min y x �x y , it follows thati, j i j i j i, j i j i j

x yi j ��min 	 e .
y xi , j i j

Thus,
x yi j�� �e � � e for all i , j.
y xi j

Since x, y are stochastic there is an r and an s such that

y yr s� 1 and 	 1.
x xr s

Using this, we see that

xi�� �e � � e for all i .
yi

Thus,

e�� y � x � e� y and e�� � 1 y � x � y � e� � 1 yŽ . Ž .i i i i i i i

for all i. Since e� � 1 	 1 � e�� it follows that

� � �x � y � e � 1 y for all i .Ž .i i i

Summing over i yields

� � �x � y � e � 1.1

Concerning the behavior of the iterates x , x , . . . we first give a result1 2
on the closeness of any x to � . This requires two lemmas.k
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LEMMA 4. For all k and t � r,

t� x A , x A . . . A � t� .Ž .k r k r k r k r�t�1

Proof. Note that

t� x A , x A . . . AŽ .k r k r k r k r�t�1

t� � x A , x A . . . A AŽ .k r k r k r k r�t�2

� � x A . . . A A , x A . . . AŽ .k r k r k r�t�2 k r k r k r�t�1

t�1� � x A , x A . . . A � �Ž .k r k r k r k r�t�2

and continuing

� t � 1 � � � � t� .Ž .

LEMMA 5. For all k,

k�1 k�2� � , x � TT � � , x � 1 � TT � ��� �TT r� .Ž .Ž . Ž .k r r

Proof. Using Lemma 4,

r r� � , x � � � A , x AŽ . Ž .k r Žk�1. r

r� � x A , x A . . . AŽ .Žk�1. r Žk�1. r Žk�1. r k r�1

� TT� � , x � r� .Ž .Žk�1. r

Ž .For simplicity set d � � � , x . Thus,k k r

d � TTd � r�2 1

d � TTd � r� .3 2

Substitution leads to

d � TT k�1d � TT k�2 r� � TT r�3 r� � ��� �r� .Ž . Ž .k 1

From this the result follows.

Putting the lemmas together, we have the following theorem.

THEOREM 2. For all k and t � r,

k�1 k�2� � , x � TT � � , x � 1 � TT � ��� �TT r� � t� .Ž .Ž . Ž .k r�t r
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Proof. Using Lemma 4,

t� � , x � � � A , x A . . . AŽ . Ž .k r�t k r k r k r�t�1

t t t� � � A , x A � � x A , x A . . . AŽ . Ž .k r k r k r k r k r�t�1

� � � , x � t� .Ž .k r

Now using Lemma 5

k�1 k�2� � , x � TT � � , x � 1 � TT � ��� �TT r� � t� .Ž .Ž . Ž .k r�t r

r�This theorem ensures that in the long run x , x , . . . get within �1 2 1 � TT

Ž .r � 1 � of � . We now intend to show that x , x , . . . actually tend to a1 2
set of stochastic vectors. To do this, we use the following lemma.

� Ž .LEMMA 6. Let x be a �ector in S with � � , x � a. Then min x 	i i
Ž . Ž Ž . a.1�n � max � �� e .i, j i j

Ž .Proof. Since � � , x � a,

� x � xi j i i aln max � a or max � e .
x � x �im j i , ji j i j

Suppose max x � x and min x � x . Theni i p i i q

� xq p a� e .
x �q p

So
x �p i a� max e .
x �i , jq j

1Since x is stochastic, x 	 , so� n

1�n � 1�ni a� max e and � x .qax � max � �� ei , j Ž .q j i j
i , j

Let b be a positive number. Define

� 4S � x : x is stochastic and x 	 b for all i .b i

We show that S is compact in S� with the � metric.b
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LEMMA 7. S is compact.b

Proof. First note that, in the 1-norm, S is compact. Now, let z , z , . . .b 1 2
be a sequence in S . Then, in the 1-norm, there is a subsequenceb
z , z , . . . which converges to say z 
 S . Then, by the continuity of �,k k b1 2

z , z , . . . converges to z in the � metric. Thus, S is compact in S� withk k b1 2

the � metric.

Define

r�
�C � x 
 S : � � , x � � r � 1 � .Ž . Ž .½ 51 � TT

Using Lemma 6 and Lemma 7, and that closed sets inside compact sets are
themselves compact, it follows that C is compact in the � metric. Define,
for any x 
 S�,

� x , C � min � x , c ,Ž . Ž .
c
C

the distance of x from C.
We now show that the iterates x , x , . . . tend to the subset C of1 2

stochastic vectors. The theorem requires three lemmas.

LEMMA 8. Let x be a �ector in S� and suppose, without loss of generality,
that � �x 	 � �x 	 ��� 	 � �x . Then, for any � , 0 � � � 1,1 1 2 2 n n

� � �1 2 n	 	 ��� 	 .
�� � 1 � � x �� � 1 � � x �� � 1 � � xŽ . Ž . Ž .1 1 2 2 n n

Ž Ž . .Proof. We show that if � �x 	 � �x , then � � �� � 1 � � x 	i i j j i i i
Ž Ž . .� � �� � 1 � � x , where 0 � � � 1. This follows from the followingj j j

equivalent inequalities:

� �i j	
x xi j

� x 	 � xi j j i

�� � � 1 � � � x 	 �� � � 1 � � � xŽ . Ž .i j i j i j j i

� �� � 1 � � x 	 � �� � 1 � � xŽ . Ž .Ž .Ž .i j j j i i

� �i j	 .
�� � 1 � � x �� � 1 � � xŽ . Ž .i i j j
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LEMMA 9. Using the hypothesis of Lemma 8,

Ž . Ž . Ž .Ž .i � � , x � ln � �x x �� .i 1 n n

Ž . Ž Ž . . Ž Ž Ž . ..ŽŽ Žii � � , �� � 1 � � x � ln � � �� � 1 � � x �� � 11 1 1 n
. . .� � x �� .n n

Ž . Ž . Ž Ž . . Ž Ž . .iii � � , x � � � , �� � 1 � � x � � �� � 1 � � x, x .

Ž . Ž .Proof. Both i and ii are applications of Lemma 8. By reversing the
Ž .roles of x and � in ii

x �� � 1 � � xŽ .n 1 1
� �� � 1 � � x , x � ln .Ž .Ž . ž /�� � 1 � � x xŽ .n n 1

Ž .Result iii follows by direct calculation.

LEMMA 10. If x is a �ector in S� and

r�
� � , x � � r � 1 � � � ,Ž . Ž .

1 � TT

Ž .then there is a �ector x 
 C such that � x, x � � .
r�Ž . Ž .Proof. If � � , x � � r � 1 � take x � x. Otherwise, consider1 � TT

Ž . Ž . Ž . Ž .x � � �� � 1 � � x. Since x 0 � x and x 1 � � , � can be chosen so
r�Ž Ž .. Ž . Ž .that � � , x � � � r � 1 � . Set x � x � for this � . Then, by1 � TT

Lemma 9,

� � , x � � � , x � � x , xŽ . Ž . Ž .
r�

� � r � 1 � � � x , x .Ž . Ž .
1 � TT

Since we are given that

r�
� � , x � � r � 1 � � � ,Ž . Ž .

1 � TT

it follows that

� x , x � � .Ž .

THEOREM 3. For any k and t � r,

k� C , x � TT � � , x .Ž .Ž .k r�t r
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Proof. By Theorem 2,

k�1 k�2� � , x � TT � � , x � 1 � TT � ��� �TT r� � t� ,Ž .Ž . Ž .k r�t r

r�
k�1� TT � � , x � � t� .Ž .r 1 � TT

k�1 Ž .By Lemma 10, with � � TT � � , x we have x 
 C such thatr

k�1� x , x � TT � � , x .Ž .Ž .k r�t r

As a concluding result, we now show that small changes in the iterates
x , x , . . . also indicate within or close to C. This requires a preliminary1 2
lemma.

LEMMA 11. Let x be a positi�e �ector. Then, for any i, if � denotes thei
stochastic eigen�ector of A ,i

lim � � , xAk � 0.Ž .i i
k�	

Hence � 
 C.i

xAk
iProof. It is known that lim � � . Thusk� �k �	 ixA 1i

xAk
iklim � � , xA � lim � � , � � � , � � 0.Ž .Ž .i i i i ikž /� �xAk�	 k�	 1i

Now, if we have in the sequence A � A for all j 	 i, the previous resultsj i
still hold. Thus, � 
 C.i

Ž .THEOREM 4. For all i, if TT A � TT and TT � 1, theni

r
� C , x � � x , x .Ž . Ž .i i i�11 � TT

Proof. By the triangular inequality

k r�t� x , x A � � x , x � � x A , x A � ���Ž . Ž .Ž .i i�1 i i i�1 i i i�1 i

k r�t k r�t� � x A , x AŽ .i i i�1

� r� x , x � rTT� x , x � ���Ž . Ž .i i�1 i i�1

k�1 k� rTT � x , x � tTT � x , xŽ . Ž .i i�1 i i�1

r
k� � x , x � tTT � x , x .Ž . Ž .i i�1 i i�11 � TT
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Now, letting k � 	,

r
� x , � � � x , x .Ž . Ž .i i i i�11 � TT

Since by Lemma 11, � 
 C,i

r
� C , x � � x , x .Ž .Ž .i i i�11 � TT

An example putting the work together may be helpful.

5 6 0.1 0.1� � � � � �EXAMPLE. Let A � and EE � . Using the formulas in 2 ,6 5 0.1 0.1

TT � 0.10909. Direct calculation also shows that

RE � 0.02041 and � � 0.04082.
�Thus, the radius of C is � 0.04582. Using Theorem 3, this says that1 � TT

the normalized iterates x tend to the stochastic vectors in C or stayk
within e0.04582 � 1 � 0.04689 of � .
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