expression of Sarcolasmic Reticulum Calcium-transporting ATPase (SERCA2a) decrease in diabetes, leading to diastolic and systolic dysfunction of myocardium. It was recently reported that SUMOylation could elevate the activity and stability of SERCA2a. We assume that diabetes might affect the intensity of SUMOylation of SERCA2a after MI.

METHODS Diet-induced type 2 diabetic rats and controls were divided into six groups: 8-week post-diabetic rats; 8-week post-diabetic rats treated with saline; 8-week post-diabetic rats treated with pentoxyfylline; 8-week post-diabetic rats treated with non-saline; 8-week post-diabetic rats treated with non-saline + pentoxyfylline; and normoglycemic rats. Primary cardiomyocytes were isolated from these animals, and the effects of diabetes and treatment on their function were assessed.

RESULTS Diabetic rats showed decreased contractility and increased stiffness compared to controls. Treatment with pentoxyfylline improved these parameters, indicating a beneficial effect of this agent in diabetic cardiomyopathy.

CONCLUSIONS Diabetes affects the contractile properties of cardiomyocytes, and treatment with pentoxyfylline can reverse these changes.

GW26-e3959

Perioperative thromboelastography and postoperative atrial fibrillation

OBJECTIVES To evaluate the association between perioperative thromboelastography and postoperative atrial fibrillation (POAF).

METHODS A prospective cohort study was conducted involving 300 consecutive patients undergoing noncardiac surgery. Thromboelastography (TEG) was performed preoperatively and postoperatively. POAF was defined as atrial fibrillation occurring within 24 hours of surgery.

RESULTS A total of 25 patients developed POAF, with a prevalence of 9.9%. The preoperative TEG parameters, including a prolonged clotting time (R-time) and decreased amplitude (K-value), were significantly associated with POAF in the univariate analysis. In the multivariate analysis, a prolonged R-time was the independent predictor of POAF.

CONCLUSIONS Preoperative thromboelastography may be a useful tool for predicting POAF in noncardiac surgery.

GW26-e3960

Activation of D4 Dopamine Receptor Decreases AT1 Angiotensin II Receptor Expression in Rat Renal Proximal Tubule Cells

Yue Sheng Xia, Lin Wang, Rong Xu, Yuan Xiao, Xiaoming Wang

OBJECTIVES To investigate the role of D4 receptor in the regulation of AT1 receptor expression in renal proximal tubule cells.

METHODS Rat renal proximal tubule (RPT) cells were cultured in the presence or absence of D4 receptor agonist or antagonist. The expression of AT1 receptor was assessed by immunofluorescence and Western blotting.

RESULTS D4 receptor agonist significantly decreased AT1 receptor expression, while the antagonist had no significant effect.

CONCLUSIONS D4 receptor plays a role in the regulation of AT1 receptor expression in renal proximal tubule cells.

GW26-e3961

Urokinase Receptor Accelerates Ox-LDL Uptake and Foam Cell Formation by Upregulating CD36 Expression on Macrophages

Yan Zhang, Wei Chen, Quan Fang

OBJECTIVES To investigate the role of uPAR in ox-LDL uptake and foam cell formation by upregulating CD36 expression on macrophages.

METHODS UOT cells were transfected with a shRNA targeting uPAR. The efficiency of transfection and the effects on ox-LDL uptake and foam cell formation were assessed.

RESULTS UOT cells transfected with uPAR shRNA showed decreased ox-LDL uptake and foam cell formation compared to control cells.

CONCLUSIONS UPAR accelerated ox-LDL uptake and foam cell formation by upregulating CD36 expression on macrophages.

GW26-e3962

Activation of D4 Dopamine Receptor Decreases AT1 Angiotensin II Receptor Expression in Rat Renal Proximal Tubule Cells

Chen Ken,1,2 Zeng Chunyu1,2

1Department of Cardiology, Hospital of Cardiology in Daping Hospital, The Third Military Medical University; 2Chongqing Institute of Cardiology, Chongqing, P.R.China

OBJECTIVES To investigate the role of D4 receptor in the regulation of AT1 receptor expression in rat renal proximal tubule cells.

METHODS Rat renal proximal tubule (RPT) cells were cultured in the presence or absence of D4 receptor agonist or antagonist. The expression of AT1 receptor was assessed by immunofluorescence and Western blotting.

RESULTS D4 receptor agonist significantly decreased AT1 receptor expression, while the antagonist had no significant effect.

CONCLUSIONS D4 receptor plays a role in the regulation of AT1 receptor expression in renal proximal tubule cells.

GW26-e3963

Activation of D4 Dopamine Receptor Decreases AT1 Angiotensin II Receptor Expression in Rat Renal Proximal Tubule Cells

Yue Sheng Xia, Lin Wang, Rong Xu, Yuan Xiao, Xiaoming Wang

OBJECTIVES To investigate the role of D4 receptor in the regulation of AT1 receptor expression in renal proximal tubule cells.

METHODS Rat renal proximal tubule (RPT) cells were cultured in the presence or absence of D4 receptor agonist or antagonist. The expression of AT1 receptor was assessed by immunofluorescence and Western blotting.

RESULTS D4 receptor agonist significantly decreased AT1 receptor expression, while the antagonist had no significant effect.

CONCLUSIONS D4 receptor plays a role in the regulation of AT1 receptor expression in renal proximal tubule cells.

GW26-e3964

Urokinase Receptor Accelerates Ox-LDL Uptake and Foam Cell Formation by Upregulating CD36 Expression on Macrophages

Yan Zhang, Wei Chen, Quan Fang

OBJECTIVES To investigate the role of uPAR in ox-LDL uptake and foam cell formation by upregulating CD36 expression on macrophages.

METHODS UOT cells were transfected with a shRNA targeting uPAR. The efficiency of transfection and the effects on ox-LDL uptake and foam cell formation were assessed.

RESULTS UOT cells transfected with uPAR shRNA showed decreased ox-LDL uptake and foam cell formation compared to control cells.

CONCLUSIONS UPAR accelerated ox-LDL uptake and foam cell formation by upregulating CD36 expression on macrophages.

GW26-e3965

Activation of D4 Dopamine Receptor Decreases AT1 Angiotensin II Receptor Expression in Rat Renal Proximal Tubule Cells

Chen Ken,1,2 Zeng Chunyu1,2

1Department of Cardiology, Hospital of Cardiology in Daping Hospital, The Third Military Medical University; 2Chongqing Institute of Cardiology, Chongqing, P.R.China

OBJECTIVES To investigate the role of D4 receptor in the regulation of AT1 receptor expression in rat renal proximal tubule cells.

METHODS Rat renal proximal tubule (RPT) cells were cultured in the presence or absence of D4 receptor agonist or antagonist. The expression of AT1 receptor was assessed by immunofluorescence and Western blotting.

RESULTS D4 receptor agonist significantly decreased AT1 receptor expression, while the antagonist had no significant effect.

CONCLUSIONS D4 receptor plays a role in the regulation of AT1 receptor expression in renal proximal tubule cells.